
Modernizing Legacy Codes for Next-
Generation Storage Infrastructures:
A Case Study of PALM on Intel DAOS

Steffen Christgau and Thomas Steinke
Zuse Institute Berlin (ZIB)

DAOS User Group, November 20, 2019

Motivation

§ Evalua&on of future scalable storage
solu&ons for next-gen system architectures
v Hardware: DCPMM + NVMe SSDs
v SoDware: DAOS storage soDware stack

§ DAOS with high-level libraries:
netCDF, HDF5, …, MPI (,POSIX)

§ Start with ”simple” use case: Checkpoin&ng

21.11.19 steinke@zib.de 2

Source: A. Dilger DAOS: Scale-out Object Storage for NVRAM,
Dagstuhl Workshop, May 2017

About PALM

Parallelized Large-Eddy Simulation Model
§ Developed by IMUK @ Univ. Hannover
§ Computes turbulent air-flows, solves incompressible Navier-Stokes

equations
§ 3D compute domain, typical dimensions O(1k) x O(1k) x O(100)
§ Fortran 2003 (95) code base, GPL

v since 1997, 200k+ lines of code, lots of modules

§ MPI/OpenMP parallelization
§ large memory footprint
§ netCDF for data output

21.11.19 steinke@zib.de 3

21.11.19 steinke@zib.de 4

Checkpointing in PALM: Initial Version
§ Motivation: save the application state when job reaches wall time limit

… multiple restarts in job chains

§ Fortran unformatted I/O

§ Checkpoint creation: write name and raw data to hard-coded unit

§ Restore: read name from other hard-coded unit + large select statement

21.11.19 steinke@zib.de 5

CALL wrd_write_string(’topography’)
WRITE (14) topography

SELECT CASE (restart_string(1:length)) ...
CASE (’topography’) READ (13) topography

Checkpointing in PALM: Challenges

§ Raw binary data: hard to postprocess (useful for debugging)
§ Unformatted Fortran IO: "hidden" additional small writes
§ One file per MPI process(!)
§ Support of variable task/thread configuration
à PE-independence results in complicated restore code

§ interface to DAOS? … Via POSIX!?
§ no abstraction
§ no expressed parallelism

21.11.19 steinke@zib.de 6

Which Data are Checkpointed?
§ Not all application data are written to checkpoint file(s)
§ Typical composition (simplified) for 4096 × 4096 × 256 compute domain

21.11.19 steinke@zib.de 7

Type Count Data
scalars 192 907 B
1D arrays 57 1.00 GB
2D arrays 21 1.25 GB
3D arrays 9 258.00 GB
4D arrays 1 806 KB
total 280 261 GB

3D2D1D

New Checkpointing Implementation
§ Design a new checkpointing abstraction layer

§ Enables to abstract from actual storage API
v Remove Fortran unformatted IO
v Use of generic functions
v Replace storage backend with modern technologies without application changes

21.11.19 steinke@zib.de 8

!-- optional call to define variable
CALL checkpoint_define(’topography’, topography, dt_replicated)
CALL checkpoint_write(’topography’, topography, dt_replicated)
CALL checkpoint_read(’topography’, topography, dt_replicated)

New Checkpointing Abstraction Layer
§ Access target hardware via high-level libraries

v ROMIO: implementation of MPI’s IO chapter
v netCDF: IO for named and typed arrays; self-described files, existing ecosystem

§ Target hardware: NVRAM, via DAX or DAOS

21.11.19 steinke@zib.de 9

Checkpointing API
Legacy

Fortran I/O
Fortran 2003

Stream IO
MPI/IO NetCDF

PALM

Block
Device DAX

Block
Device
- or -
DAX

DAOS
ROMIO

HDF5 with
DAOS VOL Plugin

Block
Device DAX

Using NVRAM + DAOS

v no interface to DAOS, maybe FUSE → not investigated
v use NVRAM via DAX-mounted file system

v interfaces DAOS’ low level API
v ROMIO implementation from DAOS team, based on MPICH 3.3
v configure, make, make install and just run your MPI IO code
v (some intended limitations; do not apply to PALM)
v alternative: use DAX-mounted file system

v our assumption: just built netCDF on top of DAOS-aware HDF5
v HDF5 VOL plugin for DAOS is work in progress,

available soon, netCDF likely to need adjustments (?)
v DAOS v0.6 was not usable via netCDF

21.11.19 steinke@zib.de 10

Motivation recap: use high level libraries to interface DAOS

stream

MPI/IO

netCDF

Preliminary Results: DAOS Testbed
§ Single node:

v dual Xeon Platinum 8260L (CL-SP, 24C/48T)
v 6 TB NVRAM (2 × 6 DCPMM) + 768 GB DRAM
v CentOS 7, gcc/gfortran 9.1
v 32 MPI procs, domain size = 4096 × 4096 × 256

§ Mimics "DAOS on every compute node" scenario (vs. burst buffer-like
setup)

§ Compare backend stream, MPI on DAX FS, and MPI on top of DAOS

21.11.19 steinke@zib.de 11

0 20 40 60 80 100 120 140

stream on DAX FS

MPI on DAX FS

MPI + DAOS

126.53

25.38

42.11

checkpoint creation time / s

0 5 10 15 20 25 30

stream on DAX FS

MPI on DAX FS

MPI + DAOS

1.09

24.63

20.69

restore time / s

Experiences with DAOS v0.6
§ Installa'on:

v Scons

v use "download dependencies" feature

§ Setup:

v currently cannot use all DCPMMs on NUMA system

v some'mes confusing configura'on:

• Values for unimplemented features in examples

• Leave defaults where unsure

• Sufficient to define what contributes to pool

v no'ce immutable notes

§ Usage:

v Permissions: required to use DAOS account to get access to pool

v (1+x) threads per target, i.e. DCPMM, hog CPU cores → energy consump'on!?

v first_core op'on helpful

21.11.19 steinke@zib.de 12

Experiences with DAOS v0.6

§ Installation smoothly with Scons, use
"download dependencies" feature

§ Setup:
v currently cannot use all DCPMMs on

NUMA system
v notice immutable notes

§ Usage:
v first_core option helpful

§ Setup: sometimes confusing configuration:
v Values for unimplemented features in

examples
v Leave defaults where unsure
v Sufficient to define what contributes to

pool
§ Usage:

v Permissions: required to use DAOS
account to get access to pool

v (1+x) threads per target, i.e. DCPMM,
hog CPU cores → energy consumption!?

21.11.19 steinke@zib.de 13

Summary
§ Avoid raw (POSIX) IO, although it seems to be easy.
§ Use established high-level libraries.
§ DAOS is under heavy development! Expect some trouble, give to feedback

developers!
§ Early DAOS performance numbers promising but room for improvements.

Thank You!
Questions:

Steffen Christgau <christgau@zib.de>

21.11.19 steinke@zib.de 14

