

LLNS Subcontract No. B599860

Subcontractor Name Intel Federal LLC

Subcontractor Address
2200 Mission College Blvd.

Santa Clara, CA 95052

NOTICE: THIS MANUSCRIPT HAS BEEN AUTHORED BY EMC UNDER INTEL’S SUBCONTRACT WITH LAWRENCE
LIVERMORE NATIONAL SECURITY, LLC WHO IS THE OPERATOR AND MANAGER OF LAWRENCE LIVERMORE

NATIONAL LABORATORY UNDER CONTRACT NO. DE-AC52-07NA27344 WITH THE U.S. DEPARTMENT OF

ENERGY. THE UNITED STATES GOVERNMENT RETAINS AND THE PUBLISHER, BY ACCEPTING THE ARTICLE OF
PUBLICATION, ACKNOWLEDGES THAT THE UNITED STATES GOVERNMENT RETAINS A NON-EXCLUSIVE, PAID-

UP, IRREVOCABLE, WORLD-WIDE LICENSE TO PUBLISH OR REPRODUCE THE PUBLISHED FORM OF THIS

MANUSCRIPT, OR ALLOW OTHERS TO DO SO, FOR UNITED STATES GOVERNMENT PURPOSES. THE VIEWS
AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO NOT NECESSARILY REFLECT THOSE OF THE UNITED

STATES GOVERNMENT OR LAWRENCE LIVERMORE NATIONAL SECURITY, LLC.

© 2014 EMC Corporation

Date:

July 2, 2014 IOD Design Document

FOR EXTREME-SCALE COMPUTING
RESEARCH AND DEVELOPMENT (FAST
FORWARD) STORAGE AND I/O

i

1 Table of Contents

2 Introduction .. 1

3 Motivation .. 2

4 Definitions.. 4

5 Changes from Solution Architecture ... 6

6 Specification .. 7
6.1 High level system view .. 7
6.2 IOD sub-modules overview .. 8
6.3 Object storage... 10

Three object types – KV, ARRAY and BLOB .. 10

Object mapping between HDF5/IOD/DAOS layers .. 11

Object storage on DAOS ... 14

6.4 Storing organization of data, metadata, and checksums .. 16
6.5 Layout, data migration and reorganization .. 19

IOD blob object .. 27

Multi-format replicas ... 27

6.6 Transactions ... 28
Transaction status .. 29

6.7 TID selection ... 30
Transaction status synchronization ... 31

Start and finish, slip.. 32

Abort .. 33

Unborn ... 33

Consistent semantic ... 33

6.8 Versioning ... 34
Using temporary views to approximate object versioning .. 34

Container snapshots ... 34

6.9 Data Integrity ... 35
6.10 Asynchronous operation and event .. 43
6.11 Impact on HDF5 users ... 44

7 Configuration Parameters .. 44

8 Performance Evaluation .. 46

9 Lessons Learned... 50

10 Conclusion ... 53

11 FAQ ... 53

12 References ... 56

Table of Figures

Figure 1. The same shared write workload run on Panasas on the left and with PLFS on the right. Each

cylinder is a disk and the height of each cylinder is its current bandwidth. Note that false sharing in

Panasas grossly limits total throughput. Image courtesy of Ben McClelland. 3

Figure 2. High level system view. ... 7

Figure 3. IOD sub-modules overview. ... 9

Figure 4. An example object mapping. Approximate only; some simplifications made to facilitate the

transmission of the general idea... 13

Figure 5. How IOD stores a blob object on DAOS. Note how the object is stored across DAOS shards

using regular round-robin striping. This allows two important benefits: first, sets of over-writes to
multiple objects are handled atomically by DAOS transactions and DAOS does garbage collection for

over-written data, and second, the amount of IOD metadata for locating physical data is reduced.

Note that this figure shows the IOD metadata stored in a separate index shard whereas the current

implementation creates a virtual index shard and a virtual data shard and stores them together in a
single DAOS container shard. .. 15

Figure 6. How IOD stores an Array Object on DAOS. The app can request a striping layout and can

query the number of shards if it wants explicit control over parallelism or it can rely on IOD to make

a reasonable layout based on the number of shards. .. 16

Figure 7: Two IOD Objects Distributed Over DAOS Container Shards. Data and metadata and

checksums for the blue IOD object is stored within the third object within their respective virtual

shards as the yellow object is stored in the fourth. ... 18

Figure 9. An example of array's contiguous layout and chunked layout. .. 25

Figure 10. IOD Transaction State Diagram. Note that the user can specify different abort semantics. An
aborted transaction can cause higher transactions (which are necessarily either finished, unborn,

started, or aborted) to either be unaffected or to be also aborted. Snapshot is included in this figure

even though it isn’t technically an IOD transaction state. But it is shown since only a container in a

durable state can be snapshotted. Snapshotting a durable container does nothing to that container
itself; it merely creates a copy of it. .. 30

Figure 11 Index Tree with Checksums .. 42

Figure 12. This figure shows that IOD blob performance for both shared file and file-per-process perform

mostly as expected. The slight dip in performance for shared-file blobs for small-IO sizes is an open
question as is the slower performance for array objects. This data was collected with IOR running

on buffy; the POSIX measurement was taken using a local file system on each node. The “IOD Blob

Noglib” measurement shows the value of using the C functions for IO in the stdio.h library instead of

the C functions in the fcntly.h library since they add important user-space buffering. 47

Figure 13. This figure compares blob and array write performance to PLFS. Since IOD is implemented
using PLFS to store writes, it is a satisfying result that blob IO only incurs a slight degradation over

PLFS. IOD arrays are under current investigation. This data was collected using the LANL fs_test

benchmark running on lola. Note that these tests set the array cell size equal to the IO size.

However, in other IOR measurements, not shown, we set the array cells to be a constant 8 bytes
regardless of the IO size and observed that this did not affect performance. 47

Figure 14. This figure shows the importance of handling small IO appropriately. The value of user-space

buffering is shown with the lines marked "Glib" which indicates that the IO was performed into the

BB's using the stdio.h routines; lines marked with POSIX used the routines in fcntl.h. Lines marked
with Err and Debug respectively show the extreme damage to small IO performance which can be

caused even with small perturbances such as a debug output message sent to the /tmp partition. 48

Figure 15. Just as in writes, the blob performance for file-per-process is close to the upper bound of the

POSIX bandwidth. The single-shared-file performance is lower due to the slow open time during
which PLFS consolidates the large amount of metadata from the multiple PLFS index files. Note that

the LANL PLFS team is working on several optimizations for this challenge. As in the writes, the

array performance for small IO is unexpectedly low. ... 48

Figure 16. The performance to persist an IOD blob from BB to DAOS is shown here. The difference
between the file-per-process and single-shared file may be due to the slower time to read the

single-shared file from the BB’s due to the aforementioned PLFS metadata. It may also be due to

reduced parallelism while writing to the DAOS shards. .. 49

Figure 17. This picture shows that IOD KV’s can be persisted to DAOS at a higher IOPs rate than blobs
and arrays when the key is distributed across the range servers. Note that the performance for

decimal key’s is very low. This is because the decimal keys all were sharded to a single range server

within the MDHIM table and therefore parallelism was not achieved. With a hexadecimal key more

uniformly distributed across the key space, the IOPs scale with the size of the job. 49

Figure 18. This graph shows storage activity during a workload in which an application was writing new
transactions into the burst buffers while IOD was persisting an older transaction to DAOS. IOD

mostly is able to overlap IO although the strange gap in the middle needs investigation, as does the

strange 40 GB/s spike. .. 50

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 1 03/07/2014 10:09:00

AM

2 Introduction
I/O dispatcher (IOD) is software that runs on the hardware I/O nodes (IONs) which are
equipped with persistent solid-state burst buffers. Together with innovations in DAOS

and HDF, IOD will change both the hardware storage tiering and software I/O stack to

satisfy both the scalability and performance requirements for extreme scale HPC storage

system. IOD absorbs application’s I/O and buffers it on local SSD.

It provides storage for user data in structured array objects and unstructured “blob”

objects as well as providing a first class key-value object. Upper layers can use these

objects however they like, but we expect for our project that HDF will use array objects

to store users’ HDF Datasets and blob objects for unstructured data and KV objects for

internal HDF metadata linking the objects within an H5File.

IOD further persists/pre-fetches the data to/from central storage (DAOS) via explicit

burst buffer management exported to the upper layer. IOD handles the impedance

mismatch between the smooth streaming I/O required for efficient backend disk

utilization and the bursty, fragmented and misaligned I/O that frontend extreme scale
applications will produce as well as providing mechanisms for efficient analysis and

reading of in-transit data as it passes through the IONs. Additionally, it can be used for

out-of-core analysis as data sent to ION can be ephemeral and never stored persistently

on DAOS.

Four main characteristics of IOD are: object storage, transactions, semantic awareness,

and asynchronous operations.

 Object storage. IOD discards traditional POSIX semantics and maps

complex science data models to container and objects, provides direct access

to underlying storage objects to avoid lock contention, allows applications to
choose the degree of parallelism related to access needs by providing optional

control over where and how objects are striped on underlying storage targets.

IOD exports three types of objects: multi-dimensional arrays, key-value

stores, and blobs, which are akin to POSIX files with some exascale features.

 Transactions. IOD provides transactions which ensures a group of

operations executed across an arbitrary set of processes within a single

parallel job across a set of objects within a single container are applied

atomically – i.e. all or none will succeed. It can be used to guarantee the
integrity and isolation of the stored science data models.

 Semantic awareness. IOD can understand the dimensionality of multi-

dimensional data structures based on which it can do layout resharding

according to users’ requests to allow collections of sub-objects to be stored
together on a single ION to enable analysis tasks which require that collection

to be read entirely from the local ION. IOD leverages the fast network

interconnect between the IONs and can do MPI communications between

them for data shuffling. IOD provides APIs to control burst buffer’s pre-fetch

from or “persist” to central backend storage with optimized layout using
semantic descriptions of array dimensions. [Similar functionality is for non-

structured objects (called IOD blobs) but this is called “multi-format replicas,”

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 2 03/07/2014 10:09:00

AM

whereas we call it “semantic resharding” for structured “array” objects and

structured KV objects.]

 Asynchronous operations. IOD API is fully asynchronous to allow user can
build fully non-blocking applications through which further improves

parallelism by overlapping computing and I/O. One IOD API’s success return

just means the request has been submitted to IOD, a related completion

event can be polled by user to query completion. Note that asynchrony is not
magic; asynchronous reads and writes on data buffers do NOT immediately

allow the application to user those buffers. The read buffer must be protected

until the read event completes and the data in the write buffer is not valid

until the write event completes. The application must have other work to do
in order to benefit from asynchrony. If the application needs the buffer, then

the asynchrony doesn’t benefit them. Therefore, asynchrony is only one part

of the solution. We need fast burst buffers to reduce the time to event

completion and we need asynchrony to allow the user to do other work while
they wait for the completion.

3 Motivation

Although HPC storage architecture has remained remarkably consistent from the
terascale to the petascale eras, three emerging trends have rendered it infeasible for

exascale. The first trend, due to the physics and economics of physical storage, is

towards a new tiered storage architecture in which solid state storage closely coupled to

the HPC cluster fabric supports ever increasing performance requirements measured both

in terms of IOPs and bandwidth of HPC workflows. The second trend, driven by
improvements in computational power, is towards increasing data volume and metadata

complexity. The third trend, due to the need to limit power consumption while continuing

to scale computational performance, is towards ever increasing core and node counts

which requires matching scaling of application concurrency and directly increases the
frequency of hardware failure.

These trends stretch the familiar POSIX I/O stack beyond its limits in two ways. Firstly,

its fundamental storage abstraction, the POSIX file, imposes unscalable consistency

requirements on concurrent accesses. This forces application and middleware developers
to abandon the manageability of the shared file I/O model in favor of file-per-process.

This pollutes the filesystem namespace with what is effectively application metadata and

also moves rather than solves the scaling problem. Secondly, POSIX has no transactional

semantic to allow the update, with guaranteed integrity in the presence of either
application or system failure, of large and complex datasets. This forces applications to

create new files at every stage of the workflow to ensure existing data will not be

compromised on failure, further polluting the namespace.

The petascale era, although it was able to continue using much the same hardware stack

as the terascale era, also had its own other challenges. In fact the petascale era was
extremely challenged by high degrees of concurrent access to shared files due to the

false sharing problem in which application modifications to distinct file regions intersect

within the same regions of the file as shared by the storage system. This sharing is

called false because, although the storage system treats these modifications as if there is

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 3 03/07/2014 10:09:00

AM

concurrent access to the same data, in fact there is not. To address this, PLFS was

developed to decouple concurrent access to shared files to avoid false sharing by sending

all data from each process to a separate file. PLFS then reconciles the shared file at read
time. The benefits of PLFS are illustrated in Figure 1.

Figure 1. The same shared write workload run on Panasas on the left and with PLFS on

the right. Each cylinder is a disk and the height of each cylinder is its current bandwidth.
Note that false sharing in Panasas grossly limits total throughput. Image courtesy of

Ben McClelland.

This project anticipates new and major challenges for exascale storage in both software

and hardware. The software problem is motivated by the expectation that the current
storage software stack, based primarily on POSIX I/O and which, perhaps unexpectedly,

survived the terascale to petascale transition, can no longer be relied upon for the

exascale era. The hardware problem is motivated by the increase in failure rates due to

the sheer size of systems expected at exascale and the economic trends of disk-based
storage, which forecasts a future in which disk-based storage can provide capacity at

reasonable cost but not performance.

Two main factors threaten the viability of POSIX I/O and the current storage software

stack: increasing concurrency and larger and more complex metadata. Node counts are
expected to approach the hundreds of thousands with potentially hundreds of MPI ranks

on each node. This creates an extreme scalability requirement for the I/O system that

cannot tolerate any unnecessary synchronization. Increasing metadata volume and

complexity creates a need for high level object oriented I/O models that require I/O

subsystems capable of supporting very diverse workloads. The POSIX file abstraction is
poorly suited to these requirements and I/O middleware and applications based on POSIX

are forced towards schemas that create separate files for each process and each type of

usage, effectively polluting the POSIX namespace with application and middleware

metadata and making it unmanageable. A new storage abstraction to replace POSIX file
is therefore required that can encapsulate an entire exascale dataset, including all

application and middleware metadata.

The vast number of hardware components anticipated in exascale systems will make both

application and storage failure the norm. Coupled with an ever increasing volume of
data, this renders unviable any recovery procedures that must scan the entire storage

system. POSIX provides no means to guarantee atomic update in the presence of failure

and current I/O middleware is forced to write updates to new files to avoid corrupting

existing data with partial updates. Transactional storage APIs are therefore required to

enable distributed applications to group their updates into consistent state changes
applied across multiple storage systems. These systems will be required to automatically

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 4 03/07/2014 10:09:00

AM

rollback incomplete transactions in the event of either application or storage failure.

These APIs must support fully asynchronous operation to decouple processes

collaborating on the same transaction and enable full overlap of computation and I/O.

The increasing probability of silent data corruption also requires new solutions. Even

today, the Titan supercomputer, operating on data volumes orders of magnitude smaller

than exascale, is experiencing almost daily incidents [Cornell Wright, LANL]. Verification

of data integrity end-to-end is therefore a requirement at exascale.

As improvements in disk capacity have completely outpaced improvements in

performance, the minimum number of disks needed for performance has grown to be

much larger than the number required for capacity. Unfortunately, the economics of disk

makes purchasing disks for performance prohibitively expensive for HPC storage
systems. Fortunately, flash media technologies have advanced to the point where they

can provide affordable performance, if not affordable capacity. Exascale storage must

therefore be a hybrid system in which a staging tier, termed a burst buffer, provides

performance and offloads data to a slower disk tier that provides capacity.

4 Definitions
IOD

I/O dispatcher software

IOD Daemon

In this document, we often discuss IOD daemon processes which run on each ION, are

connected to each other with an MPI communicator, and to the application through the

HDF VOL client/server. To be precise, although they function like daemons and we often

refer to them as such, they are actually just running as a library linked to the VOL
servers.

CN

Compute node

ION

I/O node

BB

Burst buffer

DAOS

Distributed Application Object Storage[4]

User

We use user in this document to refer to whatever is the higher-layer that calls into IOD.

Typically this will be HDF although it is probably the application that is making many of
the decisions and relaying those decisions to HDF which then in turn relays them to IOD.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 5 03/07/2014 10:09:00

AM

Shard

There is a “shard” concept at both IOD layer and DAOS layer. At DAOS layer it means the

virtual storage target of DAOS container, similar with current Lustre’s OST. At IOD layer it
stands for the split data pieces across multiple storage devices comprising an IOD object.

PLFS

Parallel Log-structured File System[2]

Function shipper

An I/O forwarding layer that ships function calls from CN to ION[6]. It is client-server

model that client runs on CN and server on ION.

Process group

The “process group” in this document stands for client side application’s process group. It
is a collection of n processes. Each process in the group is assigned a rank between 0 and

n-1.

IOD Container

 This is similar to a POSIX directory. HDF uses an IOD container to store an H5File
and an IOD container has a 1:1 mapping to a DAOS container.

 Can contain any number of objects inside which stores user’s data.

 In our initial implementation of burst buffers on ION’s, we may export the burst

buffers through POSIX with a local file system such as ext4. In this case one IOD

container will correspond to one “special” directory at every ION. The directory
path is IOD container’s path and can be visible by POSIX namespace and is how

PLFS containers for shared files (N-1) work. This will be the initial implementation

of the prototype which will be demo’d. However, we recognize that the number of

objects within a container may be very large and this could incur excessive
overhead to create a directory for each. Therefore, for future potential

productization, we are also working on two alternate designs for this:

o using PLFS small-file mode which would reduce the number of physical

entries as well as not requiring a directory for each logical object

o using DAOS as the interface to the flash and exporting each flash device

as a DAOS shard

IOD Object

 HDF will typical store its objects in a 1:1 mapping with IOD objects and perhaps

use extra IOD KV objects to store metadata about these objects. However, DAOS
objects are not themselves striped across multiple DAOS storage targets.

Therefore to provide parallelism for large objects, an IOD object can be sharded

across multiple DAOS objects.

 Three types: array, blob and KV.

o Array objects are for storing structured multi-dimensional data structures.

o Blob objects are analogous to POSIX files: simple 1D arrays of bytes.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 6 03/07/2014 10:09:00

AM

o KV is a parallel KV store implemented with a modified LANL MDHIM.

5 Changes from Solution Architecture
Only one change from IOD SA document: object versioning. Transactions on the IONs

function as temporary versions and can therefore be used for time series analysis but

these transactions do not become DAOS versions. If the user wants to persistently store

multiple versions, then they must ask IOD to persist multiple transactions from ION to
DAOS and then use the DAOS “snapshot” mechanism to create new containers instead of

having multiple versions of the same container. Importantly, however, DAOS does do

efficient copy-on-write to implement “snapshots.”

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 7 03/07/2014 10:09:00

AM

6 Specification
6.1 High level system view

High-level system view is depicted as Figure 2. [The server-side VOL plugin which is

provided by HDF to receive data sent by the client VOL on the CN is not shown on the

diagram.] This diagram shows the possibility of multiple process groups sharing ION’s but
this is not our expected workload; our expected workload is a large parallel application on

the CNs and perhaps a secondary analysis program running directly on the IONs.

However, to share ION data, the application on the CNs and the analysis program on the

IONs must somehow be connected to the same set of IOD processes.

Figure 2. High level system view.

IOD is a library which provides I/O services to upper-layers. IOD doesn’t have its own
process space; instead it is linked into application’s process space. In the case there is

function shipper between CNs and IONs so the IOD is linked into function shipping

server’s process space (the HDF VOL server). IOD will create some service threads within

caller’s process space. Every ellipse in Figure 2 corresponds to one process which has an
independent process space.

The function shipper forwards VOL function calls from CNs to IONs. The function shipper

server is a MPI program runs over IONs cluster, it calls IOD’s initialization routine and

passes in the MPI communicator. Therefore, each IOD process is bound within an MPI

Function shipping client

HDF5 library + VOL plugin

Parallel application

CNs

IONs

Fabrics

Global

storage

CN 0

Rank 0, 1...

CN 1

Rank a, a+1...

… CN n

Rank x, x+1...

 Process group

 Process group

Function shipping server

IOD

(With POSIX BB)

DAOS client

ION 0 ION m
…

DAOS

Function

shipping
server’s

process
space

Function

shipping
server’s

process
space

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 8 03/07/2014 10:09:00

AM

group to its other IOD siblings. The IOD siblings can use unexpected MPI messages to

coordinate and scatter-gather data as necessary.

This forwarding architecture offloads I/O functionalities from CN to ION, improves
system’s performance and scalability, but does add some extra complexity to both

function shipper and IOD:

 Function shipper only forwards CN ranks’ I/O call 1:1 to ION, and one function

shipping server provides service to many CN ranks. This may cause IOD to
receive some duplicate function calls. For example all CN ranks call IOD object

open, one function shipper server possibly will open the same object multiple

times, same for object close. So IOD will need to maintain an open ref-count for

safe open/ close. The object create is more tricky; to avoid possible race, IOD
restricts the object create can only be called once by one CN rank, that rank can

get back an object ID and can share it to other ranks for further open.

 Because the function shipper is between a set of user processes and a single IOD

instance, IOD may not have information about process groups. Therefore, it
knows when transactions are finished by reference counting. Transactions are

fully asynchronous but each process that participates must know the number of

other processes that participate in that transaction. Each will end independently

and IOD will know when the transaction is finished when its reference count drops

to zero. An application can also optionally appoint a leader to start and end a
shared transaction; this reduces cross ION communication between IOD siblings

but prevents the upper layer from committing fully asynchronous transactions.

 Completion of asynchronous events is done with an event “handle” that is not

global and only can be queried within the address space of the original caller of
the asynchronous function.

6.2 IOD sub-modules overview

Figure 3 shows the high-level overview of IOD’s sub-modules.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 9 03/07/2014 10:09:00

AM

Figure 3. IOD sub-modules overview.

When an IOD function is called by upper layer, IOD inserts an appropriate task to its

internal task queue and bonds it to an asynchronous completion event. The task queue is

not exactly one single queue or linked list, instead it is a set of task lists which may

belong to container or objects, and bind to transactions.

Async-Engine. All tasks are executed by async-engine which is the center for executing
and progressing all asynchronous operations. Three main components for the async-

engine are thread pool, I/O scheduler, and events and the event queue manager. The

thread pool is the executing unit of async-operations, it needs to be initialized inside

iod_initialize() with a configurable value for the number of threads. The I/O scheduler
progresses asynchronous operations, it also has chance to do I/O optimizations such as

stream transformation/merging. The event and event queue manager maintains the

relationship between event and pending tasks.

Transaction manager. The transaction manager provides transaction semantics. One
specific transaction’s status is managed by the transaction manager which is selected by

hashing transaction ID. All transaction’s final status is tracked by container manager

which is selected by hashing container path name.

One IOD container, in the initial implementation, will correspond to one POSIX directory
on every ION, and has a backend DAOS container for data persistence, central storage,

and write locking. It can have many objects inside one container. IOD’s local object

storage is based on KV-store and PLFS. IOD have a separate DAOS interface for

persisting data and also performing some IOD container operations (for example open,

create, unlink etc.) to DAOS. Containers will be synchronously created on DAOS but
objects and data will be buffered on IONs. Therefore ephemeral data that is never

persisted to DAOS is possible. In these cases, the containers on DAOS will be removed

of course.

API front-end

Ta
sk

 q
u
e
u
e
 Working

thread Pool

Async-Engine

Event-Queues

Container manager

Object manager

KV object

KV-store

BLOB/ARRAY

PLFS

POSIX/DAOS storage accessing

In
te

r-IO
D

s
 c

o
m

m
u
n
ica

tio
n

Transaction manager

I/O scheduler

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 10 03/07/2014 10:09:00

AM

The inter-IODs communication layer is another important module used for

communications between IODs. The communications include container/transaction status

query/synchronization, possible data shuffling/movement, and internal collective
communications etc. There are possibilities that IODs need to do internal collective

communication such as for global PLFS index building, object creating etc. IOD can build

an internal spanning tree based on which to do the asynchronous collective

communications; this optimization is a potential roadmap addition in future quarters. IOD
will have special threads listening on unexpected MPI messages from siblings with some

pre-defined messaging formats. The communication is based on MPI mechanism, so

IOD’s caller (function shipping server in our scenario) should be a MPI program and

should create the MPI communicator of all IODs. However the function shipping server
needs only create the MPI communicator and pass it to IOD when calling iod_initialize(),

no other IOD functions take an MPI communicator as a parameter. Examples of

communications are for reference counting in which one IOD is elected, based on a hash,

to be transaction leader and does the reference counting on that transaction. Also, cross
node communication is used for data movement in a scenario where the user has

requested to persist a container to DAOS and each IOD may collect small chunks of data

from its siblings so that it can send large chunks of data to DAOS.

Finally, IOD has a debug/diagnose supporting layer which is not depicted at above

diagram.

6.3 Object storage

Three object types – KV, ARRAY and BLOB

IOD provides three types of object abstractions.

 KV[3]

It is used to store key-value pairs, such as HDF5 group/attribute/link etc. IOD

provides KV store based on MDHIM (Multi-Dimensional Hierarchical Indexing

Middleware). IOD exports the KV-store to upper layer through a set of KV-APIs to
allow caller to create/open/set/get/list/close/unlink the KV object’s content. IOD

may also use its own KV stores for some of its own internal metadata such as the

object list within a container, and the mapping between IOD object and DAOS

objects etc.

 Array

Array is a multi-dimensional data array which can be used to semantically store

an HDF5 dataset. The array object has spatial structure; by understanding the

dimensionality, IOD can do a “semantic resharding” where a user requests, using

dimensional descriptions, a reorganization of their data (e.g. stripe the array
along the vertical faces of the cubes). IOD array object can be extendable along a

single dimension, more precisely it can be extended only along the first dimension

as specified in its creation. This constraint is important to allow IOD to make

layout decisions that won’t require reorganization when the object grows. IOD
supports similar concepts as HDF5 dataset’s contiguous layout and chunked

layout[8] to make it smooth to bridge to HDF5 users’ common usage.

 Blob

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 11 03/07/2014 10:09:00

AM

A data blob is simply an stream of bytes and is semantically identical to a

standard POSIX file with the addition of transactional semantics

In the current implementation, both the array and blob objects are stored using a
modified version of PLFS. IOD uses a PLFS logical file to store the array and blob objects;

on IONs, one PLFS logical file is implemented using a PLFS container which is

implemented with a set of POSIX directories across IONs. In ION’s local storage, one IOD

container is a POSIX directory, every array or blob object is a sub-directory inside the
parent container’s directory. The array or blob’s data is stored in PLFS data log files. By

leveraging the log-structure of PLFS, IOD provides fast writing speed based on local SSD.

User can persist object’s data to DAOS, for the persisting IOD will consult the PLFS

indices to construct the consistent view of the object and do an optimized layout
placement to DAOS. Essentially the array and blob objects will be stored as logs on IONs

and flattened striped on DAOS.

Object mapping between HDF5/IOD/DAOS layers

Table 1 shows a possible mapping between high-level HDF5 objects and IOD
abstractions. One key thing to notice is that some abstractions do not exist at all layers.

For example, an H5Dataset is an IOD array object but there is no such DAOS abstraction;

instead, IOD stores an IOD array object as shards across a set of DAOS objects. Since

each DAOS object is stored on only one shard then parallel IO to an IOD object requires

that the IOD object is stored across a set of DAOS objects.

HDF5 Abstraction IOD Abstraction DAOS Abstraction

H5File Container Container

H5Group KV object Set of DAOS objects

H5DataType

H5DataSpaces

H5Attribute

H5Properties

H5Reference

H5Link

KV pair in KV object

Data in a DAOS object

H5Dataset Array object Set of DAOS objects

H5CommittedDatatype Blob object Set of DAOS objects

Table 1. Object mappings across layers. One caveat is that H5Dataset will use a blob

however if the elements aren’t fixed size. Also, HDF will create additional KV objects for

storing metadata about some of the objects and their additional attributes.

Figure 4 gives out a more detailed example to illustrate the object mapping at different
layers. The example includes HDF5 group/link/dataset/committed-data-type/attribute

objects and how they are mapped and stored on both IOD and DAOS (after migration).

Many more details are available in the respective design documents for HDF and DAOS.

In Figure 4, there are 3 H5Group objects which are implemented by IOD KV objects, one
H5Dataset and H5CommittedDatatype objects which can be implemented by IOD array

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 12 03/07/2014 10:09:00

AM

object and blob object respectively. For the root group, the 2 H5Attribute objects “ID=XX,

verified=y” can be implemented by KV-pairs. The first created IOD KV object is root

group. After creating the root group, which is always assigned IOD object ID 1, user can
create other kinds of objects and use KV-pairs to establish the relationship between

them, for example the “visualizations” link points to root group’s sub-group and a further

link “view1” points to the H5Dataset object.

User can create similar “child-parent” relationship between some objects, for example to
store the H5Attribute objects belong to H5Dataset or H5CommittedDatatype object

(“resolution=z” and “version=3” in the example). Note that the child-parent relationship

(the child KV objects on Figure 4) can be implemented by the “scratchpad” of parent

object. IOD provides fixed length (32 bytes for example) storage as a scratchpad which
can be associated with any type of IOD object. User can store the child object ID inside

that scratchpad. IOD provides interface to get/set the scratch. This is similar to POSIX

extended attributes. IOD will internally store all objects’ scratchpad using one special KV

object. Because the IOD KV objects are, of course, also transactional, these scratchpads
will be as well. The “ID=XX” and “Verified=Y” attributes in figure 3 possibly also will be

implemented by a separate KV object and store the object ID in root group’s scratchpad.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 13 03/07/2014 10:09:00

AM

Figure 4. An example object mapping. Approximate only; some simplifications made to

facilitate the transmission of the general idea.

For array’s data space information such as dimensions, length, cell size etc, IOD will

create a corresponding internal KV object (“3D 4x5x6, cell_size=32” as above example)

and associate it with the array object. The array or blob object’s data can be sharded to

multiple IONs’ local SSD by PLFS logic. After migration IOD will create a set of DAOS
objects to store the data into DAOS, and IOD will store its own metadata such as the

IOD

DAOS

H5File

PLFS sharding

KV-Store Back-end (in DAOS) DAOS Back-end

view

1

nodetype

Obj_id Key Value

KVs[0] “ID”, “Verified”,
“visualizations”, “mesh”

“XX”, “Y”,
KVs[1], KVs[2]

Arrays[0].TID.Data.dropping.rankX.hostY

Arrays[0].TID.Index.dropping.rankX.hostY

logical Physical off Len blockID

0 0 128 0

Internal

KV-store
for meta-

data

I_Obj_i

d

D_Obj_id_list

arrays[0] D_obj_1,9,11

Blobs[0] D_obj_2,7

Root ID=XX

Verified=Y

 1

visualizations

0

Resolution=Z

2

mesh

0

Version=3

H5Group

H5DataSe
t

H5CommittedDataType H5Attribut

e

H5Link

KVs[[1] “view1” Arrays[0]

KVs[[2] “nodetype” Blobs[0]

Child_KV[0] “resolution” “Z”

Child_KV[2] “version” 3

Child_KV [3] “num_dim”,
“dim_length”,“cell_size”

3, 4x5x6, 32

Obj_id Key Value

KVs[0] “ID”, “Verified”,

“visualizations”,
“mesh”

“XX”, “Y”,

KVs[[1] “view1” Arrays[0]

KVs[[2] “nodetype” Blobs[0]

Child_KV[0
]

“resolution” “Z”

Child_KV[2

]

“version” 3

Child_KV

[3]

“num_dim”,

“dim_length”,

3, 4x5x6, 32

256 128 64 1

Application

Blobs[0].TID.Data.dropping.rankX.hostY

Blobs[0].ITD.Index.dropping.rankX.hostY

KV-store front-end

PLFS internal indexing

(3D 4x5x6 array
cell size=32)

0

2 0

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 14 03/07/2014 10:09:00

AM

mapping between IOD object and DAOS object list using an internal KV-store (the

“Internal KV-store for metadata” shown on Figure 4) which uses another set of DAOS

objects as its backend storage.

Object storage on DAOS

IOD stores and buffers all kinds of objects (KV, blob and array) on local storage of ION,

and only when application explicitly calls transaction persistence (through

iod_trans_persist) it will read those buffered data out from ION’s local storage and write
to DAOS global storage. In the inverse direction, user can explicitly call IOD’s API

(iod_obj_fetch) to fetch objects (or sub-objects) from DAOS to ION.

As is also shown in Table 1, the main abstraction mapping between IOD and DAOS:

 An IOD container maps to a DAOS container

o A DAOS container is a group of DAOS shards

o A DAOS shard can host a set of DAOS objects

 An IOD object (KV, blob or array) can be stored across a set of DAOS objects.

This is a key point: there is not a 1-1 mapping between IOD object and DAOS
object. Each DAOS object is local to one DAOS shard which is local to one DAOS

target. In order to achieve parallel storage access for large objects, IOD must

necessarily spread data for large objects across multiple DAOS shards.

When writing object to DAOS:

 IOD will create some DAOS objects (one DAOS object for every DAOS shard) for
storing that IOD object’s data. IOD’s object ID is 64 bits length, and DAOS object

ID is 128 bits which includes 64 bits DAOS shard ID and 64 bits DAOS object ID

within the shard. When IOD writes IOD object to DAOS, it will combine 64 bits

IOD object ID with a set of 64 bits DAOS shard IDs to form a set of valid 128 bits
DAOS object IDs and store that IOD object’s data to those DAOS objects.

 IOD will shard one IOD object to a set of DAOS objects, and can keep the exactly

same address space between IOD object to DAOS objects because DAOS object’s

address space is virtual and unlimited, so within every DAOS object there is
possibly many big holes inside its address space – IOD combines all those DAOS

objects’ address space for one IOD object’s address space. This can reduce the

needed metadata to establish the mapping between IOD object and DAOS

objects.

 For storing on DAOS, IOD will consider DAOS’ shard property to select appropriate
shards. For example some DAOS shards are optimized for bandwidth, IOD will use

these shards to store bulk raw data; and some shards are optimized for IOPS,

IOD can use for storing metadata.

 When persisting, IOD will use the same DAOS epoch number as IOD TID to make
them 1:1 mapped. But not all IOD TIDs need to be explicitly persisted to DAOS,

i.e. some epoch numbers on DAOS possibly will not be used.

 When creating IOD container, IOD will create a corresponding DAOS container

and allocate some DAOS shards within the DAOS container. And IOD can
dynamically add new DAOS shards to DAOS container when user wants to use

more DAOS target storage.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 15 03/07/2014 10:09:00

AM

IOD needs to store some metadata to manage its objects. For objects newly written to

ION, IOD metadata may be large: the maximum is one metadata entry per write from

HDF, althought aggregation or pattern discovery[11] may reduce this somewhat.

The metadata for describing object layout on DAOS is much smaller since IOD

reorganizes data onto DAOS in large flattened stripes. IOD will maintain related metadata

to store the mapping from IOD object to DAOS objects. IOD can use an internal KV-store

to store those internal metadata. This is the metadata maintained by IOD:

 The list of IOD objects within container

 The mapping from each IOD object to DAOS objects

 The layout (sharding and striping) of the IOD object

 The maximum valid offset of the object

Figure 5 shows an example of a blob object being stored on DAOS and Figure 6 shows an

example of an array object. Section 4.4.1 will further introduce the data migration and

section 4.5.3 will discuss the consistency semantics between IOD and DAOS related to

transaction/epoch.

Figure 5. How IOD stores a blob object on DAOS. Note how the object is stored across

DAOS shards using regular round-robin striping. This allows two important benefits:

first, sets of over-writes to multiple objects are handled atomically by DAOS transactions

and DAOS does garbage collection for over-written data, and second, the amount of IOD
metadata for locating physical data is reduced. Note that this figure shows the IOD

metadata stored in a separate index shard whereas the current implementation creates a

virtual index shard and a virtual data shard and stores them together in a single DAOS
container shard.

IOD	Blob	Object	Storage	on	DAOS	

• Virtual	view:		

OST0	 OST1	 OST2	 OST3	

D-Shard1	 D-Shard2	 D-Shard3	D-Shard0	

“Blob	object,	size	1GB,	round	robined	across	
the	DAOS	shard	ID	+	IOD	object	ID	object	in	d-
shards	{0-4}	in	segments	of	256MB”	

I-Shard0	 I-Shard1	 I-Shard2	 I-Shard3	

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 16 03/07/2014 10:09:00

AM

Figure 6. How IOD stores an Array Object on DAOS. The app can request a striping

layout and can query the number of shards if it wants explicit control over parallelism or
it can rely on IOD to make a reasonable layout based on the number of shards.

6.4 Storing organization of data, metadata, and checksums

Although IOD uses PLFS to store blob and array objects in the burst buffers, it does not
use PLFS to store them on DAOS. For storage of KV objects, IOD uses MDHIM to store

them on both burst buffers and DAOS. MDHIM, Multi-dimensional Hierarchical Indexed

Middleware, is a software library that uses MPI to link multiple local key-values stores to

create a global sorted key-value store.

MDHIM required modifications to add an abstract storage layer. MDHIM itself does not

store and retrieve key-value data; rather MDHIM adds MPI sharding across multiple local

key-value stores. The implementation of MDHIM used by IOD in the EFF project uses

PBL-ISAM for its local key-value stores. Therefore, an abstract storage layer was added
within the internal PBL-ISAM code used by MDHIM. This abstract storage layer then

maintained support for POSIX storage to allow MDHIM via PBL-ISAM to store data into

the burst buffers using POSIX I/O. To enable MDHIM to store data to DAOS required

adding the DAOS API into the newly added abstract storage layer. A difficulty here was
the epoch semantics of DAOS, which were unexpectedly problematic for PBL-ISAM. It

opens files in read-write mode and often will perform write-read-write modifications.

Reading from an uncommitted epoch in DAOS is not currently allowed so the write-read-

write behavior of PBL-ISAM was failing when IOD would persist KV objects to DAOS. This

was first handled by merely copying the PBL-ISAM files in their entirety to the DAOS
container shards. However, this proved inefficient when persisting multiple IOD

IOD	Array	Object	on	ION’s,	
stream	per	writer,	migrate	

seman cally	to	DAOS	
	

DAOS	Storage	Target	 DAOS	Shard	

IO
N
’s
	

HDF	Dataset	
IOD	Array	Object	

IOD	Metadata:	{3x3x3}	Arry	object,	cell	size	
1048576,	round	robined	across	d-shards	{0-4}	in	
array	seman c	columns	ordered	from	x=0	..	x=2”	

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 17 03/07/2014 10:09:00

AM

transactions because IOD, due to the opacity of the PBL-ISAM file contents, would always

send the entire PBL-ISAM files even in situations in which only very little data was

modified.

Clearly, IOD needed to support incremental persist in which IOD tracked which keys were

modified in which transaction and would then only persist those keys instead of copying

the entire tables. To do so, PBL-ISAM is run directly on the DAOS container shards using

the DAOS abstract storage interface and apply MDHIM operations for the affected keys
directly. This however triggers the problematic write-read-write behavior. The current

implementation therefore mirrors DAOS writes from PBL-ISAM into a temporary file.

When PBL-ISAM then attempts the read operations, the requested data is returned from

the temporary file. One challenge remains however, which is that the requested data
may not be freshly written and exist in the temporary file but is rather old data that

existed before the persist operation began. Therefore, temporary files are needed to

know whether particular byte ranges contain valid data or holes but this is not supported

for POSIX files. To solve this, the temporary file that IOD uses is a PLFS file, since PLFS
metadata knows exactly which byte ranges contain valid data and which are holes. Using

these temporary PLFS files, IOD then redirects PBL-ISAM reads as follows: if the request

data is found in the temporary PLFS files, return it from there, otherwise, return it from

the DAOS HCE which maintains the previous version of the PBL-ISAM files.

Storing arrays is done simply by converting them to serial byte arrays and storing them
into IOD blobs. One small optimization however is to adjust the default block sizes of the

stored blobs to align with the array cell sizes. For example, if IOD is configured with a

checksum unit size of one megabyte but the array cells are each 100,000 bytes, then

IOD will use a checksum unit size for that array of 1,000,000 bytes since it is the multiple
of the cell size closest to the configured checksum size of one megabyte.

To maximize parallelization of metadata and data accesses, IOD objects are split into

multiple DAOS objects and distributed across multiple DAOS container shards as is shown

here:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 18 03/07/2014 10:09:00

AM

Figure 7: Two IOD Objects Distributed Over DAOS Container Shards. Data and metadata

and checksums for the blue IOD object is stored within the third object within their
respective virtual shards as the yellow object is stored in the fourth.

Figure 7 depicts the storage of two IOD objects striped across two DAOS container

shards. The DAOS container shards are the two large grids depicting two of their three

dimensions: object ID along the y-axis and object offset along the x-axis. Note that the
third dimension, epochs, is not shown.

By splitting each DAOS container shard into four virtual ones, as shown by the red

dashed lines, IOD creates a separate object space within each DAOS container shard for

data, metadata, and checksums. Each IOD object is striped across one or more DAOS
container shards depending on the total size of the IOD object. Within each DAOS

container shard, IOD stores data, metadata, and checksums for each of its objects as

three separate DAOS objects in each respective virtual shard. The DAOS object ID for

each is found by adding a virtual shard ID of 2-bits to the 62-bit IOD object ID thereby

allowing a simple mapping from IOD object identifier to the location of its data,
metadata, and checksums. Note that a fourth virtual container shard is left empty

although future optimizations have been designed to allow IOD to collocate its metadata

and checksums into a single virtual container shard thereby reducing the number of

virtual container shards needed by IOD to two and correspondingly restoring the
maximum usable objects per EFF container to 263 thereby enabling the large number of

users needing containers to store some number of objects between 262 and 263.

Two objects, one yellow and one blue, are stored as shown in Figure 7 above. Notice that

the top-level metadata for each is stored is stored on a different container shard. The
placement of this metadata is determined by hashing the IOD object ID modulo the

number of DAOS container shards to determine which shard and then adding the two bits

identifying the metadata virtual shard to find the object within that shard. For example,

the blue object in this picture is IOD object number 2; therefore, its metadata is stored at

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 19 03/07/2014 10:09:00

AM

offset 0 in object 2 in the metadata virtual container shard on the 0th DAOS container

shard. Pseudocode for metadata location is relatively simple:

(dshard,dobj,doff) find_metadata(iod_obj_t oid) {
uint64_t dshard = oid % nshards
uint64_t doff = 0;
uint64_t dobj = oid & IOD_METADATA_VSHARD_MASK;
return (dshard,dobj,doff)

}

This top-level metadata contains basic information about the IOD object such as its last

valid offset, the set of container shards across which it is striped, the size of each stripe,

and the size of the checksum blocks. Arrays have additional information about their

dimensionality and the size of their cells. Using this metadata, locating the data and the
checksums is essentially the same as locating the top-level metadata which the exception

that their masks are different and that the offset calculation is done using the stripe size

and the requested offset of the IOD object.

6.5 Layout, data migration and reorganization

One of the most important and complicated aspect of IOD is the data layout, migration

and reorganization across the two storage tiers. For this, IOD’s has three major goals: a)
be semantic/structure aware and provide flexible interfaces to allow callers to control the

data layout, sharding granularity and placement across DAOS shards and IONs; b)

provide an API well-suited for exascale HDF; c) reduce the metadata needed for

logical/physical mapping, sharding placement, etc.

There are mainly two kinds of mappings that IOD needs to maintain:

1) Maps the logical spatial space of array objects to a logical one dimensional

address space (like a blob object) – this is handled in the new IOD portion of the

code,

2) Maps the logical one dimensional address space (either directly for a blob object
or for an “unraveled” array object as above) into a set of physical addresses on

different storage devices – this is handled in the modified PLFS portion of the code

6.5.1.1 High-Level Data movement semantics

The IOD is responsible for data movement into and out of both the ION and DAOS
storage targets as is shown in Figure 8 and described in Table 2.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 20 03/07/2014 10:09:00

AM

cn ion
write

daos
persist

multi-format replica /

semantic resharding

read voidevict

pre-stage
delete

Figure 8. IOD managed data movement. Multi-format replica is for
blobs and KVs. Semantic resharding is the same idea but for arrays.

Void means that the data is no longer available from that layer. Evict

and unlink operate on entire IOD objects.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 21 03/07/2014 10:09:00

AM

SRC DEST TRIGGER LAYOUT ACTION GRANULARITY

CN ION write Logged The data received will be appended to a PLFS style data
log in the burst buffer and a PLFS style index entry will
record it.

Sub-object

ION CN read n/a The ION receiving the read request will fetch any needed
data from its siblings or DAOS if necessary.

Sub-object

CN DAOS n/a n/a The CN’s cannot write directly to DAOS. Their writes will
always go first to the ION’s. Of course, the design allows
for ION’s to not be present but this is outside SOW scope.

n/a

DAOS CN read n/a Happens when requested data is not on any of the IONs.
IOD on the IONs will fetch the data into a temporary
memory buffer on the ION and then send it along to the
CN.

Sub-object

ION DAOS persist Striped The user can request that the view of the container at
transaction t be persisted to DAOS. In this case, the IOD’s
will coordinate to scatter-gather data so that each DAOS
shard has a single writer and the resulting objects on
DAOS are striped in a round-robin fashion. Following the
migration, transaction t will be the DAOS HCE and will be
a consistent view of all objects in the container at t.

EXAMPLE. Transactions t and t-1 are on IONs. The user
requests a migration of t. IOD will start transaction t on
DAOS, and will write all of t and any pieces of t-1 that were
not overwritten by t directly into their round-robin stripe
locations on DAOS. Then it will commit transaction t to
DAOS.

Container

DAOS ION pre-stage Striped,
Explicit

At the granularity of sub-objects at a particular
transaction or DAOS HCE, the user can request that IOD
pull data from DAOS and store it on the IONs. The user
can specify irregularly shaped sub-objects and dictate
their layout on particular IONs. This data is then readable
from IOD.

EXAMPLE. The user requests that from DAOS HCE that
the first two hyperslabs of array object AO1 are stored
with the first gigabyte of blob object BO1 on ION1 and the
next three hyperslabs of AO1 and the next 512 megabytes
of BO1 are stored on ION2.

Sub-object

ION ION semantic
resharding ,

multi-
format
replicas

Striped,
Explicit

Same as Pre-stage except that the expectation is that most
of the data will already be in an ION in another layout.
Any data not on ION will be fetched as necessary from
DAOS.

Sub-object

Table 2. IOD managed data movement. All three object types have similar characteristics.

Note that evict/unlink as shown in Figure 8 are not included in this table; their granularity

is on entire objects (i.e. not sub-objects).

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 22 03/07/2014 10:09:00

AM

6.5.1.2 Data Layout Policies

There are three methods that we have identified to layout data into each storage layer:

1. Explicit. With this method, the upper layer will inform IOD about exactly

where every byte (or semantic chunk) of the object should go. For example,

it might say to put the first three elements of an array object onto the first
ION and the next five elements onto the second ION.

2. Logged. With this method, the data resides in a log-structured array of

bytes. For example, the data in a write from the CN to the ION will just be

appended into a log on that ION.

3. Striped. With this method, each piece of data will go to a deterministic stripe

in a round-robin distribution across the storage devices (i.e. either IONs or

DAOS shards). The user can specify the stripe size which is bytes for a blob

object, elements for an array object, and number of keys for a KV object. For
array objects, the user can also specify the ordering across the dimensions.

For example, in a 3D array, the first element is {0,0,0}. The second element

could be {1,0,0}, {0,1,0}, or {0,0,1} depending on the specified ordering.

For the purposes of our demonstrations, please refer to Table 2 to see which layouts will

be within our design and Table 3 to see whether and when we will demo each of these
layouts for each of our object types. The three methods have different implications in

terms of the amount of metadata that IOD needs in order to locate data; explicit and

logged will have arbitrary amounts of metadata with one piece of metadata for every

sequential range of data. To understand this, this is the same as the index metadata in
PLFS today. The striped method will have a single piece of metadata listing which

targets, the stripe size, and the dimensional ordering for array objects. Note that logged

and explicit are very similar and in fact will have identical styles of logged data and large

amounts of metadata; effectively they are the converses of each other. Logged is
creating a rich metadata to reflect a data placement imposed by logging writes whereas

explicit is created data logs to reflect a rich metadata provided by the user.

One item of particular importance is to notice that we are only supporting a striped layout

on DAOS. This is because DAOS is the layer responsible for flattening overwrites and

garbage collection of stale data across multiple transactions. If we provided logged or
explicit layouts on DAOS, then these services would need to be reimplemented within

IOD. [In fact, we will have to explicitly do flattening for KV stores by replaying a

transaction log of inserts/unlinks etc to each KV store for each transaction.]

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 23 03/07/2014 10:09:00

AM

 Movement Explicit Logged Striped

Blob Write oos Q5 oos

Migrate oos oos Q5

Pre-stage TBD oos Q5

MFR TBD oos Q5

SR n/a (SR for Arrays only)

KV Write oos Q5 oos

Migrate oos oos Q5

Pre-stage TBD oos Q5

MFR TBD oos Q8

SR n/a (SR for Arrays only)

Array Write oos Q5 oos

Migrate oos oos Q7

Pre-stage TBD oos Q7

MFR n/a (n/a MFR for KV and blobs)

SR TBD oos Q8

Table 3. Whether and when each layout policy for each data movement for each object

will be demo’d. LEGEND: MFR: Multi-format replica. SR: Semantic resharding. oos: Out

of scope. TBD: To be determined.

6.5.1.3 One dimension extendable data array

In FastForward project, we decided to support HDF5 multiple dimensional dataset with at

most one extendable dimension, i.e. the dataset has either all fixed dimension lengths or
can be extended in one dimension.

To support this requirement, IOD’s data array object is one dimension extendable multi-

dimensional array. To allow IOD to calculate a determined address space for that data

array, IOD restricts the array object to be extended only along the dimension specified

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 24 03/07/2014 10:09:00

AM

first in the object creation and all other dimensions are with fixed length. It is like HDF5

original “external dataset” except:

 The HDF5 original external dataset’s content must be stored by external files. IOD
will store the data in array object within the container.

 The HDF5 original external dataset only can use contiguous layout with fixed

dimension layout sequence, whereas IOD provides both contiguous layout with

changeable dimension layout sequence and chunked layout supporting. Details in
next sub-section.

6.5.1.4 Array’s layout, migration and resharding

6.5.1.4.1 Layout mapping

The original HDF5 dataset have two kinds of layout – contiguous layout and chunked
layout[9]. The below illustrates HDF5 original semantics of layout and IOD’s

extensions/changes to it:

 contiguous layout

o The HDF5 original contiguous layout simply flattens the dataset in a way
similar to how arrays are stored in memory, serializing the entire dataset

into a monolithic block on disk which maps directly to a memory buffer the

size of the dataset. And the dimension layout sequence is fixed; using C’s

row-major order, the first dimension is the slowest changing dimension

and the higher dimensions are faster changing, the last dimension is the
fastest changing on disk. For example a three dimensional dataset A, then

the first element on disk would be A[0][0][0], the second A[0][0][1], the

third A[0][0][2], and so on. If the application read by the same layout

sequence such as from A[0][0][8] to A[0][0][520] the underneath will be
well behaved as sequential read from disk. But in the case if application

wants to read from A[8][0][0] to A[520][0][0] it will have worse

performance because the under layer will do either lots of random reads

or read back large un-needed blocks and sieving the wanted items.

o IOD supports contiguous layout with extended capability that allows user

can change the dimension sequence of layout. For a 3-dimensional data

array with X-Y-Z axes, user can control how to flatten those axes on object

space – either X-Y-Z sequence or Z-Y-X sequence etc. Same as above

example, if user want to read from A[8][0][0] to A[520][0][0] it can set
the logical first dimension as the physical last dimension for storing to

disk. This is very useful when the simulation program and analysis

program have different accessing pattern. The simulation program may

write dataset by X-Y-Z axes to disk, later the analysis program wants to
read it by Y-Z-X axes then it can pre-fetch the dataset from DAOS and

change the layout to Y-Z-X axes and shard it to a set of IONs with it

preferred way. We call this semantic resharding.

 Chunked layout

o HDF5 original chunked datasets are split into multiple chunks which are all

stored separately in the file. The chunks can be stored in any order and

any position within the HDF5 file. Chunks can then be read and written

individually, improving performance when operating on a subset of the

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 25 03/07/2014 10:09:00

AM

dataset. HDF5’s chunk filter, chunk cache etc are applied on chunk

granularity. HDF5 uses quite complicate and sophisticated logic of B-tree

or skip-list[8] to map chunk indices to file offsets for a chunked dataset.

o IOD’s array object supports chunked layout to satisfy HDF5 users’

traditional usage, and HDF5 original chunk filter and similar functionality

can be smoothly applied on IOD array object with chunked layout. As

both IOD layer’s PLFS and DAOS’ object provide virtual unlimited address
space, so IOD can implement the chunk layout and avoid the most

complicate things of HDF5 original B-tree or skip-list chunk indexing

mechanism. Everything can be calculated by IOD so IOD needs not

maintain the indexing to map the chunk indices to file offsets. The
chunked layout can only be set when creating the dataset and cannot be

changed after create same as original HDF5. The chunk selection is a

parameter can be passed in for IOD array object create.

As mentioned above, the layout maps the logical spatial space of a multi-dimensional
dataset to physical storage object’s one-dimensional address space. Figure 9 gives an

example to show the IOD array object’s contiguous layout and chunked layout mapping.

Figure 9. An example of array's contiguous layout and chunked layout.

The example is a 2D 6x8 array. Part (a) shows the contiguous layout mapping, and IOD

allows users to change the layout mapping for example from Y-X sequence to X-Y

sequence which causes IOD to rearrange the physical layout of data. The dataset’s logical
structure is not changed – it is a 2D 6x8 array regardless of the physical mapping. The

layout just determines the mapping from logical space to IOD array object’s storage

space.

X

Y

0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

Dataset’s logical multi-dimensional space Array object’s physical one-dimension space

… … …

Layout sequence -- YX

Layout sequence -- XY

… … …

(a) Contiguous layout

X

Y

0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

… … … … … … …

Layout sequence -- YX

… … … … … … …

Layout sequence -- XY

(b) Chunked layout

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 26 03/07/2014 10:09:00

AM

Part (b) shows the chunked layout that sets 2x4 chunk size, so the array will have 6

chunks in total. For chunked layout, IOD will do write/read with the granularity of chunk.

The array’s original dimensions will be chunked to smaller chunked dimensions, for the
above example the chunked dimension is 2D 3x2. User can further select the layout

sequence of the chunked dimension for example Y-X or X-Y. But within each chunk, IOD

will not change the physical layout – it is always same as logical dimension sequence, Y-X

in the above example. A note here is sometimes the number of dimensions will be
changed after setting the chunked layout, for example in the above example the 2D 6x8

array will became 1D chunked array with only 2 chunks if setting chunk size as 6x4, so

user needs not set the chunked dimension sequence in this case.

For the extendable multiple dimensional array which can be extended along the first
dimension, user cannot change the first dimension’s sequence, the extendable first

dimension is always the slowest changing dimension, i.e. the logical extendable first

dimension must also be the first physical dimension for both contiguous and chunked

layout.

IOD will first implement contiguous layout. The chunked layout is only optional and will

be implemented when the schedule permits.

6.5.1.4.2 Migration and resharding

By selecting appropriate layout type and dimension sequence, user can control the layout

mapping from dataset’s logical space to underlying object storage space. Besides this,
IOD provides interface to control the data migration and resharding: user can control how

to split the flattened object address space into multiple pieces (shards) and place the

shards across a set of DAOS shards or IONs. The “sharding/resharding” stands for

controlling the shard granularity and placement among storage targets (IONs’ local SSD).
The sharding granularity is multiple dataset items for contiguous layout, or multiple

chunks for chunked layout.

For migration from BB to DAOS, IOD will not automatically free BB’s storage space when

the migration is done. Similarly, when pre-fetching from DAOS to BB, IOD will not free
(“punch”) DAOS object. When migration target location is BB, IOD will generate a new

TID which user can get for reading the data. The “new TID” is just adding special flags on

the original TID; since the TID is 64 bits, IOD will reserve 8 for its own metadata about

the TID such as whether it is a replica

The data migration to DAOS is always for entire transaction. User should control the
reasonable transaction granularity for it. When moving or replicating data, the below

parameters/behavior can be designated by caller:

1) Direction (BB to BB, BB to DAOS, DAOS to BB or DAOS to DAOS), IOD provides

different APIs for it.

2) Target layout – the dimension sequence or chunked dimension sequence (X-Y-Z or

Z-Y-X for example), if no layout is designated then IOD will use the previously set

valid layout, the default layout before any special setting is same physical

dimension sequence as logical dimension. Or for movement to DAOS, IOD will
use the striped layout.

3) Number of storage targets – DAOS shards or IONs. User can set it as zero in

which case IOD will use all available targets.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 27 03/07/2014 10:09:00

AM

4) Sharding granularity – how many dataset items for contiguous layout, or how

many chunks for chunked layout. All split shards will be round-robin placed on

those storage targets as determined by 3). User can set it as zero in which case
IOD will select a reasonable granularity (maybe 4M bytes or other value).

User can control kinds of layout and sharding policies, but it should be mainly used for

analysis program when pre-fetching from DAOS to BB, or resharding from BB to BB.

Once an object is persisted to DAOS, in our initial implementation, the striping
parameters will be immutable since the underneath VOSD[10] needs a relative fixed object

layout to detect the changed and unchanged extents/ranges. Changing layout on DAOS

would cause basically all data to be re-read and then re-written to DAOS and will be

outside the scope of our demonstrations.

IOD blob object

The IOD blob object is much simpler compared to array object. Blob size can be grown by

appending to it, and user needs not setting/changing the layout as it is only one-

dimension. For blob’s migration, user only needs to decide the migration direction,
number of storage targets and sharding granularity. The blob’s sharding granularity is

byte as blob is just a bytes stream. Essentially a blob object is an array object with one

dimension and one byte chunks.

In quarter 5 of the project, it became clear that ACG would benefit from the ability to

have multiple processes atomically append to the same blob object consistently without
cross-process coordination. IOD was able to provide this functionality to them.

Internally IOD implements this by having the IOD process leader for the object maintain

the last offset for the object. Whenever other IOD processes need to append to the

object, they query the last offset from the object leader who then increments the last
offset by the length of the append. Note that explicit offset writes should not be

interspersed into appendable blobs as they may overwrite the appends. In the future,

we may improve the scalability of the implementation of appendable blobs by delaying

the resolution of the offset for each append until read time. Since IOD stores blobs in the
BB’s into PLFS files, we will add an atomic append operation into PLFS. PLFS will just

mark the offset within its index entry for each append with a special APPEND flag. Then

at index resolution time, PLFS will assign an offset. Note that this will allow explicit offset

writes to be safely interspersed with atomic appends.

Multi-format replicas

This replication is similar to pre-stage for blobs and kv objects except it should cause

ION-ION traffic whereas pre-stage causes DAOS-ION traffic. Same as other migrations,

user can set the layout, number of targets, and sharding granularity. The only difference

is the replica is a kind of duplicate data in logical concept, but possibly with different
physical layout or shards placement. The replication is also in the granularity of

transaction.

User can select to do the replication for sub-chunks of objects as they appeared at a

particular transaction (assuming that view is still available either on DAOS on from the
IONs). The sub-chunks are then replicated into IONs and placed as requested by the

user. When reads occur to the multi-format replica for data that isn’t in the sub-chunks,

then IOD will fetch the required data from DAOS. This means that when the user creates

the sub-chunked multi-format replica, that IOD must get a read handle on that DAOS

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 28 03/07/2014 10:09:00

AM

container to ensure that any missing data isn’t removed due to flattening while the user

still has a read handle on the sub-chunks on the IONs.

Users can also create “bundles” which are collections of sub-chunks which must be
located together on the same ION to help analysis routines which need correlated data

across a set of objects.

After the success of the replication, the user is returned a new TID (with a special flag

transparently set in the IOD reserved bits, which indicates it is a replica). User should
explicitly evict the replication’s data to free BB’s storage space. Multi-format replication

on array objects can be referred to as semantic resharding. KV stores may also be

semantically resharded by specifying how to partition (and repartition) the key-ranges

across the IOD’s.

6.6 Transactions

IOD provides transaction semantic to upper layer with the following properties (similar as

DAOS[4]):

 Atomic writes – either all writes in a transaction are applied or none of them

are.

 Commutative writes – concurrent writes are effectively applied in TID order, not

time order.

 Consistent reads – all reads in a transaction may "see" the same version data

even in the presence of concurrent writers.

 Multiple objects – any number of IOD objects within one container may be

written in the same transaction. IOD transaction is at container level.

 Multiple threads – any number of threads and/or processes may participate in
the same transaction.

Every transaction has an identifier as TID. All IOD I/O operations include a TID

parameter.

 Read specifies a TID to ensure multiple reads “see” a consistent version of the
data. Write (including unlink) specifies a TID to ensure multiple writes are applied

atomically. IOD does not allow user to read and write to one TID at the same

time.

 IOD TID is not 1:1 mapped to DAOS epoch as some transactions may be only
buffered at BB. When a transaction is persisted to DAOS, IOD will use a DAOS

epoch number equal to the TID of the transaction.

 TID is a 64 bits value. IOD reserves the highest 8 bits for internal using, for

example as replica flags etc.

 For every container, IOD maintains:

o lowest_durable TID. It is the lowest TID which had been migrated to

DAOS and hold a referenced DAOS HCE snapshot.

o latest_rdable TID. It is the latest (highest) TID which is readable on BB, it

possibly has not or has been migrated to DAOS.

o latest_wrting TID. It is the latest (highest) TID which is started for writing.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 29 03/07/2014 10:09:00

AM

Transaction status

A transaction has 7 different possible states as shown in Figure 10:

 Unborn – this TID has not been started

 Started – not all participants have yet finished

 Finished – all participators have finished but one or more earlier transactions are

not finished

 Readable – all participants have finished and all earlier transactions are also
finished or aborted

 Aborted – a participator aborted it, any written data will be discarded. For each

abort, the user specifies whether it cascades or is independent. Cascading aborts

cause all higher transactions (which are necessarily either finished, unborn, or
started) to also abort. Independent aborts do not abort higher transactions.

 Durable – readable and has been migrated and so is persistent on DAOS.

 Stale – previously durable or readable TID for which all of the data is no longer

available. These cannot be read but IOD will not automatically evict stale TID.
IOD will prevent any transactions which have open read handles from becoming

stale.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 30 03/07/2014 10:09:00

AM

Figure 10. IOD Transaction State Diagram. Note that the user can specify different abort
semantics. An aborted transaction can cause higher transactions (which are necessarily

either finished, unborn, started, or aborted) to either be unaffected or to be also aborted.

Snapshot is included in this figure even though it isn’t technically an IOD transaction
state. But it is shown since only a container in a durable state can be snapshotted.

Snapshotting a durable container does nothing to that container itself; it merely creates

a copy of it.

6.7 TID selection

To participate in a transaction, user should first get an appropriate TID by either of the

below two methods:

 Can call iod_container_query_tids to query this container’s TID status.

o The TID higher than latest_wrting is writable, common use case is to start

TID (latest_wrting + 1).

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 31 03/07/2014 10:09:00

AM

o For read, the TIDs between lowest_durable and latest_rdable can be

readable but possibly there are some unborn or aborted TIDs within the

range.

 User can pass in “IOD_TID_UNKNOWN” if it does not want to do the query. IOD

will select an appropriate TID and returns to user.

o For writing, IOD will select (latest_wrting + 1) and return to user.

o For reading, user can pass in hints to say “I want to read the lowest
readable TID” or “I want to read the latest readable TID” as there might

be multiple readable TIDs between lowest_durable and latest_rdable TID.

Transaction status synchronization

For every TID, IOD will hash it to one IOD instance as its transaction leader which
corresponds to manage/track the transaction status. Besides this, the container manager

will track all transactions’ final status as well as TID allocation. By this method the

transaction leader can partake some workloads from container leader to avoid the

container leader being overloaded.

Any number of participators (CN ranks) can participate in transaction, so IOD needs to

have an approach to determine the final transaction status among all participators. IOD

supports two kinds of transaction status synchronization and consistency ensuring

mechanism:

1) Application does the transaction status synchronization.

Application ranks will need to select one transaction leader. The leader rank starts

and finishes/slips the TID, other ranks can participate in the TID after leader

having started it, and the leader should ensure all other ranks have finished I/O

operations within this TID before it finishes/slips this TID. As application ranks are
process topology aware, they can do fast group collective communication (with

possible high-efficient special hardware supporting features) for the transaction

status synchronization.

This is the method similar as DAOS epoch's requirement.

2) IOD internally does the transaction status synchronization.

Application ranks only need to start and finish/slip this TID separately and

independently. For this method, user needs to pass in the number of participators

(num_ranks) for this transaction. IOD needs this number to track whether or not

all participators have finished this transaction. The “num_ranks” is number of CN-
side ranks as function shipper 1:1 forwards/translates I/O calls from CN to ION.

IOD will need to do lots of internal P2P message passing for transaction status

synchronization. As IOD does not know CN ranks' process group information and

function shipping server does not create appropriate process group based on CN
ranks’ process topology, so IOD cannot use group collective communication.

When the number of participators is large, the status synchronizations will

introduce considerable overhead and latency at IOD layer.

A possible optimization exists if IOD can know that this TID is for all CN ranks –
we can call it as global transaction. For global transaction, IOD can use the global

communicator across all IODs to do similar collective communication by building

collective spanning tree to reduce the lots P2P message passing. For this

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 32 03/07/2014 10:09:00

AM

optimization, IOD needs to know two extra parameters: 1) total number of CN

ranks and 2) the number of CN ranks which are connected to this IOD. User can

pass in these two parameters when calling iod_initialize. If application can create
dynamic processes, then user should re-call iod_initialize when dynamic

processes are added. This possibly is a too high requirement to upper layer, so

basically IOD can only use lots of P2P message passing for transaction status

synchronization.

However, even the higher cost of the multiple P2P messages can be mostly

avoided when applications are not extremely asynchronous. Each IOD will count

the number of open references for each TID and only communicate with the

transaction leader when it sees the TID for the first time and then again when the
reference count goes to zero. In the best case, this will be two messages

between each IOD and the transaction leader. In the worst case, when no two

processes sharing an IOD ever have the transaction open simultaneously, then

each IOD will communicate with the transaction leader once to start the
transaction and then again for every process participating in that transaction on

that IOD. It should be noted that this extreme worse case is expected to be

extremely unlikely as this would mean that the asynchrony of the application

would be so large that processes would be 1000’s of transactions removed from

each other. In such an extreme case, the application is encouraged to do its own
monitoring of transaction completion as described in method 1.

Applications should be aware of the difference between these methods. Applications

which can be synchronous may want to use the first method to minimize cross-talk

across IONs. Applications which want fully asynchronous transactions should use the
second method.

Besides the possible performance difference, the semantics/usage of method 1) and

method 2) have some differences which need to be understood by caller:

 By method 2), application cannot use IOD_TID_UNKNOWN to start a transaction.

 By method 1), application’s different process groups can independently participate

in same or different TID at the same time; by method 2) different process groups

cannot participate in the same TID at the same time.

Start and finish, slip

All processes that want to participate in the TID need to call iod_trans_start() with same
parameters of TID, number of writers etc. The “num_ranks” is needed for IOD to track

that TID’s status, zero value means application ensures the status synchronization. Every

participator needs to call iod_trans_finish() to mark the finish of transaction. The

iod_trans_finish() can be an asynchronous operation which immediately returns after
being submitted to IOD, but the completion of the async-event will be stalled until:

1) All participators of the TID have called iod_trans_finish(), and

2) If for writing, all former TIDs become readable/durable or aborted as IOD

transactions are ordered.

The slip is like a combination of “finish(old TID) and start(new TID)”. The internal ref-

count will also be slipped from old TID to new TID.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 33 03/07/2014 10:09:00

AM

Abort

The iod_trans_finish() can carry an “abort” parameter to abort a transaction, any writer

of that transaction can abort it. After successful abort, all writings/updating within this
transaction are discarded, IOD will roll back to the status before this TID started.

For writing transaction, user can select two different kinds of abort semantics:

1) Only abort this TID. This means only abort this transaction and will not affect its

later transactions. User should select this option if it knows that all higher TIDs
have no dependency on this TID.

2) Abort this TID and all higher TIDs that are have been started. User should select

this option if the higher TIDs have dependency on this TID. [This mirrors the

abort semantics on DAOS.]

User can only abort a transaction before it becomes readable.

Unborn

If a TID is never started, it is unborn. This prevents higher TIDs from becoming

readable. This is necessary to allow fully asynchronous applications. Remember that we
have two different transaction methods: one, the application can be itself a bit more

synchronous and use its own transaction leader, or two, the application can tell IOD how

many participants there will be and IOD will provide the transaction leader. In the first

method, the application can allow IOD to provide the TID numbers by passing

IOD_TID_UNKNOWN. In the second method, the application must itself provide the TID
numbering to ensure that different write groups don’t accidentally participate in each

other’s transactions. Because of this, we must wait for all lower TIDs to become aborted

(independently) or readable before higher TIDs become readable. This is to prevent a

situation in which a TID becomes readable and then a slow process tries to start a lower
TID.

Consistent semantic

IOD transaction semantic is at container level, after one TID becoming readable on ION

user can call iod_trans_persist to protect the whole transaction’s state to DAOS. At this
point, the TID can be evicted safely from ION since the data is now available on DAOS.

After the completion of persisting, the transaction becomes durable on DAOS. That

transaction is still kept on ION, IOD will not automatically evict it.

Stale transactions are a bit confusing. On ION, there might be multiple readable TID. If

a container is not completely overwritten between TIDs, then the higher TID may rely on
data from the lower TID (e.g. the user saved an object at TID=1 and then partially

overwrote it at TID=2. When that object is read, some data will come from TID=2 and

some will come from TID=1).

Stale transactions are created by a combination of purging from ION and flattening on
DAOS. For example, TID 6, 7, 8, 9 are readable on ION, the lowest_durable TID is 6 and

latest_rdable TID is 9. At this time point the user might evict 6. Later user persists 9 on

DAOS which then renders 6 no longer readable on DAOS. Then 7 and 8 may become

unreadable even though they still reside on the ION since any data they rely on from 6 is
no longer available anywhere in the system. At this point, they are no longer considered

readable on IOD but they may remain useful in case any reads of 9 require data from

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 34 03/07/2014 10:09:00

AM

them. The user must explicitly evict them when desired. [The API does, of course, allow

a list of TID’s to be evicted in one function call.]

However, the above case in which the persist of 9 causes 7 and 8 to transition from
readable to stale is difficult if there are open IOD read handles on 7 or 8. In this case,

IOD will ensure the continued readability of those open IOD read handles by ensuring

that it has itself an open DAOS read handle on TID=6 on DAOS. That will prevent TID=6

on DAOS from being destroyed when TID=9 overwrites it when IOD does the persist.
Note that this is not an ideal performance situation for DAOS as it will need to keep

temporary intent logs longer than it would prefer, so we are continuing to explore other

ways to preserve the readability of open IOD handles while also allowing DAOS to

efficiently flatten multiple transactions.

IOD needs to keep those readable TID’s consistent readability. To keep the consistent

readability, IOD must ensure the lowest_durable TID on DAOS cannot exceed the lowest

readable TID on BB. IOD will follow these rules:

1) At beginning of iod_trans_persist, IOD calls daos_epoch_scope_clone() to get a
reference on last DAOS HCE (create a HCE snapshot for it on DAOS); at last step

of iod_trans_persist, IOD calls daos_epoch_commit(…, sync, …) to force VOSD to

commit this TID without any merge.

2) At 1)'s completion, that TID becomes durable on DAOS. IOD calls

daos_epoch_scope_clone() to get a reference of that TID (create a HCE snapshot
for it on DAOS).

3) When later user evicts that TID from BB, IOD will call daos_epoch_slip() to

release the reference taken at 2).

6.8 Versioning

There is some change from the original SOW in how we will implement versioning. There

is no longer any notion of persistent object versioning. This is replaced with temporary

views which approximate versioning while multiple transactions are readable on IONs and
persistent container level snapshots for data on DAOS.

Using temporary views to approximate object versioning

An approximation of versioning is possible at the IOD layer using transaction id’s. Since

the user is solely responsible for managing the contents of the burst buffer, they can
preserve multiple transactions on the burst buffer. An example of this would be that they

can then open handles on these multiple transactions for time-series analysis of the last

three state dumps. However, DAOS does automatic flattening of transactions so using

transactions as an approximation of versioning on DAOS is more difficult but could

potentially be attempted using open epoch handles to temporarily prevent flattening.

Container snapshots

Permanent versions can be created into the namespace with DAOS container snapshots

which are a space-efficient, copy-on-write mechanism for entire container snapshots.

This is like object versioning as proposed in the original SOW except:

 It is for containers and not single objects. A user wanting snapshots on a single

object could, of course, create a container with only a single object.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 35 03/07/2014 10:09:00

AM

 The namespace is a bit different. Instead of version ID’s on a single entry, this

creates multiple entries within the namespace.

 This will only be done on the DAOS layer. A user wanting snapshots must first
migrate the container, and then snapshot it. Users wanting versioning at the ION

layer can use the transaction scheme as described above and can also migrate

and snapshot each of the views thereby achieving both the temporary versioning

approximation and the permanent one. This will work for streaming data.

6.9 Data Integrity

Due to the expected tremendous volume of exascale data, existing data protection

mechanisms, such as storage-based ECC, will fail at increasingly high rates thereby
introducing dangerous silent data corruption. Therefore, the IOD API has checksum

parameters for every data buffer operation for all three IOD data objects. The IOD

implementation performs required checksum recomputation when application I/O is

misaligned with respect to IOD’s checksumming schema. The possible race conditions
involved in these checksum recomputations have been studied and the implementation

has been tested to show that they are carefully avoided. Further, the IOD

implementation has created the notion of virtual DAOS container shards to allow simple

and fast mappings of checksum metadata to the data that it protects.

IOD API has parameters for checksums to be passed to and from its upper layer which it

stores alongside the data as additional metadata. These checksums can be passed all

the way to the application to provide full end-to-end data integrity protection against

silent data corruption. Partial reads will of course require IOD to read the full chunk,

check the integrity, and then create a new checksum for the partial read. HDF will link
with IOD and share the checksumming function.

Note that this end-to-end integrity will not reconstruct corrupted data; merely it is

designed to prevent silent data corruption. In other words, corrupted data will always be

detected but not reconstructed.

With the development of resource virtualization, the application becomes farther from the

storage hardware. And there are more layers between the application and the hardware,

and if an error happens inside those middle layers, the application may get the wrong

data back and it may even not notice that the data is wrong. This is something we do
want to avoid. The basic idea to verify the data is that all data will be associated with a

checksum, so when the checksum mismatch the data, we could know that a data

corruption has occurred.

The application will need to do the following things. For write, calculate and associate a

checksum for the data send to the IO middleware either directly to IOD or though HDF.
Note that the application may choose not to participate in checksumming data but

request that IOD do it instead. These provides better protection that in the current

POSIX stack but not quite as good as true end-to-end as if the application actively

participates. For reads, IOD will return the data together with a checksum, verify it.

IOD will move data to the storage system with some optimizations to get better

performance.

Some terminology for the following discussion:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 36 03/07/2014 10:09:00

AM

Buffer represents a piece of user’s data which has or will be given an associated

checksum. It’s the basic unit handled by our algorithm. A region is a part of a buffer.

IOD only stores/retrieves data between application and storage, so all the buffers
generated inside the IOD are derived from the buffers from application or storage using

the following 4 operations:

Copy: copy the data from a target buffer to a new buffer.

Slice: copy a region of a target buffer into a new buffer.

Merge: copy several targets buffers into a new buffer in a specific order. For example,

the user is doing a large aligned read that spans multiple buffers on storage.

Slice&Merge: copy regions from several target buffers into a new buffer in a specific

order. For example, the user is doing an unaligned read that spans the second half of
one buffer and the first half of another.

This document describes how to use the checksums of the target buffers to ensure that

the checksum of the new buffer is correct.

It is important to understand the checksum algorithm which we are using. It works as an

accumulator such that you can give it multiple buffers individually and it will accumulate a

checksum value incrementally for each one. The checksum value returned is identical to

the value that would be returned if the multiple buffers were concatenated into one

contiguous region and input into the checksum algorithm.

Here are the main functions provided by the checksum algorithm:

int mchecksum_init(const char *hash_method, mchecksum_object_t *checksum);

int mchecksum_get(mchecksum_object_t checksum, void *buf, size_t size, int finalize);

int mchecksum_update(mchecksum_object_t checksum, const void *data, size_t size);

Init creates a new empty checksum object. Update increments it by giving it a new data
region. Get can be used to finalize it and get the checksum back as a bunch of bytes.

For each of the four operations, we define the following algorithms which accept a set of

one or more source buffers or regions and return one contiguous buffer and an

associated checksum. Each source buffer has its own checksum which we refer to as a
source checksum. These operations happen every time data is moved through IOD.

1. Copy the source checksum into the return checksum

2. Verify the source checksum and source buffer

3. Copy the source buffer into the return buffer

Note that this ordering prevents silent data corruption no matter when it occurs. For

example, if the source buffer is corrupted between steps #2 and #3, then the return

buffer will contain the corrupted data. However, since we copied the return checksum

before verifying the source buffer, the corrupted data will not match the checksum and

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 37 03/07/2014 10:09:00

AM

the corruption will be correctly detected. The other operations are more complex but

provide this same guarantee.

Here are the steps for a slice operation.

1. Calculate return checksum from the source region of the source buffer

2. Verify the source checksum against the source buffer

3. Copy the source region from the source buffer into the return buffer

4. Return the return buffer and return checksum
Note that the return checksum is always calculated based on the data from the source

buffer, and then verify the source buffer. The order is important so that if data corruption

happens, the return buffer and return checksum will not match or the source buffer will

fail the verification. In this way, there won’t be any silent data corruption.

Here are the steps for a merge operation.

1. Create an empty return checksum

2. For every source buffer (ordered correctly), repeat the following steps 3 - 5.

3. Accumulate the source buffer into the return checksum
4. Verify the source buffer with its checksum

5. Copy the source buffer into its appropriate location in the return buffer.

6. Return the return buffer and return checksum

Here is pseudo-code for this operation, suppose that we want to construct a new buffer

(retbuf, retchk) from a list of source buffers [(buf1, chk1), (buf2, chk2), (buf3, chk3)].
Here is the code how the retchk and retbuf is composed:

mchecksum_init(“crc64”, &tmpchk);
for (buf, chk) in [(buf1, chk1), (buf2, chk2), (buf3, chk3)] {
 mchecksum_update(tmpchk, &buf, sizeof(buf)); // COMMENT ONE
 if (verify_checksum(buf, chk) == FAILED) return –EIO; // COMMENT TWO
 memcpy(retbuf + offset_i, buf, sizeof(buf));
}
mchecksum_get(tmpchk, &retchk, sizeof(retchk), 1);
return (retbuf, retchk);

Note the ordering in the pseudo-code of the lines marked ‘COMMENT ONE’ and
‘COMMENT TWO.’ This ordering is important to prevent a race condition in which the data

can be corrupted between the copy and verify operations.

Here are the steps in a slice and merge operation.

1. Create an empty return checksum
2. For every source region (ordered correctly), repeat the following steps 3 - 5.

3. Accumulate the source region of the source buffer into the return checksum

4. Verify the entire source buffer with its checksum

5. Copy the region of the source buffer into its appropriate location in the return
buffer.

6. Return the return buffer and return checksum

This a combination of the Slice operation and Merge operation. Based on these four basic

operations, we can produce a new buffer with the right checksum, based on several

source buffers and then verify the checksums associated with them.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 38 03/07/2014 10:09:00

AM

For the storage layer, it must store the checksum into the storage device so that the

whole solution could provide end-to-end data integrity. So that when the data is read

back in the future, the application can still be confident that the data is not corrupted by
checking the checksum which was persistently stored.

When IOD stores data into DAOS, it stripes that data across a set of DAOS objects which

we refer to as data objects. Each data object has an associated checksum object. And

the DAOS objects are divided into fixed-sized chunks, each of which has a checksum
stored in the checksum object. For chunk N in the data object, its checksum is stored at

offset of (N * sizeof(checksum_t)) at the checksum object.

Every modification to a chunk will cause an update to the whole chunk and the checksum

so that we can keep the data and the checksum consistent. The following sections
describe how to handle write/read operations for DAOS objects.

To write to DAOS, only two cases are possible:

1. IOD needs to write a full checksum chunk.

2. IOD needs to write part of a checksum chunk.
Then all the write operations can be treated as a combination of the above two writes, so

that if the above cases are handled correctly, we can handle all the write operations

correctly as well.

For full write, here is the pseudo code:

int iod_daos_write(iod objectid, source buffer, offset, length, source checksum)
{
 data_oh = open_daos_data_object(iod objectid);
 checksum_oh = open_daos_checksum_object(iod objectid);
 checksum_offset = (offset / chunk_size) * sizeof(checksum_t);
 daos_object_write(data_oh, source buffer, offset, length);
 daos_object_write(checksum_oh, source checksum, checksum_offset, sizeof(checksum_t);
 close all daos objects;
}

For partial write, the code is more complicated:

int iod_daos_write(iod objectid, source buffer, offset, length, source checksum)
{
 mchecksum_init(“crc64”, &tmp_chksum);
 data_oh = open_daos_data_object(iod objectid);
 checksum_oh = open_daos_checksum_object(iod objectid);
 chunk_offset = round_down(offset); // get the start of the whole chunk;
 checksum_offset = (offset / chunk_size) * sizeof(checksum_t);
 original_chunk = malloc(chunk_size);
 daos_object_read(data_oh, original_chunk, chunk_offset, chunk_size);
 mchecksum_update(tmp_chksum, original_chunk, offset – chunk_offset);
 mchecksum_update(tmp_chksum, source buffer, length);
 sourceend = offset + length – chunk_offset;
 mchecksum_update(tmp_chksum, original_chunk[sourceend], chunk_size – sourceend);
 mchecksum_get(tmp_chksum, checksum, sizeof(checksum_t), 1); // Comment 1
 daos_object_read(checksum_oh, original_checksum, sizeof(checksum_t));

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 39 03/07/2014 10:09:00

AM

 mchecksum_verify(original_chunk, original_checksum); // Comment 2
 mchecksum_verify(source buffer, source checksum); // Comment 3
 daos_object_write(data_oh, source buffer, offset, length);
 daos_object_write(checksum_oh, checksum, checksum_offset, sizeof(checksum_t);
 free(original_chunk);
 close all daos objects;
}

As noted before, we must verify the buffer after using it. So we verify the chunk read

from the data object and the source buffer after the new checksum is constructed. Please

refer to comments 1, 2, and 3 in the pseudo code above.

Read operation is similar to the write operation in which only full read and partial read
need to be considered. However the handling of partial read is much easier than the

partial write.

Here is the pseudo code for full chunk read:

int iod_daos_read(iod objectid, return buffer, offset, length, return checksum)
{
 data_oh = open_daos_data_object(iod objectid);
 checksum_oh = open_daos_checksum_object(iod objectid);
 checksum_offset = (offset / chunk_size) * sizeof(checksum_t);
 daos_object_read(data_oh, return buffer, offset, length);
 daos_object_read(checksum_oh, return checksum, checksum_offset, sizeof(checksum_t);
 close all daos objects;
}

For partial read, the code is as following:

int iod_daos_read(iod objectid, return buffer, offset, length, return checksum)
{
 data_oh = open_daos_data_object(iod objectid);
 checksum_oh = open_daos_checksum_object(iod objectid);
 chunk_offset = round_down(offset); // get the start of the whole chunk;
 checksum_offset = (offset / chunk_size) * sizeof(checksum_t);
 original_chunk = malloc(chunk_size);
 daos_object_read(data_oh, original_chunk, chunk_offset, chunk_size);
 daos_object_read(checksum_oh, original checksum, checksum_offset, sizeof(checksum_t);
 // Apply Slice operation defined in the previous chapter.
 return_buffer_offset = offset – chunk_offset;
 mchecksum_init(“crc64”, &tmp_chksum);
 mchecksum_update(tmp_chksum, original_chunk[return_buffer_offset], length);
 mchecksum_get(tmp_chksum, &return checksum, sizeof(checksum_t));
 mchecksum_verify(original_chunk, original checksum);
 memcpy(return buffer, &original_chunk[return_buffer_offset], length);
 free(original_chunk);
 close all daos objects;
}

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 40 03/07/2014 10:09:00

AM

In this way, read and write to DAOS can be handled correctly with checksums to prevent

silent data corruption. Checksums can be stored, updated or retrieved from the DAOS

storage system successfully.

Storing data into the burst buffers will require a different data integrity implementation as

DAOS is not (currently) exporting the burst buffers. Instead IOD uses PLFS, in which the

data to be written from different nodes will be appended into different physical files to get

the maximum performance. The possible conflicts between different write operations will
be resolved according to the timestamp when the application wants to read the data

back. So we will now describe how to handle the checksum for PLFS write and read

operations.

For every write, the data is appended to the data file, and the mapping information of the
logical data and the physical data in the data file is appended into an index file. The data

in the data file is supplied by the application and the entries in the index file is generated

by PLFS to track the write so that it can read the data back later.

The following figure shows how the index entry works.

So every index entry will map a segment in the logical PLFS file to a segment in a data
file and the timestamp information so that conflicts can be resolved.

For checksum, we will append the checksum of the written data to the index entry

associated with this write operation as shown in the figure. In this way, with the

checksum feature enabled, we can still get almost 100% performance for write
operations, since the only thing we need to do is verifying the checksum and write the

checksums into the index file. Since the checksum verification is fast and the checksums

are much smaller compared to the data, the performance should be good.

Region1 Region2 Region3 RegionN PLFS File

Index

File

Data File

Index2 2

Data1 Data2 Data3 DataN

Index

1

1 Index3 3

Checksums

IndexN N

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 41 03/07/2014 10:09:00

AM

There is one possible optimization for write, in which we can disallow the write request

from covering a very large segment. Because that when the data is read from the data

file, it will be verified as a single object, so if we write a very large segment, we will
always need to read the whole segment back to verify its correctness whenever even a

very small part of it is accessed. The PLFS metadata has been augmented to include

these checksums and performance tuning has shown the importance of not creating

overly large checksum blocks due to the high checksum recomputation costs of small
unaligned reads within the larger checksum blocks. Therefore, IOD currently imposes a 4

MB maximum write into PLFS; this value is configurable.

For read operations, all the index entries in those index files are loaded into memory to

construct the global index tree. So that for every piece of data in the PLFS logical file,
PLFS can find where the data is in the data files.

Considering that the written data might overlap with each other, maybe only parts of the

original data written is still valid in this PLFS logical file, the other parts might have

already been over written. The previous implementation of PLFS will simply discard those
invalid parts, however we can’t do this for checksums, so we had to reimplement PLFS to

handle this correctly.

The checksum is calculated based on the whole buffer in the write operation, so we must

read the whole buffer as the write operation so that we can verify it against the

checksum in the index entry. This requirement changes the way we construct the index
tree and perform the read operations.

So we must treat all the index entries as a whole object and we can’t split them or merge

them. So the PLFS index code has been revised and split it to three layers:

 Physical Entries: These are entries loaded directly from the index file. Because of
checksums; we need to treat it as a single object without splitting or merging.

 Remap Entries: These are entries in the global index tree. It will map a segment

in the PLFS logical file to a whole/part of the physical entry.

 Index Tree: A map from logical offset to the Remap Entries, so that we can find
mapping information of a given segment in the PLFS logical file. The tree

contains non-overlapped logical segments of the PLFS logical file.

Please refer to the following figure for more information:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 42 03/07/2014 10:09:00

AM

Figure 11 Index Tree with Checksums

For read tasks, thread pool will be used to improve the performance. Accordingly, the

read will be divided into 5 steps:

1. Find all the physical entries for the given logical segment, and record the remap

entries so that we can know the mapping between physical data and the PLFS
logical file. This will be done in the main thread since it’s pure memory

operations.

2. Read all the physical entries into memory in parallel.

3. Accumulate the checksum for the return buffer in order. Note that the order is
important to the correctness of the checksum.

4. Verify all the physical entries and its checksum. This can be done in parallel as an

optimization.

5. Copy the data to its destination if needed. This only needs to be done if only part
of the physical entry is included in the return buffer. See next section for more

details.

For step 2, If the whole physical entry is still valid and covered by the logical segment,
then we will use the buffer supplied by the user to store the data read from the data file,

so that the memory copy in step 5 can be avoided. However if only parts of the physical

entry is valid or covered by the logical segment, then we must allocate a new buffer to

hold the whole physical entry and we must move the data to the right place in step 5.

Using our earlier terminology, copy and merge do not require the memory copy but slice
and slice/merge do.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 43 03/07/2014 10:09:00

AM

In this way, we can handle the checksum in plfs_read() and plfs_write(), and it only add

a very small overhead to PLFS, if there is no data overlap and partial read, then the

overhead is only caused by checksum verification and calculation, which is unavoidable.

The above descriptions describe how data integrity is implemented for blob and array

objects. However, KV objects must be treated differently. Since K-V checksum would be

associated with the whole K-V value, so it won’t face the problem that PLFS or DAOS

have since it will always only use the copy operation and never the merge, slice, or
slice&merge. The current design will be to have the key checksum and the value

checksum be a header at the front of the value. The following figure shows the change

we made to it:

Since the API for K-V store all works on the whole key-value pair, so that we can always

get/update the header together with the key-value pair, and there is no need to do the

slice or merge operations for it.

6.10 Asynchronous operation and event

IOD strives for asynchrony to allow user can build fully non-blocking applications. One

IOD API’s success return just means the request has been submitted to IOD, a related

completion event can be polled by user when it finally finishes executing.

For event queue (EQ) and event:

 A queue that contains events inside, user can create event queue at any time and

allocate/initialize an event to bond it to one EQ.

 Events are used by all asynchronous IOD APIs. Most IOD APIs are asynchronous

(except API to create EQ, initialize event…).

 User can register a callback to the event, so later after that event finishes, the

callback will be triggered.

 Event queue (EQ) and events are used for tracking completion event of IOD

functions.

o IOD function can return immediately only means that request has been

submitted to IOD but doesn't mean it has completed, the only way to

know completion of operation is polling completion event.

Key1

Key2

Key1

Key2

Value1

Value2

Value1

Value2

Cksum
V

Cksum

1

Cksum

V
Cksum
2

Add checksum for key and value as a header

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 44 03/07/2014 10:09:00

AM

o If caller passes in NULL event pointer then means synchronous call, the

caller will be blocked until finish.

IOD’s async-engine is the center for executing all asynchronous operations. When an
asynchronous request is received, IOD will insert it to an appropriate task list and bond

the task with the async-event. The IOD I/O scheduler will pick up the task and use thread

to execute it.

6.11 Impact on HDF5 users

 IOD makes some extensions/restrictions to HDF5 dataset:

o The dataset is one dimension extendable, can only be extended along the

first dimension, i.e. all other dimensions must have fixed length.

This is same as HDF5’s original external dataset except that it needs not to

be stored by external dataset files. IOD will store it in one array object

within the container.

o IOD adds supporting of changing the layout mapping between logical
dimensions to physical dimensions sequence. This is the basic idea for

semantic resharding.

For extendable array, the first logical dimension must also be the first

physical dimension – to make the address space be calculable.

 Transaction is the basic unit of data migration/purging/replica. User should control

the reasonable transaction granularity.

7 Configuration Parameters
IOD has many important configuration parameters that we have seen to be very
important to extract maximum performance from the system. Unfortunately, they do

currently need to be tuned manually although we have attempted to set reasonable

default parameters.

Note that the parameters which control chunk and block sizes such as the checksum

chunk sizes and the daos striping sizes are all adjusted internally to be multiples of each
other as well as the array cell size for IOD array objects.

WHICH WHAT DEFAULT

iodrc:

iod_daos_stripe_mbs

When large objects are stored on

DAOS, they are stored in a RAID0

striping. This controls the stripe
size.

128 M

iodrc:

iod_threadpool_size

Thread pool size 16

iodrc: How many shards will be created

on a single DAOS storage target.

1

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 45 03/07/2014 10:09:00

AM

iod_shards_per_target For small DAOS installations, it is

best to adjust this so that total

IONS == total shards. Otherwise,

just one per target.

iodrc:

iod_checksum_chunk_

bytes

The checksum chunk size on

DAOS.

1M

iodrc:

central_io_buffering

Turn on DAOS IO buffering, 1 for

turn on and 0 for turn off

(default). Caution: Don’t turn it
on now because there are some

bugs related to DAOS bugs.

0

iodrc:

iod_max_persist_mem

ory

The maximum size of the IOD

memory buffers used when

migrating data for replicas,

fetches, and persists.

128MB

plfsrc:

max_index_length

It should be multiple of

iod_checksum_chunk_bytes and

should not be too large. This is

the size of the checksum chunk in

PLFS. Analogous to

iod_checksum_chunk_bytes

8MB

plfsrc:

threadpool_size

Number of PLFS threads used to
build global index on a read.

8

plfsrc:

mlog_setmasks

This controls how much

debugging. Should be ERR unless

debugging.

ERR

plfsrc:

backend IO interface

PLFS backends can be prefixed

with ‘posix:’ or ‘glib:’ to control
whether PLFS internally uses the

non-buffering <fcntl.h> routines

or the user-space buffering

<stdio.h> routines. ‘glib:’ is

much better for small IO’s less

than 1MB; ‘posix’ slightly better

for larger.

‘posix:’

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 46 03/07/2014 10:09:00

AM

8 Performance Evaluation

The following graphs demonstrate the current performance of IOD running on the Cray

buffy system at LANL as well as the Intel lola test system as of June 2014. Some graphs

show performance as expected whereas others reveal areas in need of future work. We

have considered carefully the problem areas and are convinced that all of them can be
well-addressed with software optimizations and are not reflective of design flaws.

Note that these performance evaluations already have addressed several areas which

were in need of improvements which have been implemented as of this time:

 Reduce overly-eager PLFS index merging

 PLFS will extend index entries indefinitely for contiguous data
 PLFS has one checksum per index entry

 Small reads within a giant checksum chunk are very slow

 Better aggregation and larger writes to DAOS during persists

 Using <stdio.h> FILE * IO instead of <fcntl.h> IO
 Provides client side user-space buffering and caching

 Many performance tuning parameters in iodrc and plfsrc

 Threadpool sizes

 Stripe sizes
 Checksum chunk sizes

 Memory consumption during persist

 DAOS shards used per DAOS storage target

 Incremental KV persist

 Optimized sorting in range queries of data across multiple TIDs

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 47 03/07/2014 10:09:00

AM

Figure 12. This figure shows that IOD blob performance for both shared file and file-per-
process perform mostly as expected. The slight dip in performance for shared-file blobs

for small-IO sizes is an open question as is the slower performance for array objects.

This data was collected with IOR running on buffy; the POSIX measurement was taken
using a local file system on each node. The “IOD Blob Noglib” measurement shows the

value of using the C functions for IO in the stdio.h library instead of the C functions in the

fcntly.h library since they add important user-space buffering.

Figure 13. This figure compares blob and array write performance to PLFS. Since IOD is

implemented using PLFS to store writes, it is a satisfying result that blob IO only incurs a

slight degradation over PLFS. IOD arrays are under current investigation. This data was
collected using the LANL fs_test benchmark running on lola. Note that these tests set

the array cell size equal to the IO size. However, in other IOR measurements, not

shown, we set the array cells to be a constant 8 bytes regardless of the IO size and
observed that this did not affect performance.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 48 03/07/2014 10:09:00

AM

Figure 14. This figure shows the importance of handling small IO appropriately. The

value of user-space buffering is shown with the lines marked "Glib" which indicates that
the IO was performed into the BB's using the stdio.h routines; lines marked with POSIX

used the routines in fcntl.h. Lines marked with Err and Debug respectively show the

extreme damage to small IO performance which can be caused even with small
perturbances such as a debug output message sent to the /tmp partition.

Figure 15. Just as in writes, the blob performance for file-per-process is close to the

upper bound of the POSIX bandwidth. The single-shared-file performance is lower due
to the slow open time during which PLFS consolidates the large amount of metadata

from the multiple PLFS index files. Note that the LANL PLFS team is working on several

optimizations for this challenge. As in the writes, the array performance for small IO is
unexpectedly low.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 49 03/07/2014 10:09:00

AM

Figure 16. The performance to persist an IOD blob from BB to DAOS is shown here. The

difference between the file-per-process and single-shared file may be due to the slower

time to read the single-shared file from the BB’s due to the aforementioned PLFS
metadata. It may also be due to reduced parallelism while writing to the DAOS shards.

Figure 17. This picture shows that IOD KV’s can be persisted to DAOS at a higher IOPs
rate than blobs and arrays when the key is distributed across the range servers. Note

that the performance for decimal key’s is very low. This is because the decimal keys all

were sharded to a single range server within the MDHIM table and therefore parallelism
was not achieved. With a hexadecimal key more uniformly distributed across the key

space, the IOPs scale with the size of the job.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 50 03/07/2014 10:09:00

AM

Figure 18. This graph shows storage activity during a workload in which an application

was writing new transactions into the burst buffers while IOD was persisting an older
transaction to DAOS. IOD mostly is able to overlap IO although the strange gap in the

middle needs investigation, as does the strange 40 GB/s spike.

9 Lessons Learned
Many lessons learned and recommendations for future work can be found in the overall

FF Final Design document, the EFF0 document, available by request from

ira.lewis@intel.com or john.bent@emc.com. Additionally, there are many items for IOD

future work that became evident during the course of the project.

An early design choice in IOD was to embrace shallow fast progress instead of deep slow

progress by which philosophy IOD embraced the relaxed requirements of prototype

software in order to attempt to design and explore as many high-level API features as

possible. Through this decision, a tremendous amount of information about the abilities

of exascale storage as well as user needs of it was gained. The trade-off is that some of
these features need more testing before they are ready for production use.

Additionally, external libraries were often leveraged because they provided the needed

functionality even though it was understood that they were incompatible with the
eventual design. Specifically, the IOD processes currently fetch data from remote burst

buffers by cross-mounting all burst buffers as Lustre file systems. This allows rapid

deployment and development of upper-layer features but an N-squared set of Lustre

cross-mounts in which each BB mounts every other is clearly not scalable. These should
be replaced with a thinner IO forwarding system such as IOFSL or via MPI messages in

which only the local IOD process access its local burst buffer. In the latter system, each

IOD process needing remote data would send an unexpected message to its IOD sibling

running on the target burst buffer node.

Similarly, IOD used MDHIM/PBL-ISAM as its key-value store but this choice proved

regrettable both due to incompatibilities with transactions as well as being an unstable

early version of the code. This layer needs to be replaced either with the new version of

MDHIM or with a future version of DAOS which exports native KV objects.

Using MDHIM for KV stores also introduced a fair bit of complexity since it fundamentally

changes how IOD buffers data in the burst buffers. Using PLFS, IOD logs all data for

array and blob objects on the local burst buffer. MDHIM however does not do local
logging; instead inserts into MDHIM are sent to the appropriate range server which might

be running on a remote burst buffer. To improve performance, either the MDHIM client or

the local IOD instance should buffer these local MDHIM inserts so that not every MDHIM

insert need incur a ION round trip.

Additionally, due to the fantastic ease of using MDHIM, IOD currently stores its own

metadata into MDHIM. Even if MDHIM however were a perfect layer of software, this

introduces an extra unnecessary lookup. The choice was appropriate at the time to

enable shallow fast exploration, but a better long-term design would be for IOD to store
metadata directly itself using object and container leaders at the ION layer and using the

metadata virtual container shards at the DAOS layer.

mailto:ira.lewis@intel.com
mailto:john.bent@emc.com

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 51 03/07/2014 10:09:00

AM

More work needs to be done to explore whether automated tiering is valuable instead of

the current design decision to force users to explicitly control what data is stored in the

burst buffers. The IOD team has worked with Lustre 2.5 HSM, Grau Data’s PDM, and
CEA’s Robin Hood, so this work should attempt to integrate the automated scheduling

and data movement in those systems into IOD.

Making efficient use of PLFS to store burst buffer data, IOD however does not currently
use some of the collective optimizations found in the PLFS ROMIO ADIO module such as

collective aggregation of PLFS metadata. In addition to this, IOD may benefit from

recent work at LANL using MDHIM as the PLFS metadata manager or other research into

PLFS metadata such as Jun He’s compression work1.

EMC’s recent acquisition of DSSD foretells extremely exciting innovations in HPC burst

buffer hardware. It is clear that IOD needs to be agile enough to allow a wide range of

underlying hardware as well as underlying storage interfaces. Just as IOD today can
access storage via either the POSIX or the DAOS API’s, tomorrow’s IOD may need to

access direct KV interfaces to storage such as DSSD or Seagate’s Kinetic Open Storage or

to native DAOS KV objects should they be developed.

The HDF Group provided many valuable recommendations for making IOD be closer to
the needed user programming modeling. Although many of these were followed during

the course of the project, such as atomically appendable blob objects, many others were

not possible given time constraints. These include the ability to create multiple replicas

and issue reads on the original CV and allow IOD to find the “best” replica from which to
fetch the data; in contrast, IOD currently requires the user to specify which replica in the

read API. Also, the atomic append function should be extended to arrays and it should

be implemented internally in a more scalable manner. Currently atomic append is done

by querying the IOD object leader for a unique byte range at the moment of the append
but a more scalable implementation would be to delay this until the commit of all of the

appends.

Although required for scalability at the exascale, asynchronous API’s introduce new

challenges which have not yet been solved in the EFF stack. One such challenge is that
some errors may not be reported until a time significantly later than the function was

originally issued. Although this is handled today by merely polling the status of the

original request, in the EFF stack this is more challenging since many asynchronous

requests can be merged into a single commit operation.

Although developed in the DAOS layer, scalable collective trees have not yet been

implemented in the IOD layer. Since many operations, such as persist and fetch and

replicate, can be issued to a single IOD process but are executed by all processes, IOD
often needs collective communications but MPI does not currently allow an unexpected

broadcast from an unknown root so IOD will have to implement this itself in a manner

1
 Jun He, John Bent, Aaron Torres, Gary Grider, Garth Gibson, Carlos Maltzahn, and

Xian-He Sun, "I/O Acceleration with Pattern Detection", in Proc. of the 22th

International ACM Symposium on High Performance Distributed Computing

(HPDC'13), New York City, NY, June 2013. http://pages.cs.wisc.edu/~jhe/hpdc2013-
io-pattern-junhe.pdf

http://pages.cs.wisc.edu/~jhe/hpdc2013-io-pattern-junhe.pdf

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 52 03/07/2014 10:09:00

AM

similar to the DAOS scalable collective routines.

At least two additional improvements have been identified, but not yet implemented, in
the IOD-DAOS interactions. Both were identified in the IOD persist operation: an

operation in which the IOD caller makes one single request to IOD which in turn becomes

a very large number of requests from IOD to DAOS. One, IOD uses thread pools to

improve its parallel access to DAOS. Using the DAOS asynchronous routines however
would be preferable as the DAOS in-kernel thread pool can operate at lower latency than

the user-space IOD thread pool. Two, it is possible that transient failures during persist

may cause a large amount of redundant work. As a specific example, IOD may start a

DAOS epoch, write a huge amount of data, and then encounter a transient failure at the
epoch commit. Currently, IOD returns this failure to the application which can then re-

issue the persist request at which point IOD will restart the epoch and resend all of the

data. However, if instead of failing the entire persist operation, only the commit could be

retried would allow the transient error to be resolved without resending all of the data.

Also deserving of more research and needing feedback from computational scientists is

the best interface for reading or fetching large numbers of key-values in one operation.

One possibility is to specify the first key to be fetched by its index into the global sorted

object (i.e. fetch the next M key-values starting at the Nth key). The second is to specify
the first key to be fetched using an actual key (i.e. fetch the next M key-values starting at

key K).

IOD does not currently checksum its own metadata and not all IOD functions, such as
fetch, have list variants. Pipelining the checksum computations with IO is something that

is not currently done and probably should be.

As we move forward with this project, it may become necessary to revisit some early
design decisions. For example, at the beginning of the project, we decided that we would

not have a resilient burst buffer layer. This seems to be mostly a reasonable decision

especially when the burst buffer is used for checkpoint restart. Since the number of

expected burst buffer nodes is approximately two orders of magnitude lower that the

number of expected compute nodes, the likelihood of concurrent failure of both the
compute and the burst buffer layer is very low. Therefore, the cost of resilience is

greater than the benefit. Therefore, the original design maintained all IOD metadata in

memory thereby preventing recovery of ION data following an IOD crash. However, the

actual implementation relaxed this design and kept much of its metadata persistently.
This might be the right decision both because it allows resilient burst buffers that can

recover following failure (although not necessarily reconstruct lost data) as well as

because it reduces the need for complex memory management with the IOD software.

Additionally, a systematic review should be done across all routines in IOD to determine

which might reduce asynchrony. For example, currently all processes using IOD must

barrier before calling iod_container_close. Another example is that only one process can

call iod_obj_fetch and then broadcast the replica tag before other processes can ust that
prefetched object. Note that this limit on synchrony will be relaxed with the addition of

tagless replicas.

Tagless replicas, described in great depth in the EFF0 document, refer to the current IOD

semantic in that reads of replicas must use a replica tag which is returned to the caller

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 53 03/07/2014 10:09:00

AM

when the caller requests a fetch. This is suboptimal because the user must track which

replica tag to use for each read. Preferably, IOD should allow all reads to merely pass a

transaction ID and IOD will route each request to the most local replica. Additionally, the
tagged replicas fall outside the normal transactional semantic. For example, if the user

fetches TID=4 into tagged replica 4.1 and then does partial overwrites into TID=5, then

after TID=5 is committed, reads of holes on TID=5 are resolved by IOD by reading the

data from TID=4 on DAOS instead of from the more local tagged replica 4.1.

Additionally, some routines, such as iod_obj_purge and iod_obj_persist, take an object

handle as a parameter whereas they might be better suited taking an object ID as that

doesn’t require that the object be opened. Indeed, the original design decision to require
open object handles should be revisited as the open transaction is effectively a handle

already. Early in the project, it was thought that IOD might support named objects in

which case a broadcastable object handle would have been useful. However, HDF did not

need named objects so we did not end up supporting them. Therefore, an IOD object ID
is easily broadcastable and, as previously said, their protection is provided by the

transaction mechanism.

10 Conclusion
The basic IOD data type definitions and API are available on the public wiki at

https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+Storage+and+IO+Program+Doc

uments. A version of IOR with DAOS, HDF, and IOD modules is available here:

https://github.com/johnbent/ior. LANL fs_test with an IOD module is available here:

https://github.com/johnbent/fs_test/tree/iod.

The design and implementation of the IOD software to enable exascale storage via the

inclusion of a hardware burst buffer and a new software API has been challenging and

instructive. Valuable feedback was gained through cooperative development with the

HDF team building an exascale version of HDF5 as well as with the Intel team building
DAOS and the Intel team building an acyclic graph big data analysis problem to

demonstrate the value of the full exascale stack. Although we cannot be sure whether

IOD will be the software running on exascale HPC supercomputers, we are confident that

many of the design decisions and features are necessary, well-defined, and well-tested,
and will be included in whatever software ultimately is used.

11 FAQ
1. Reader processes that share the same IOD instance as writer processes

(through HDF VOL for example) can use the same transaction #'s to see

particular container states (views)

- Correct. Although note that, in our HDF-IOD-DAOS stack, there aren’t

exactly IOD instances per se but rather IOD library is linked into the
VOL server instances.

2. Reader processes that don't share the same IOD instance (either they run on

different systems but share DAOS or run at different times) can't use the

https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+Storage+and+IO+Program+Documents
https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+Storage+and+IO+Program+Documents
https://github.com/johnbent/ior
https://github.com/johnbent/fs_test/tree/iod

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 54 03/07/2014 10:09:00

AM

original transaction #'s to see a particular container state. They will be

'given' the latest HCE when the open the container, and told it is 0.

- Correct. Although I think that DAOS will change this to provide
absolute HCE not relative which I think will be more useful. Without

this, then I will push for IOD to maintain a mapping between the

relative that DAOS provides and the absolute which I think will be

more meaningful to IOD's upper layer.
- Note a very important point. DAOS provides a write lock on the

container so IOD does not. Whenever a process group tries to get a

write handle on an IOD container, IOD tries to get a write handle on

the corresponding DAOS container. In this way, there can be only one
process group writing to a container. This is extremely important

because if we did allow multiple process groups to write to a container,

then the transaction IDs (epoch IDs) would become a mess.

- But a write group to a IOD container can persist transactions to DAOS
where those transactions will then be available to an independent read

group.

3. There will be mechanisms provided by DAOS to "get next" or "go to end"

- Yes, and IOD as well. For DAOS, it is referred to as HCE and you can

“slip” to get to it.
4. File contents can be used to coordinate between data producers and

consumers that do not share the same IOD instance, for example, a "last

checkpoint" attribute & writing checkpoints to separate groups rather than

over-writing.
- Correct. This would be a scenario like: write group starts TID=3; write

group writes {x,y,z}; write group ends TID=3; write group persists

TID=3; read group opens DAOS HCE; read group reads {x,y,z}

- Notice that the data has to go back and forth to DAOS. Conversely f
the write and read group are connected to the same IOD daemon

processes, then they can produce-consume on the IONs. To

demonstrate this, we could do something like launch a large MPI job

and split MPI_COMM_WORLD into MPI_COMM_SIMULATION,

MPI_COMM_VOL, MPI_COMM_IOD, and MPI_COMM_ANALYSIS. But I
don’t know if they will actually ever be demonstrated.

5. If a reader has a handle for a given view, they are guaranteed that they can

continue to see the contents of the container for that view until they release

the handle. Attempts to evict data in transactions that are needed to serve
this view will fail.

- Yes. By the way, remember there is also the weird scenario where

persist can destroy readability of earlier TIDs. So persist might also

fail if it would destroy the readability of an open read handle. For
example:

- TID=1, TID=2, TID=3 are readable in IONs. TIDs 2 and 3 did partial

overwrites so they rely on data from earlier TIDs; The user has a read

handle on 2; The user persists 1 and evicts 1; 2 is still readable
because any missing data from TID=1 can be read from DAOS; The

user tries to persist 3. IOD can either: Say no because persisting 3

may cause DAOS to flatten it over 1 thereby destroying any data in 1

which might be needed for 2 –or- Grab a read handle on 1 on DAOS

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 55 03/07/2014 10:09:00

AM

and then persist 3 because the read handle on DAOS will prevent the

flattening

6. Evictions don't wipe out the whole transaction. They say, in effect, "evict the
object or partial object I've stenciled from the BB as of a particular view of

the container, denoted by this TID"

- Yes. Evict and pre-stage are opposites except that pre-stage can

operate on sub-objects whereas evict operates on all data written to
the object within that transaction.

- Pre-stage also will have the notion of a "bundle" where it can ask IOD

to pre-stage sub-objects {x,y,z} and place them together on a single

ION and then bundle sub-objects {a,b,c} and place them together on
a different ION. This is when analysis knows that one of its tasks

needs {x,y,z} and another needs {a,b,c}.

- To be clear, evict and pre-stage are not exactly opposites since pre-

stage operates on sub-objects@TID whereas evict operates on entire
objects@TID. This is because the data for an object@TID on IONs is

scattered across multiple PLFS style logs and to evict sub-objects

would require copying out the sub-objects which aren’t evicted. If the

users wants to only evict sub-objects and preserve the rest of the

objects, then they need first to do a multi-format replica or a semantic
resharding and then do the eviction.

7. New opens of a container that ask for the latest HCE get '0' from DAOS if

they are not part of an IOD instance that already has the container open. If

they are, then they get the HCE TID of the pre-existing open [is this true]
- I think DAOS will provide an absolute epoch. At one point, they

discussed relative epochs always restarting at 0 for each open but I

believe they have now decided to maintain an absolute epoch.

8. Transactions can be started in any order.
- True for IOD transactions.

9. Transactions may be finished (as in application calls HDF5_transaction_finish

which calls iod_trans_finish) in any order.

- True for IOD transactions.

10. Transactions will become readable in increasing (possibly with gaps) order as
Transactions are finished

- True for IOD transactions so long as gaps are caused by aborting a

transaction which is specified to be an independent transaction. But if

there is some transaction which was never started or is still open, then
future transactions cannot become readable.

- An independent transaction just means that the user does not want its

abortion to cascade and abort higher transactions.

11. Regarding whether transactions are persisted in a transaction, it looks to me
like iod_trans_persist takes a tid but is not called *in* a transaction. Maybe

it's just 2 perspectives on what that TID means.

- Agreed. However, persist will use DAOS transactions to ensure that

the persist, which may be a large number of operations across a large
number of shards, is atomic. So when the user says, "persist TID=3,"

then IOD will use epoch=3 to do the migration so that the view on ION

of TID=3 is the same as the view on DAOS for epoch=3.

- Note that we sometimes say “migrate” instead of “persist,” but

“persist” is a more accurate term since “migrate” suggests that the

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 56 03/07/2014 10:09:00

AM

data may be moved out of the original location but this is not what

happens when a user “persists” IOD transactions. “persist” is basically

a ‘cp’ and not a ‘mv.’
12. You can’t make a multi-format replica on an array object???

- multi-format replica and semantic resharding are the same thing

except that semantic resharding is for array objects and multi-format

replica is for blobs (and maybe kv's). That's why you can't do a multi-
format replica on an array object; you can only do a semantic

resharding.

13. What is difference between “migrate” and “persist?”

- We tend to use them interchangeably but really we should only say
“persist.” When we use them, we just mean that we take the view of

the container at TID=t and make it persistent on DAOS so that reads

of TID=t from ION and reads from DAOS will return the same data.

“persist” is the better term however since we do not remove the data
from the original location as you might expect from the word

“migrate.” It is analogous to POSIX ‘cp’ not POSIX ‘mv’

14. Can you explain your transaction semantics again please? Also, it seems like

they operate different for reads and writes.

- There are two key protections that our transactions provide:
i. Read protection.

ii. Write protection.

12 References
[1] John Bent, “IOD solution architecture”, Fast forward internal document.

[2] John Bent, etc., “PLFS: A Checkpoint Filesystem for Parallel Applications”, in
Proceedings of SC09, Nov. 2009.

[3] Zhenhua Zhang, “IOD KV store high level design”, Fast forward internal document.

[4] Eric Barton, “DAOS solution architecture”, Fast forward internal document.

[5] Zhen Liang, “DAOS API and DAOS POSIX design”, Fast forward internal document.

[6] Jerome Soumagne, etc., “Function Shipping Design & Framework Demonstration”,

Fast forward internal document.

[7] Quincey Koziol, “HDF5 solution architecture”, Fast forward internal document.

[8] Quincey Koziol, “Indexing Chunked HDF5 Datasets with One Unlimited Dimension”,
http://www.hdfgroup.uiuc.edu/RFC/RFCs/HDF5/ReviseChunks/skip_lists/SkipListChunkIn

dex.html.

[9] HDF5 document, “Chunking in HDF5”,

http://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/.

http://www.hdfgroup.uiuc.edu/RFC/RFCs/HDF5/ReviseChunks/skip_lists/SkipListChunkIndex.html
http://www.hdfgroup.uiuc.edu/RFC/RFCs/HDF5/ReviseChunks/skip_lists/SkipListChunkIndex.html
http://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, EMC Corporation.

B599860-SS 57 03/07/2014 10:09:00

AM

[10] Paul Nowoczynski, “VOSD solution architecture”, Fast forward internal document.

[11] Jun He, John Bent, Aaron Torres, Gary Grider, Garth Gibson, Carlos Maltzahn,and

Xian-He Sun. I/O acceleration with pattern detection. In ACM Symposium on High-
Performance Parallel and Distributed Computing, HPDC 13, New York, NY, June 2013.

