DAOS Development Update

DAOS Development

- ESSIO (completed):
 - DAOS Prototype (Data Model, API)
 - N-Way Replication with online Rebuild
 - Metadata Replication using RAFT
 - Non-blocking Operations using Task Scheduling Engine (TSE)
- Ongoing:
 - NVMe Support with SPDK
 - Persistent service

I/O Middleware (I)

- HDF5:
 - DAOS Virtual Object Layer (VOL) plugin prototype developed in ESSIO
 - Ported several applications and higher middleware I/O libraries (NetCDF4 & PIO) to work on top of the DAOS plugin.
 - New HDF5 extensions prototyped that are not available to date in an HDF5 release:
 - Asynchronous I/O, Query & Indexing API, Snapshots
 - Future work: Productize the HDF5 prototype & develop Extensions

I/O Middleware (II)

- MPI-I/O:
 - Prototype ROMIO ADIO driver on top of DAOS
 - Most MPI applications/middleware will work seamlessly when DAOS driver is selected.
 - Unsupported functionality include:
 - Shared File Pointer operations
 - MPI File atomicity
 - Pre-allocate
 - https://github.com/mchaarawi/mpich/tree/daos_adio
- POSIX I/O:
 - We envision two operating modes:
 - Fully encapsulated namespace with relaxed POSIX compliance
 - Leverage Lustre for a strong POSIX compliant namespace and store file data in the DAOS tier

I/O Middleware (III)

- Dataspaces:
 - Collaboration with Rutgers
 - Prototype an integration of Dataspaces on top of DAOS
- PDC:
 - Collaboration with LBL + The HDF Group
 - Plugin for PDC server to use DAOS as an alternative to POSIX.
- Legion:
 - Data Centric Programming Model (Standford)
 - ESSIO prototype to support the Legion framework on top of the HDF5 DAOS VOL plugin.
 - Redesigned DAOS Epoch model to support independent distributed access pattern like the Legion Framework
- PIO/NetCDF4:
 - NetCDF4 internally uses HDF5 for it's backend I/O
 - Leveraged the HDF5 DAOS VOL plugin to store NetCDF data in DAOS

Applications

- HACC I/O (ESSIO App):
 - I/O Kernel for the Hardware Accelerated Cosmology Code
 - Developed an HDF5 backend that reduces required internal bookkeeping and metadata as compared to using POSIX I/O or MPI-I/O
 - Ported to use the DAOS HDF5 VOL plugin
- CLAMR (ESSIO App):
 - Cell-Based AMR application
 - Reworked I/O strategy to use parallel I/O with HDF5
 - Ported to use the HDF5 DAOS VOL Plugin.
- ACME (ESSIO App):
 - Accelerated Climate Modeling for Energy
 - Uses PIO / NetCDF4 / HDF5
 - Ported to use the HDF5 DAOS VOL Plugin.

Useful Tools & Language Bindings

- Go Language Binding for DAOS:
 - Go interface that covers most of the DAOS API
- daosfs for very simple POSIX filesystem semantics
 - Provide a C API that can be used by libraries like pNFS-GANESHA (FS abstraction layer) to provide a user-space file server.
 - or other services like a MYSQL server
- daos-fuse tool to expose a DAOS container via FUSE mount point
- Prototypes:
 - <u>https://github.com/daos-stack/go-daos</u>

Documentation

- Source code:
 - https://github.com/daos-stack
- Users Website + Mailing list + Materials
 - <u>https://daos.groups.io/g/users</u>
- Installation:
 - <u>https://wiki.hpdd.intel.com/display/DC/DAOS+Community+Home</u>