

LLNS Subcontract No. B599860

Subcontractor Name Intel Federal LLC

Subcontractor Address
2200 Mission College Blvd.

Santa Clara, CA 95052

NOTICE: THIS MANUSCRIPT HAS BEEN AUTHORED BY EMC UNDER INTEL’S SUBCONTRACT WITH LAWRENCE
LIVERMORE NATIONAL SECURITY, LLC WHO IS THE OPERATOR AND MANAGER OF LAWRENCE LIVERMORE

NATIONAL LABORATORY UNDER CONTRACT NO. DE-AC52-07NA27344 WITH THE U.S. DEPARTMENT OF

ENERGY. THE UNITED STATES GOVERNMENT RETAINS AND THE PUBLISHER, BY ACCEPTING THE ARTICLE OF
PUBLICATION, ACKNOWLEDGES THAT THE UNITED STATES GOVERNMENT RETAINS A NON-EXCLUSIVE, PAID-

UP, IRREVOCABLE, WORLD-WIDE LICENSE TO PUBLISH OR REPRODUCE THE PUBLISHED FORM OF THIS

MANUSCRIPT, OR ALLOW OTHERS TO DO SO, FOR UNITED STATES GOVERNMENT PURPOSES. THE VIEWS AND
OPINIONS OF AUTHORS EXPRESSED HEREIN DO NOT NECESSARILY REFLECT THOSE OF THE UNITED STATES

GOVERNMENT OR LAWRENCE LIVERMORE NATIONAL SECURITY, LLC.

© 2014 Intel Corporation

Date:
January 10, 2013 IOD KV Store Design Document

FOR EXTREME-SCALE COMPUTING
RESEARCH AND DEVELOPMENT (FAST
FORWARD) STORAGE AND I/O

i

Table of Contents

Introduction ... 1

Definitions .. 1

Changes from Solution Architecture .. 2

Specification ... 2
Environment and limits ... 3
Versioning .. 3
Request dispatcher.. 4
Range server .. 5
KV migration ... 7

API and Protocol Additions and Changes ... 8

Open Issues ... 13

Risks & Unknowns.. 14

Revision History

Date Revision Author

2013-01-10 0.1 Zhenhua Zhang

2013-01-15 0.2 Zhenhua Zhang

2013-01-17 0.3 Zhenhua Zhang

2013-01-24 0.4 Reduce the IOD KV API number Zhenhua Zhang

2013-02-16 0.5 align same semantic with blob/array objects
 And change APIs to version of Feb 7.

Zhenhua Zhang

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 1 12/12/12

Introduction
IOD distributed KV store as part of EFF project which targets to redesign the whole IO
stack towards exscale computing provides KV interfaces for storing small metadata for

HDF objects. It’s a hierarchical system which is built on top of multiple DBMSs (PBL ISAM

in our case) running on the IONs of a supercomputer. In IOD KV system, MDHIM client

will use a pre-defined sharding method to direct each record to a range server. Then the
range server will store the record in its local DBMS. Besides the existing KV store

functionality, IOD KV store introduces versioning to provide data consistency and

availability so user can keep multiple states for each key at the same time. IOD KV

system also utilizes the fast interconnecting network between the IONs to pass request

and result between MDHIM client and range server. DAOS, a new object oriented storage
system invented by Intel, will be used as IOD KV system’s long term storage and IOD will

be able to migrate its KV stores between the burst buffers and the DAOS system.

Together all the new features, we provide a new distributed KV store which provides

extreme scalability and data consistency and high throughput.

Definitions
CN Computer nodes of a supercomputer

ION I/O nodes of a supercomputer

HDF Client HDF client is the application runs on CN which uses IOD API.

Function shipper A forwarding layer that exports APIs from IONs to CNs. It’s client-

server model that client runs with application on CN and server on ION.

IOD I/O Dispatcher running on IONs

DAOS Distributed Application Object Storage

MDHIM Multi-Dimensional Hierarchical Indexing Middleware

PBL Program Base Library

ISAM Indexed Sequential Access Method

SAL Storage Abstraction Layer

MDHIM client MDHIM client running on ION is used for accepting requests from user

(HDF Function shipping server) and directing to range server for handling.

Range server Range server running on ION is a role in MDHIM which accepts requests

from MDHIM client and read/write its local DBMS accordingly.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 2 12/12/12

Changes from Solution Architecture

Specification
IOD distributed KV store consists of IOD KV APIs which will internally call MDHIM client

routines, request dispatcher, range server which supports multiple backend. The MDHIM

client API uses a pre-defined hashing method to route each request to its range server.

The range server will then execute the request by reading/writing to its POSIX/DAOS
backend. Figure 1 describes the high level architecture of IOD KV Store.

Figure 1: IOD KV store high level architecture

MDHIM

Client

MDHIM

Client

MDHIM

Client

MDHIM

Client

MDHIM

Client

MDHIM

Client

Request dispatcher (MDHIM)

Range Server

ISAM

POSIX DAOS

Range Server

ISAM

POSIX DAOS

SAL SAL

HDF

Client

HDF

Client

HDF

Client

HDF

Client

HDF

Client

HDF

Client

Function Shipper Client

Function Shipper Server Function Shipper Server

CN ION

DAOS, a separate cluster providing global storage to ION

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 3 12/12/12

Following is a sample process example of how IOD KV store works:

1. HDF clients running on CNs call iod_init() to start the IOD service. This

request will be forwarded to function shipper server to be executed. Iod_init
will then call iod_kv_init which internally calls mdhim_init to start the IOD KV

service. All MDHIM clients collectively call the init procedure with one MPI

communicator. Rank0 will read in configuration file and determine the range

servers and broadcast to all. Each range server will then start a thread to
receive requests from client.

2. HDF clients can send create/set/get/list/delete request command which will be

forwarded to to function shipper server. These requests will be handed out to

MDHIM client to route them to different range server independently using a
predefined hash method.

3. Range server will execute client’s request and communicate with client

asynchronously.

4. HDF clients call iod_finalize() to do resource cleanup.

Environment and limits
The IOD KV store will be deployed on the IO nodes of a supercomputer, which have fast

interconnected network. At the IOD init time, user must provide one MPI communicator
which evolves all the processes in the workload. Following parameters can be

configurable,

Global parameters for IOD KV services:

 KV store path

Parameters for IOD KV object:

 Range server list

 Number of range servers

 Maximum length of key

 Maximum length of value

 Key type (string/integer/float)

The object parameters can be passed in as hints when creating a KV object.

Versioning
Besides the normal key value system functionality, IOD KV store introduces versioning

concept which means it can preserve multiple states at different “timestamps” for each

key. The following record format will be used to support versioning.

Key Tag Value

Here tag is a 64 bit integer which can be timestamp, transaction ID and so on. User must

ensure it to be unique for each key. So compared with traditional KV system in which

value can be retrieved by its key, now the value is determined by <Key, Tag> pair.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 4 12/12/12

Two pre-defined tags are reserved for special usage. NULLTAG can be used to disable

multiple versioning for some records. For the NULLTAG records, user can update its value

in position freely. NULLTAG can also be used for the operations that are not in a
transaction. MAXTAG can only be used in get operation to retrieve the latest version of

value but can’t be used in set operation.

#define NULLTAG 0X0

#define MAXTAG 0XFFFFFFFFFFFFFFFF

If user inserts a non NULLTAG record, it represents a consistent state for the key. User

can update its state by overwriting the value with the same tag or inserting a new record

with a new tag.

For a get operation, IOD KV store will return most recent version compared with the tag
passed in.

All the states for each key will be preserved unless user implicitly deletes a record.

Request dispatcher
IOD KV system runs on IONs of supercomputer which has fast interconnect between all

nodes and uses given MPI communicator to send/receive message between client and

range server. The request dispatcher needs to shard key space and store the record set

using multiple servers to provide scalability, capacity and high throughput. MDHIM, an
open sourced project developed by LANL, satisfies all the requirements. Our IOD KV

system will use MDHIM as its request dispatcher.

Figure 2 describes MDHIM architecture.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 5 12/12/12

Figure 2: MDHIM architecture

At IOD KV store create phase, IOD instance will determine which rank will work as range

server according to the parameter list. And MDHIM clients will then use a pre-defined
hash method to shard the whole key space into many pieces of ranges and assign each

range to different range server. Each range server will act as execute unit to interact with

its POSIX or DAOS backend using ISAM. In future, more accessing methods and more

backend type will be added into MDHIM.

Table 1 describes the request formation used by client and range server. Each operation

can be implemented by corresponding PBL ISAM routines. For now, pblIsamReadData()

and pblIsamReadDatalen() are not support by MDHIM.

Operation Parameter list Corresponding PBL

ISAM routine

Supported by

current MDHIM

create pblIsamOpen yes

Insert Number of records[IN], records

list[IN]

pblIsamInsert yes

get Number of keys[IN], key

list[OUT]

pblIsamGet yes

readdata Buffer[IN], buffer size[IN] pblIsamReadDatalen no

pblIsamReadData no

list Key list[OUT] pblIsamGet yes

unlink Number of keys [IN] pblIsamFind yes

pblIsamDelete yes

Table 1: request command formation

Range server
Range server is responsible for receiving client’s request and executing it. In current

version of MDHIM, the range server uses PBL ISAM to access its POSIX backend. For EFF
project, we will need range server to interact with DAOS storage. Figure 3 describes the

ISAM changes to satisfy IOD KV store needs. New components in blue will be added.

ISAM

POSIX

ISAM

SAL

POSIX DAOS

http://www.mission-base.com/peter/source/pbl/doc/pblIsamReadData.html
http://www.mission-base.com/peter/source/pbl/doc/pblIsamReadDatalen.html#DOC.DOCU
http://www.mission-base.com/peter/source/pbl/doc/pblIsamOpen.html
http://www.mission-base.com/peter/source/pbl/doc/pblIsamInsert.html
http://www.mission-base.com/peter/source/pbl/doc/pblIsamGet.html
http://www.mission-base.com/peter/source/pbl/doc/pblIsamReadDatalen.html#DOC.DOCU
http://www.mission-base.com/peter/source/pbl/doc/pblIsamReadData.html
http://www.mission-base.com/peter/source/pbl/doc/pblIsamGet.html
http://www.mission-base.com/peter/source/pbl/doc/pblIsamFind.html
http://www.mission-base.com/peter/source/pbl/doc/pblIsamDelete.html

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 6 12/12/12

Figure 3: ISAM architecture

SAL, short for Storage Abstraction Layer, is required to expose a set of storage interfaces

for ISAM usage and block the differences for each backend. It’s responsible for translating
an up layer IO request to correct underlying backend APIs. SAL need to support at least

POSIX and DAOS backend. While POSIX and DAOS are really different because POSIX is

a file based interface standard and DAOS exposes a new set of object oriented APIs, their

IO operations are all based on offset. This will greatly simplify the design of SAL.

Besides SAL, DAOS backend support will be added to current PBL ISAM code. In that case,

ISAM will treat a DAOS object as a logical file, which can be accessed by offset. A DAOS

object may stripes on columns of many DAOS shards, this kind of metadata need to be

kept to map a logical <offset, length> pair to correct DAOS <shard, column> list in
read/write operations.

The following are the main data structures in SAL.

enum SAL_BKD_TYPE {

 SAL_POSIX = 1,

 SAL_DAOS = 2

};

typedef enum SAL_BKD_TYPE SAL_BKD_TYPE;

typedef struct {

 char *path; // NULL terminated

 SAL_BKD_TYPE type;

 Union{

 int fd;

 iod_obj_id_t oid;

}handle;

} sal_handle; // structure that associates path and underlying backend

 // storage system’s handle

The minimum set of SAL IO API abstractions are as follows. Because SAL is designed at

file/object level, file system APIs and many unused file based APIs are not listed here.

//malloc memory internally for sal_handle

sal_handle *handle sal_open(char *path, int mode);

int ret // number of bytes written

sal_write(sal_handle *sal_h,

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 7 12/12/12

 char *buffer, // user passed in

 size_t length, // length of buffer

 off_t offset // the logical offset to write

);

int ret // number of bytes read out

Sal_read(sal_handle *sal_h,

 Char *buffer, // user passed in to receive data

 Size_t length, // the length of buffer

 Off_t offset // the logical offset to read)

 };

// free the memory belong to sal_h

Int sal_close(sal_handle *sal_h);

KV migration
In the EFF project, IOD will preserve the KV store in ION’s local burst-buffer POSIX

storage and migrate it to DAOS after receiving migration request from user. After

migration, the whole record set will be divided in to two parts, one in BB and the other in

DAOS. The following record insertion will go to BB by default for performance. And
following get/read requests will be satisfied from BB if available, otherwise it will retrieve

data from DAOS.

The IOD API iod_obj_set_layout() can be used to migrate the KV store to DAOS by

passing an KV object ID. Hints can be set to control the semantic resharding policy.

The following is a sample process for migrating IOD KV store from ION to DAOS.

1. One MDHIM client receives the KV migration request via iod_obj_set_layout(TID)

call, it will send migrate command to all range servers.

2. Every range server will stop accepting new request after getting migration
notification.

3. Each range server will do bulk query and find out all records with a smaller

transaction ID than TID and store them into DAOS.

4. Range servers continue to accept new request after migration is done.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 8 12/12/12

API and Protocol Additions and Changes
Many of the data structures and APIs are copied from IOD API document, may need to
change accordingly. Now they are based on version of Feb 7, 2013.

IOD KV object, as one of the supported object types in IOD, will use the IOD object

create/unlink/open/close/set_layout routines. Besides these operations, IOD KV store

need to provide following APIs.

API Description

iod_kv_set Set Key-Value pair to one KV object

iod_kv_set_list

iod_kv_get_num Get the number of Key-Value pairs of one KV object

iod_kv_get_list Get a list of KV pairs from one KV object

iod_kv_list_key Retrieve a list of keys in the KV object

iod_kv_get_value Get one KV pair belong to the key from one KV object

iod_kv_unlink_keys Unlink a list of keys in the KV object

The main data structure describing a KV record,

/** IOD KV store supported key type */

typedef enum {

 IOD_KV_STRING, // for char array

 IOD_KV_INT, // for int

 IOD_KV_FLOAT, // for float

} iod_kv_key_type_t;

/** A first-class structure for a Key-Value pair */

#define IOD_KV_KEY_MAXLEN (1024)

typedef struct {

 const char *key; /** must be NULL termed */

 const void *value;

 iod_size_t value_len;

 } iod_kv_t;

The main IOD KV API

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 9 12/12/12

/**

 * A collective call to initialize the IOD KV service.

 * Called internally by IOD.

 */

Iod_ret_t

iod_kv_init(iod_kv_info_t *info,

MPI_COMM comm);

/**

 * A collective call to end IOD KV service.

 * This routine will do resource cleanup before ending IOD KV service.

 * Called internally by IOD.

 */

Iod_ret_t

iod_kv_finalize(iod_kv_info *info);

/**

 * Set one Key-Value pair to one KV object.

 *

 * \param oh [IN] object handle

 * \param tid [IN] transaction ID

 * \param hints[IN] pointer to hints and can be NULL when no hint

 * \param kv [IN] KV pair pointer

 * \param event [IN] pointer to completion event

 *

 * \return zero on success, negative value if error

 */

iod_ret_t

iod_kv_set(iod_handle_t oh, iod_trans_id_t tid, iod_hint_list_t *hints,

 iod_kv_t *kv, iod_event_t *event);

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 10 12/12/12

/**

 * Set a list of Key-Value pairs to one KV object.

 *

 * \param oh [IN] object handle

 * \param tid [IN] transaction ID

 * \param hints[IN] pointer to hints and can be NULL when no hint

 * \param num [IN] number of KV pairs

 * \param kvs [IN/OUT] pointer to KV parameters packet list

 * \param event [IN] pointer to completion event

 *

 * \return zero on success, negative value if error

 */

iod_ret_t

iod_kv_set_list(iod_handle_t oh, iod_trans_id_t tid, iod_hint_list_t

*hints,

 iod_size_t num, iod_kv_params_t **kvs, iod_event_t *event);

/**

 * Get the number of Key-Value pairs of one KV object.

 *

 * \param oh [IN] object handle

 * \param tid [IN] transaction ID

 * \param num [IN/OUT] pointer of number of KV pairs

 * \param event [IN] pointer to completion event

 *

 * \return zero on success, negative value if error

 */

iod_ret_t

iod_kv_get_num(iod_handle_t oh, iod_trans_id_t tid, iod_size_t *num,

 iod_event_t *event);

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 11 12/12/12

/**

 * Get a list of KV pairs from one KV object.

 * Caller needs to provide and free the buffer for KV-pairs.

 *

 * \param oh [IN] object handle

 * \param tid [IN] transaction ID

 * \param hints[IN] pointer to hints and can be NULL when no hint

 * \param offset [IN] offset of kv pair inside the KV object(begin from 0),

 * ordered by ascending alphabetical order of key (from

 * 'a' to 'z').

 * \param num [IN] number of KV pairs

 * \param kvs [IN/OUT] pointer to KV parameters packet list

 * \param event [IN] pointer to completion event

 *

 * \return zero on success, negative value if error

 */

iod_ret_t

iod_kv_get_list(iod_handle_t oh, iod_trans_id_t tid, iod_hint_list_t

*hints,

 iod_off_t offset, iod_size_t num, iod_kv_params_t **kvs,

 iod_event_t *event);

/**

 * Retrieve a list of keys in the KV object.

 * Caller needs to provide and free the buffer for key list, every key is a

 * buffer of IOD_KV_KEY_MAXLEN length. Needs not malloc buffer for value

 * inside iod_kv_params_t, it will be ignored by this call.

 *

 * \param oh [IN] object handle

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 12 12/12/12

 * \param tid [IN] transaction ID

 * \param hints[IN] pointer to hints and can be NULL when no hint

 * \param offset [IN] offset of key inside the KV object(begin from 0),

 * ordered by ascending alphabetical order (from 'a'

 * to 'z').

 * \param num [IN] number of KV pairs

 * \param kvs [IN/OUT] pointer to KV parameters packet list

 * \param event [IN] pointer to completion event

 *

 * \return zero on success, negative value if error

 */

iod_ret_t

iod_kv_list_key(iod_handle_t oh, iod_trans_id_t tid, iod_hint_list_t

*hints,

 iod_off_t offset, iod_size_t num, iod_kv_params_t **kvs,

 iod_event_t *event);

/**

 * Get the value belong to the key from one KV object.

 * Caller needs to provide and free the buffer for value, if user passed in

 * buffer length \a len is not enough to hold the value then when this

routine

 * returns the \a len is set as the actual length of value.

 *

 * \param oh [IN] object handle

 * \param tid [IN] transaction ID

 * \param key [IN] passed in key

 * \param value [IN/OUT] returned value

 * \param len [IN/OUT] pointer of length of passed in buffer of

value

 * \param event [IN] pointer to completion event

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 13 12/12/12

 *

 * \return zero on success, negative value if error

 */

iod_ret_t

iod_kv_get_value(iod_handle_t oh, iod_trans_id_t tid, const char *key,

 char *value, iod_size_t *len, iod_event_t *event);

/**

 * Unlink a list of keys in the container.

 * Caller needs to provide and free the buffer for key list, every key is a

 * NULL termed string(within length of IOD_KV_KEY_MAXLEN). Needs not malloc

 * buffer for value inside iod_kv_params_t, it will be ignored by this

call.

 *

 * \param oh [IN] object handle

 * \param tid [IN] transaction ID

 * \param hints[IN] pointer to hints and can be NULL when no hint

 * \param num [IN] number of KV pairs

 * \param kvs [IN/OUT] pointer to KV parameters packet list

 * \param event [IN] pointer to completion event

 *

 * \return zero on success, negative value if error

 */

iod_ret_t

iod_kv_unlink_keys(iod_handle_t oh, iod_trans_id_t tid, iod_hint_list_t

*hints,

 iod_size_t num, iod_kv_params_t **kvs, iod_event_t *event);

Open Issues
1. In future, more data stores other than ISAM may be added to MDHIM. It’s on

the developer’s roadmap now. We can leverage or add any DBMS if needed.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 14 12/12/12

2. IOD APIs are still in review process now. IOD KV APIs may need to change

accordingly.

Risks & Unknowns

