intel.

Date:
2014-06-30

High Level Design - Function Shipper

FOR EXTREME-SCALE COMPUTING
RESEARCH AND DEVELOPMENT (FAST
FORWARD) STORAGE AND I/0

LLNS Subcontract No.

B599860

Subcontractor Name

Intel Federal LLC

Subcontractor Address

2200 Mission College Blvd.
Santa Clara, CA 95052

LIMITED RIGHTS NOTICE. THESE DATA ARE SUBMITTED WITH LIMITED RIGHTS UNDER PRIME CONTRACT

NO. DE-AC52-07NA27344 BETWEEN LLNL AND THE GOVERNMENT AND SUBCONTRACT NO. B599860
BETWEEN LLNL AND INTEL FEDERAL LLC. THIS DATA MAY BE REPRODUCED AND USED BY THE GOVERNMENT
WITH THE EXPRESS LIMITATION THAT IT WILL NOT, WITHOUT WRITTEN PERMISSION OF INTEL, BE USED FOR
PURPOSES OF MANUFACTURE NOR DISCLOSED OUTSIDE THE GOVERNMENT.

THE INFORMATION CONTAINED HEREIN IS CONFIDENTIAL AND PROPRIETARY, AND IS CONSIDERED A “TRADE
SECRET” UNDER 18 U.S.C. § 1905 (THE TRADE SECRETS ACT) AND EXEMPTION 4 TO FOIA. RELEASE OF THIS

INFORMATION IS PROHIBITED.

Table of Contents

0010 0 L0 U) . 1
1D 223 0 01180 1. 1
Changes from Solution ArchiteCture ... —————————————————— 1
R0 070 0 i (o 1 00) . 2
L0 007 a2 T 2
Metadata and Generic Function Shipping......cmmmmmmmsssssssssssssssssssssssssssssssss 3
L3200 1 QD E T T B 1 (3 =) o 4
AV 0D o 3 L 5
API and Protocol Additions and Changes.........cmmmmmmmsmsmsmsssssssssssssssssssssssssss 6
Network Abstraction Layer APIiimimsmmssnsssisssisssasssssssssssssssnns 6
(71 1 T3 o Coll 20 o0 Lo o) gl Lol o 01 17
117 2 o 0 22 o (0] 1 17
Mercury handler API (SEIVET) ...iimsmmsmsssnnes 19
117 2 o 0 01 L 21
Abstract checksums and ChecKSUM APl.......oiiimsssssssssssss s 24
L0072 1 0 T 25
L3001 QB L T D 11) o 25
L0 1 1117 T 5@ 11 10 U= 25

RISKS & UNKIIOWILS 1uttietrssssssassssasssssssssssasssssssssssssssssssssssssssanssassssasssssssssssssssssssss st sasssssnssnsssssassssassssnnssnssssnssnns 25

Revision History

Date Revision | Notes Author
March 21, 1.0 e Initial version Jerome Soumagne, The
2013 HDF Group
March 21, 1.1 * Delivered to DOE as part of Milestone Jerome Soumagne,
2013 3.3 Quincey Koziol, The HDF
Group
June 20, 2.0 * Modifications include BMI plugin, non- Jerome Soumagne,
2013 contiguous bulk data transfers, Quincey Koziol, The HDF
adoption of Mercury as name (also Group
reflected in APIs), and Open Issues.
* Delivered to DOE as part of Milestone
4.2
2013-09-26 3.0 * Minor modifications to NA API / Add Jerome Soumagne,
checksum section Quincey Koziol, The HDF
Group
2014-06-30 4.0 * Update to latest Mercury API - add Jerome Soumagne, The
coresident notes HDF Group
2014-06-30 4.1 « Review and minor edits Quincey Koziol, The HDF

Delivered to DOE as part of Milestone
8.5

Group

Introduction

High performance I/O on exascale systems is not expected to be feasible without
exporting the I/O API from I/O nodes onto the compute nodes. One solution to address
this problem is to use a method called function shipping or RPC. Making use of this
method, I/0 calls issued from the compute nodes are locally encoded, sent through the
network to the I/O nodes where they are decoded and executed—with the operation’s
result being sent back to the issuing node. This document describes the implementation
of a function shipping framework, also known as Mercury, implemented as part of our
FastForward project.

Definitions
CN - compute node

ION - I/O node

RMA - remote memory access

Changes from Solution Architecture

There is no change from the initial design, the framework has been implemented and
refined to follow what was originally presented.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 1 06/30/14

Specification

As described in the Milestone 2.4 design document (Function Shipping Design and
Framework Demonstration), the function shipper framework is derived from the I/O
Forwarding Scalability Layer (IOFSL) to follow a more generic and transport independent
approach: the interface is designed to be as generic as possible to allow any function call
(with or without large data arguments) to be forwarded to remote nodes; the network
implementation is abstracted so that alternate mechanisms can be implemented and
selected, making use of the transport mechanisms natively supported on the system.

Overview

The function shipper follows a client/server architecture. The client ships calls
asynchronously and returns back to the application while it waits for their completion, the
server receives these calls, executes them and sends the response back to the client.
Input and output parameters of the function calls are serialized (or encoded) so that they
can easily be transferred across the network.

Mercury Client

Compute Node

/0 Node Metadata Bulk data

i i

Mercury Server

Figure 1. Client/server architecture.

The function shipper client would typically be located on a compute node, the function
shipper server on an I/O node. A given function shipper client may communicate with
different function shipper servers. Function shipper servers may be launched
independently and may connect to other servers, being in turn “clients”.

As one can see in Figure 1, we consider two types of transfers for shipping I/0 function
calls: metadata and bulk data transfers. To give flexibility to the user and allow transfers
to be as efficient as possible, the function shipper framework is divided into two separate
interfaces, one that initiates remote function calls and forwards/receives metadata
information (two-sided communication) and one that initiates bulk data transfers and
handles remote memory accesses (one-sided communication).

Figure 2 represents the function shipper software stack (for both the client and the
server). One can see in Figure 2 that both the function shipper and the bulk data shipper
interfaces are built on top of the same network abstraction layer. The network
abstraction layer hides the network interface from the application and allows multiple
network protocols to be dynamically selected. It can provide both point-to-point and
remote memory access operations.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 2 06/30/14

Bulk Data
Shipper
(HG_Bulk)

Function
Shipper (HG)

Network Abstraction (NA) Layer

BMI MPI

| ' |

Network Interface Controller

Figure 2. Function shipper interfaces.

As a consequence, the function shipper interface and the bulk data shipper interface may
select a specific network protocol so that metadata and bulk data can be transferred in an
efficient manner (which may not be necessarily the same: e.g., if the function shipper
interface makes use of one particular plugin, one can make use of another plugin to
perform bulk data transfers).

In the following sections we only consider an MPI and a BMI plugin as the network
abstraction layer plugins that are currently supported. Additional plugins that support
native transport protocols and RMA semantics are being added but not fully operational
yet.

Metadata and Generic Function Shipping

Shipping a function call to the function shipper server means that the client must know
how to encode and decode the input and output parameters before it can start sending
information. On the server side, the function shipper server must also have knowledge of
what function to execute when it receives a call and how it can decode and encode the
input and output parameters. This framework for describing the function calls and
encoding/decoding parameters is key to the operation of the function shipper.

One of the requirements of the function shipping framework is the ability to support the
set of function calls that can be shipped to the server in a generic fashion, avoiding the
limitations of a hard-coded set of routines to ship. The generic encode/decode framework
is described in Figure 3. During the initialization phase, the client and server register
encoding and decoding functions by using a unique function name that is mapped to a
unique ID for each operation, shared by the client and server. The server also registers
the callback that needs to be executed when an operation ID is received with a function
call. To send a function call that does not involve bulk data transfer, the function shipper
client encodes the input parameters along with that operation’s ID into a buffer and send

it to the client using a non-blocking and unexpected messaging protocol.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 3 06/30/14

This therefore limits the message size to the size of an eager message (i.e., a few
kilobytes). Note that to ensure full asynchrony of the function shipper, the memory buffer
used to receive the response back from the server is also pre-posted by the client.

1. Register encoding / decoding functions 1. Register encoding / decoding functions
into mapping table and get ID and function callback into mapping table

2. Pass ID + input parameters/ Encode / Send
operation

Mercury Mercury
Client Server

v

a

3. Decode / Get input parameters / Execute
function / Set output parameters / Encode / Send
response

Figure 3. Metadata and generic function shipping.

When the server receives a new operation ID, it looks up the corresponding callback,
decodes the input parameters, executes the function call, encodes the output parameters
and sends the response back to the client. Note that sending the response is also non-
blocking. While receiving new function calls, the server also tests the list of response
requests to check for their completion, freeing the corresponding resources when an
operation completes.

Once the client has knowledge that the response has been received (using a wait/test
call) and therefore that the function call has been remotely completed, it can decode the
output parameters and free the resources that were used for the transfer.

Bulk Data Transfers

In addition to the previous mechanism, some function calls may require the transfer of
larger amounts of data. For these function calls, the Mercury bulk interface is used.

1. Create Bulk Data Descriptor 3. Create Bulk Data Block Descriptor

2. Ship function with bulk data
descriptor (unexpected send)

L 4

Function > Function
Shipper 4. Read data block (one-sided get) Shipper
Client Server

5. Execute write call / Send response
(expected send)

Figure 4. Bulk data transfers (“write” operation execution case).

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 4 06/30/14

As described in Figure 4, the bulk data transfer interface uses a one-sided communication
approach. The Mercury client exposes an abstract memory region descriptor to the server
by creating a bulk data descriptor (which contains memory address information, size of
the memory region that is being exposed, and other parameters that depend on the
underlying network implementation). This bulk data descriptor must then be serialized
and shipped to the function shipper server along with the function call input arguments.
When the server decodes the input arguments it deserializes the bulk data descriptor and
gets the size of the memory buffer that has to be transferred.

In the case of a write operation, the function shipper server may allocate a buffer of the
size of the data that needs to be received, expose the memory region by creating a bulk
data block descriptor and initiate a non-blocking read/get operation on that memory
region. The function shipper server then tests the completion of the operation and
executes the write call once the data has been fully received. The response (i.e., the
result of the write call) is then sent back to the function shipper client and memory
handles are freed.

In the case of a read operation, the function shipper server may allocate a buffer of the
size of the data that needs to be read, expose the memory region by creating a bulk data
block descriptor, execute the read call, then initiate a non-blocking write/put operation to
the client memory region that has been exposed. The function shipper server then tests
the completion of the operation and sends the response (i.e., the result of the read call)
back to the function shipper client. Memory handles can be freed once the bulk data is
successfully received.

In the case of non-contiguous bulk data transfers, non-contiguous regions are exposed
and abstracted using the same mechanism, which consists of creating a bulk data
descriptor, which is then sent to the server to transfer data to/from its memory. Note
that while the memory region exposed by the client is non-contiguous, the local region
exposed by the server is always contiguous. Therefore, non-contiguous transfers can also
be seen as a gather operation (read) or a scatter operation (write).

Network Plugins

Network operations previously described are built on top of a network abstraction layer.
To demonstrate the functionality of the function shipping framework, an MPI and a BMI
plugin have been developed and implement the network abstraction layer.

The plugins implement two-sided transfers (unexpected and expected messaging) using
non-blocking two-sided operations.

For one-sided transfers (i.e., bulk data transfers), it is important to note that these two
plugins implement one-sided communication on top of two-sided—the reason being that
BMI does not expose RMA semantics through its API and MPI 2 RMA semantics are too
restrictive for our use (although tests are being conducted using MPI 3 functionality).
Progress must therefore be made on the client whenever a bulk data operation needs to
be realized. Other plugins that can support RMA operations natively will not have this
limitation.

To be able to launch client and server separately and simulate a normal usage of the
interface, the MPI dynamic connection interface is used. This is also not a suitable
solution for large systems as dynamic process management is generally not supported
(although a solution has been implemented by Cray recently), and will be replaced by

another mechanism when available.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 5 06/30/14

API and Protocol Additions and Changes

The 2.4 designh document (Function Shipping Design and Framework Demonstration)
introduced the network abstraction layer. We describe here modifications realized to the
API, as well as the higher-level function shipper and bulk data shipper APIs.

Network Abstraction Layer API

The Network Abstraction (NA) layer uses a callback model, which can be considered
similar to an event-based model. As opposed to the original request-based model
introduced in Milestone 2.4, the callback model removes the “wait on request” limitation,
which requires waiting on a particular request object, hence forcing continuous polling
most of the time. In this callback model, non-blocking calls such as lookup,
send_unexpected, put, etc, take a user callback function pointer argument, as well as a
pointer to user data that is passed to the user callback function. Additionally these calls
use a NA context. Progress on communication is made using NA_Progress on a specific
context. When the operation completes, the user callback is pushed into a completion
queue that is specific to the context. The user callback gets executed and popped from
the completion after NA_Trigger is called.

Other NA API calls are presented and documented below:

/**

* Initialize the network abstraction layer.

*

* \param info_string [IN] host address with port number (e.g.,
* "tcp://localhost:3344" or

* "bmi+tcp://localhost:3344")

* \param listen [IN] listen for incoming connections

*

*

\return Pointer to NA class or NULL in case of failure
*/

NA_EXPORT na_class_t *

NA Initialize(

const char *info_string,

na_bool_t listen

) NA_WARN_UNUSED_RESULT;

* Finalize the network abstraction layer.

*

* \param na_class [IN] pointer to NA class
*

*

\return NA_SUCCESS or corresponding NA error code
*/
NA_EXPORT na_return_t
NA_Finalize(
na_class_t *na_class

)
/**
* Create a new context.
*
* \param na_class [IN] pointer to NA class
*
*

\return Pointer to NA context or NULL in case of failure

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 6 06/30/14

*/
NA_EXPORT na_context_t *
NA_Context_create(
na_class_t *na_class

)
/**
* Destroy a context created by using NA_Context_create().
*
* \param na_class [IN] pointer to NA class
* \param context [IN] pointer to context of execution
*
*

\return NA_SUCCESS or corresponding NA error code
*/

NA_EXPORT na_return_t

NA_Context_destroy(

na_class_t *na_class,

na_context_t *context

)
/**
* Lookup an addr from a peer address/name. Addresses need to be
* freed by calling NA_Addr_free. Callback will be called with pointer to
* na_addr_t that contains addr ::na_cb_info_lookup
*
* \param na_class [IN] pointer to NA class
* \param context [IN] pointer to context of execution
* \param callback [IN] pointer to function callback
* \param arg [IN] pointer to data passed to callback
* \param name [IN] lookup name
* \param op_id [OUT] pointer to returned operation ID
*
*

\return NA_SUCCESS or corresponding NA error code
*/

NA_EXPORT na_return_t

NA_Addr_lookup(

na_class_t *na_class,

na_context_t *context,

na_cb_t callback,

void *arg,

const char *name,

na_op_id_t *op_id

)
/**
* Free the addr from the list of peers.
*
* \param na_class [IN] pointer to NA class
* \param addr [IN] abstract address
*
*

\return NA_SUCCESS or corresponding NA error code
*/

NA_EXPORT na_return_t

NA_Addr_free(

na_class_t *na_class,

na_addr_t addr

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 7 06/30/14

);

/**

* Access self address.

*

* \param na_class [IN] pointer to NA class

* \param addr [OUT] pointer to abstract address
*

*

\return NA_SUCCESS or corresponding NA error code
*/

NA_EXPORT na_return_t

NA_Addr_self(

na_class_t *na_class,

na_addr_t *addr

)
/**
* Duplicate an existing NA abstract address. The duplicated address can be
* stored for later use and the origin address be freed safely. The duplicated
* address must be freed with NA_Addr_free.
*
* \param na_class [IN] pointer to NA class
* \param addr [IN] abstract address
* \param new_addr [OUT] pointer to abstract address
*
*

\return NA_SUCCESS or corresponding NA error code
*/
NA_EXPORT na_return_t
NA_Addr_dup(
na_class_t *na_class,
na_addr_t addr,
na_addr_t *new_addr

)
/**
* Test whether address is self or not.
*
* \param na_class [IN] pointer to NA class
* \param addr [IN] abstract address
*
*

\return NA_TRUE if self or NA_FALSE if not
*/

NA_EXPORT na_bool t

NA_Addr_is_self(

na_class_t *na_class,

na_addr_t addr

)
/**
* Convert an addr to a string (returned string includes the terminating
* null byte '\0').
*
* \param na_class [IN] pointer to NA class
* \param buf [IN/OUT] pointer to destination buffer
* \param buf_size [IN] buffer size (max string length is defined
*

by NA_MAX_ADDR_LEN)

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 8 06/30/14

\param addr [IN] abstract address

* ¥

* \return NA_SUCCESS or corresponding NA error code
*/
NA_EXPORT na_return_t
NA_Addr_to_string(
na_class_t *na_class,
char *buf,
na_size_ t buf_size,
na_addr_t addr
)

/**
Get the maximum size of messages supported by expected send/recv.
Small message size that may differ from the unexpected message size.

\param na_class [IN] pointer to NA class

* ¥ ¥ X X ¥

\return Non-negative value
*/

NA_EXPORT na_size_ t

NA_Msg get_max_expected_size(

na_class_t *na_class

) NA_WARN_UNUSED RESULT;

/**

* Get the maximum size of messages supported by unexpected send/recv.
* Small message size.

*

* \param na_class [IN] pointer to NA class

*

*

\return Non-negative value
*/

NA_EXPORT na_size_ t

NA_Msg get_max_unexpected_size(

na_class_t *na_class

) NA_WARN_UNUSED RESULT;

/**

* Get the maximum tag value that can be used by send/recv.
* (both expected and unexpected)

*

* \param na_class [IN] pointer to NA class

*

*

\return Non-negative value
*/

NA_EXPORT na_tag_ t

NA_Msg get_max_tag(

na_class_t *na_class

) NA_WARN_UNUSED RESULT;

/**

* Send an unexpected message to dest.

* Unexpected sends do not require a matching receive to complete.

* Note also that unexpected messages do not require an unexpected receive to
*

be posted at the destination before sending the message and the destination

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 9 06/30/14

* is allowed to drop the message without notification.

*

* \param na_class [IN] pointer to NA class

* \param context [IN] pointer to context of execution
* \param callback [IN] pointer to function callback

* \param arg [IN] pointer to data passed to callback
* \param buf [IN] pointer to send buffer

* \param buf_size [IN] buffer size

* \param dest [IN] abstract address of destination
* \param tag [IN] tag attached to message

* \param op_id [OUT] pointer to returned operation ID
*

*

\return NA_SUCCESS or corresponding NA error code
*/

NA_EXPORT na_return_t

NA_Msg_send_unexpected(

na_class_t *na_class,

na_context_t *context,

na_cb_t callback,
void *arg,
const void *puf,
na_size_ t buf_size,
na_addr_t dest,
na_tag t tag,
na_op_id_t *op_id
)
/**
* Receive an unexpected message.
* Unexpected receives may wait on ANY_TAG and ANY_SOURCE depending on the
* implementation.
*
* \param na_class [IN] pointer to NA class
* \param context [IN] pointer to context of execution
* \param callback [IN] pointer to function callback
* \param arg [IN] pointer to data passed to callback
* \param buf [IN] pointer to send buffer
* \param buf_size [IN] buffer size
* \param op_id [OUT] pointer to returned operation ID
*
*

\return NA_SUCCESS or corresponding NA error code
*/

NA_EXPORT na_return_t

NA_Msg recv_unexpected(

na_class_t *na_class,

na_context_t *context,

na_cb_t callback,
void *arg,

void *buf,
na_size_ t buf_size,
na_op_id_t *op_id

)

/**
* Send an expected message to dest. Note that expected messages require
* an expected receive to be posted at the destination before sending the

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 10 06/30/14

*/
NA_EXPORT na_return_t
NA_Msg_send_expected(
na_class_t *na_class,
na_context_t *context,

\return NA_SUCCESS or corresponding NA error code

na_cb_t callback,
void *arg,
const void *pbuf,
na_size_ t buf_size,
na_addr_t dest,
na_tag t tag,
na_op_id_t *op_id
)
/**
* Receive an expected message from source.
*
* \param na_class [IN] pointer to NA class
* \param context [IN] pointer to context of execution
* \param callback [IN] pointer to function callback
* \param arg [IN] pointer to data passed to callback
* \param buf [IN] pointer to receive buffer
* \param buf_size [IN] buffer size
* \param source [IN] abstract address of source
* \param tag [IN] matching tag used to receive message
* \param op_id [OUT] pointer to returned operation ID
*
*

*/
NA_EXPORT na_return_t
NA_Msg recv_expected(
na_class_t *na_class,
na_context_t *context,

na_cb_t callback,
void *arg,

void *buf,
na_size_ t buf_size,
na_addr_t source,
na_tag t tag,
na_op_id_t *op_id

)

\return NA_SUCCESS or corresponding NA error code

* message, otherwise the destination is allowed to drop the message without
* notification.

*

* \param na_class [IN] pointer to NA class

* \param context [IN] pointer to context of execution

* \param callback [IN] pointer to function callback

* \param arg [IN] pointer to data passed to callback
* \param buf [IN] pointer to send buffer

* \param buf_size [IN] buffer size

* \param dest [IN] abstract address of destination

* \param tag [IN] tag attached to message

* \param op_id [OUT] pointer to returned operation ID

*

*

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 11 06/30/14

/%*

* Create memory handle for RMA operations.

* For non-contiguous memory, use NA_Mem_handle_create_segments instead.

*

* Note to plugin developers: NA_Mem_handle_create may be called multiple times
* on the same memory region.

*

* \param na_class [IN] pointer to NA class

* \param buf [IN] pointer to buffer that needs to be registered
* \param buf_size [IN] buffer size

* \param flags [IN] permission flag:

* - NA_MEM_READWRITE

* - NA_MEM_READ_ONLY

* \param mem_handle [OUT] pointer to returned abstract memory handle

*

* \return NA_SUCCESS or corresponding NA error code

*/

NA_EXPORT na_return_t
NA_Mem_handle_create(

na_class_t *na_class,
void *buf,
na_size_ t buf_size,

unsigned long flags,
na_mem_handle_t *mem_handle

)
/**
* Create memory handle for RMA operations.
* Create_segments can be used to register fragmented pieces and get
* a single memory handle.
* Implemented only if the network transport or hardware supports it.
*
* \param na_class [IN] pointer to NA class
* \param segments [IN] pointer to array of segments composed of:
* - address of the segment that needs to be
* registered
* - size of the segment in bytes
* \param segment_count [IN] segment count
* \param flags [IN] permission flag:
* - NA_MEM_READWRITE
* - NA_MEM_READ_ONLY
* \param mem_handle [OUT] pointer to returned abstract memory handle
*
*

\return NA_SUCCESS or corresponding NA error code
*/

NA_EXPORT na_return_t

NA_Mem_handle_create_segments(

na_class_t *na_class,
struct na_segment *segments,
na_size_t segment_count,
unsigned long flags,
na_mem_handle_t *mem_handle

)

/%*

* Free memory handle.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 12 06/30/14

\param na_class [IN] pointer to NA class
\param mem_handle [IN] abstract memory handle

* ¥ ¥ x *

\return NA_SUCCESS or corresponding NA error code
*/

NA_EXPORT na_return_t

NA_Mem_handle_free(

na_class_t *na_class,
na_mem_handle_t mem_handle
)
/**
* Register memory for RMA operations.
* Memory pieces must be registered before one-sided transfers can be
* initiated.
*
* \param na_class [IN] pointer to NA class
* \param mem_handle [IN] pointer to abstract memory handle
*
*

\return NA_SUCCESS or corresponding NA error code
*/

NA_EXPORT na_return_t

NA_Mem_register(

na_class_t *na_class,
na_mem_handle_t mem_handle
)
/**
* Unregister memory.
*
* \param na_class [IN] pointer to NA class
* \param mem_handle [IN] abstract memory handle
*
*

\return NA_SUCCESS or corresponding NA error code
*/

NA_EXPORT na_return_t

NA_Mem_deregister(

na_class_t *na_class,
na_mem_handle_t mem_handle
)
/**
* Get size required to serialize handle.
*
* \param na_class [IN] pointer to NA class
* \param mem_handle [IN] abstract memory handle
*
*

\return Non-negative value

*/
NA_EXPORT na_size_t
NA_Mem_handle_get serialize_size(
na_class_t *na_class,
na_mem_handle_t mem_handle
) NA_WARN_UNUSED_RESULT;

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 13 06/30/14

/%*

* Serialize memory handle into a buffer.

* One-sided transfers require prior exchange of memory handles between
* peers, serialization callbacks can be used to "pack" a memory handle and
* send it across the network.

* NB. Memory handles can be variable size, therefore the space required
* to serialize a handle into a buffer can be obtained using

* NA_Mem_handle_get_serialize_size.

*

* \param na_class [IN] pointer to NA class

* \param buf [IN/OUT] pointer to buffer used for serialization
* \param buf_size [IN] buffer size

* \param mem_handle [IN] abstract memory handle

*

* \return NA_SUCCESS or corresponding NA error code

*/

NA_EXPORT na_return_t
NA_Mem_handle_serialize(

na_class_t *na_class,
void *buf,
na_size_ t buf_size,
na_mem_handle_t mem_handle
)
/**
* Deserialize memory handle from buffer.
*
* \param na_class [IN] pointer to NA class
* \param mem_handle [OUT] pointer to abstract memory handle
* \param buf [IN] pointer to buffer used for deserialization
* \param buf_size [IN] buffer size
*
*

\return NA_SUCCESS or corresponding NA error code
*/

NA_EXPORT na_return_t

NA_Mem_handle_deserialize(

na_class_t *na_class,
na_mem_handle_t *mem_handle,
const void *buf,
na_size_ t buf_size
)
/**
* Put data to remote target.
* Initiate a put or get to/from the registered memory regions with the
* given offset/size.
* NB. Memory must be registered and handles exchanged between peers.
*
* \param na_class [IN] pointer to NA class
* \param context [IN] pointer to context of execution
* \param callback [IN] pointer to function callback
* \param arg [IN] pointer to data passed to callback
* \param local mem_handle [IN] abstract local memory handle
* \param local offset [IN] local offset
* \param remote_mem_handle [IN] abstract remote memory handle
* \param remote_offset [IN] remote offset

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 14 06/30/14

* \param data_size [IN] size of data that needs to be transferred
* \param remote_addr [IN] abstract address of remote destination
* \param op_id [OUT] pointer to returned operation ID
*
* \return NA_SUCCESS or corresponding NA error code
*/
NA_EXPORT na_return_t
NA_Put(
na_class_t *na_class,
na_context_t *context,
na_cb_t callback,
void *arg,
na_mem_handle_t 1local_mem_handle,
na_offset_t local_offset,
na_mem_handle_t remote_mem_handle,
na_offset_t remote_offset,
na_size_ t data_size,
na_addr_t remote_addr,
na_op_id_t *op_id
)
/**
* Get data from remote target.
*
* \param na_class [IN] pointer to NA class
* \param context [IN] pointer to context of execution
* \param callback [IN] pointer to function callback
* \param arg [IN] pointer to data passed to callback
* \param local mem_handle [IN] abstract local memory handle
* \param local offset [IN] local offset
* \param remote_mem_handle [IN] abstract remote memory handle
* \param remote_offset [IN] remote offset
* \param data_size [IN] size of data that needs to be transferred
* \param remote_addr [IN] abstract address of remote source
* \param op_id [OUT] pointer to returned operation ID
*
* \return NA_SUCCESS or corresponding NA error code
*/
NA_EXPORT na_return_t
NA_Get(
na_class_t *na_class,
na_context_t *context,
na_cb_t callback,
void *arg,
na_mem_handle_t 1local_mem_handle,
na_offset_t local_offset,
na_mem_handle_t remote_mem_handle,
na_offset_t remote_offset,
na_size_ t data_size,
na_addr_t remote_addr,
na_op_id_t *op_id
)
/**

* Try to progress communication for at most timeout until timeout reached or
* any completion has occurred.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 15 06/30/14

Progress should not be considered as wait, in the sense that it cannot be
assumed that completion of a specific operation will occur only when
progress is called.

\param na_class [IN] pointer to NA class
\param context [IN] pointer to context of execution
\param timeout [IN] timeout (in milliseconds)

* K X X X ¥ ¥ ¥ *

\return NA_SUCCESS if any completion has occurred / NA error code otherwise
*/

NA_EXPORT na_return_t

NA_Progress(

na_class_t *na_class,

na_context_t *context,

unsigned int timeout

)
/**
* Execute at most max_count callbacks. If timeout is non-zero, wait up to
* timeout before returning. Function can return when at least one or more
* callbacks are triggered (at most max_count).
*
* \param context [IN] pointer to context of execution
* \param timeout [IN] timeout (in milliseconds)
* \param max_count [IN] maximum number of callbacks triggered
* \param actual count [IN] actual number of callbacks triggered
*
*

\return NA_SUCCESS or corresponding NA error code
*/

NA_EXPORT na_return_t

NA_Trigger(

na_context_t *context,

unsigned int timeout,

unsigned int max_count,

unsigned int *actual_count

)
/**
* Cancel an ongoing operation.
*
* \param na_class [IN] pointer to NA class
* \param context [IN] pointer to context of execution
* \param op_id [IN] operation ID
*
* \return NA_SUCCESS or corresponding NA error code
*/
NA_EXPORT na_return_t
NA_Cancel(

na_class_t *na_class,
na_context_t *context,
na_op_id_t op_id

)

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 16 06/30/14

Generic Processor Macros

To automatically generate encoding and decoding functions, we make use of the BOOST
preprocessor subset that is able to operate on a sequence of given elements. Encoding or
decoding operations are very similar operations, we can therefore use the same
processor function to encode or decode parameters.

The macro prototype is given below:
/* MERCURY_GEN_PROC(struct_type name, fields) */

Generating the processor function and corresponding structure to send an integer would
require the following macro:

MERCURY_GEN_PROC(function_in_t, ((int32_t)(func_paraml)))
This would generate the following code:

/* Define function_in_t */
typedef struct {

int32_t func_paraml;
} function_in_t;

/* Define hg_proc_function_in_t */
static inline int hg_proc_function_in_t(hg_proc_t proc, void *data)

{
int ret = S_SUCCESS;

function_in_t *struct_data = (function_in_t *) data;

ret = fs_proc_int32_t(proc, &struct_data->func_paraml);
if (ret != S_SUCCESS) {

S_ERROR_DEFAULT("Proc error");

ret = S_FAIL;

return ret;

}

return ret;

}

Note that the size of the integer needs to be explicitly stated to avoid encoding/decoding
errors if integer sizes differ between the function shipper client and the function shipper
server.

Additional types to support filenames (hg_string_t) and bulk data handles (hg_bulk_t)
can be passed to these macros. More complex structures require definition of the
substructures and a call to this macro to generate the specific processor functions.

Mercury API (client)

The function shipper API is quite straightforward. Note that the HG_Forward function call
allows network abstraction (na_addr_t) addresses to be passed, which describe the
network address of the remote function shipper server. Therefore multiple I/O nodes can
be selected and their address passed to the function shipper layer. This address can be
retrieved using the network abstraction layer. If the address passed is “self”, the call will
not be sent but instead, will be executed locally.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 17 06/30/14

The following routines compose the client API:

/**

Initialize the Mercury layer.

Calling HG_Init also calls HG_Bulk_init with the same NA class if
HG_Bulk_init has not been called before, this allows users to
eventually initialize the bulk interface with a different NA class.

\param na_class [IN] pointer to network class

* X X X X X X ¥

\return HG_SUCCESS or corresponding HG error code
*/

HG_EXPORT hg_return_t

HG_Init(na_class_t *na_class);

/%*

* Finalize the Mercury layer.
*

* \return HG_SUCCESS or corresponding HG error code
*/

HG_EXPORT hg_return_t

HG_Finalize(void);

/**

* Register a function name that can be sent using the RPC layer.

*

* \param func_name [IN] unique name associated to function

* \param in_proc_cb [IN] pointer to input proc routine

* \param out_proc_cb [IN] pointer to output proc routine

* \param rpc_cb [IN] RPC callback (may only be defined in server code)
*

*

*

\return unique ID associated to the registered function
*/

HG_EXPORT hg_id t

HG_Register(const char *func_name, hg proc_cb_t in_proc_cb,

hg proc_cb_t out_proc_cb, hg rpc_cb_t rpc_cb);

/**

* Forward a call to a remote server.

* Request must be freed using HG_Request_free.

*

* \param addr [IN] abstract network address of destination
* \param id [IN] registered function ID

* \param in_struct [IN] pointer to input structure
* \param out_struct [OUT] pointer to output structure
* \param request [OUT] pointer to RPC request

*

*

\return HG_SUCCESS or corresponding HG error code
*/
HG_EXPORT hg_return_t
HG_Forward(na_addr_t addr, hg id t id,
void *in_struct, void *out_struct, hg request_t *request);

/%*

* Wait for an operation request to complete.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 18 06/30/14

* Once the request has completed, request must be freed using HG_Request_free.
*

* \param request [IN] RPC request

* \param timeout [IN] timeout (in milliseconds)

* \param status [OUT] pointer to returned status

*

*

\return HG_SUCCESS or corresponding HG error code
*/
HG_EXPORT hg_return_t
HG_Wait(hg_request t request, unsigned int timeout, hg status_t *status);

/%%

Wait for all operations in array_of _requests to complete.

\param count [IN] number of RPC requests
\param array_of_requests [IN] arrays of RPC requests
\param timeout [IN] timeout (in milliseconds)
\param array_of_statuses [OUT] array of statuses

* K X X X ¥ ¥ *

\return HG_SUCCESS or corresponding HG error code
*/
HG_EXPORT hg_return_t
HG_Wait_all(int count, hg request t array_of_requests[],
unsigned int timeout, hg status t array_of_statuses[]);

/**
* Free request and resources allocated when decoding the output.

* User must get output parameters contained in the output structure
* before calling HG_Request_free.

*

* \param request [IN] RPC request

*

*

\return HG_SUCCESS or corresponding HG error code
*/

HG_EXPORT hg_return_t

HG_Request_free(hg request_t request);

Mercury handler API (server)

The function shipper handler is only used on the server. The main HG_Handler_process
routine receives new function calls, decodes the function operation ID and executes the
callback that corresponds to that ID. This callback, which is manually defined for now
(but can be automatically generated as well), will typically call HG_Handler_get_input and
HG_Handler_start_output in addition to performing the remote operation. Note that this
call is non-blocking and corresponding resources are freed when it completes, progress
being made during HG_Handler_process calls.

The following routines compose the server API:

/**
* Try timeout ms to process RPC requests.

*

* \param timeout [IN] timeout (in milliseconds)
* \param status [OUT] pointer to status object
*

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 19 06/30/14

* \return HG_SUCCESS or corresponding HG error code
*/
HG_EXPORT hg_return_t
HG_Handler_process(unsigned int timeout, hg status t *status);

/**
Get abstract network address of remote caller from RPC handle.
The address gets freed when HG_Handler_free is called. Users

must call NA _Addr_dup to be able to safely re-use the address.

\param handle [IN] abstract RPC handle

* X X X X X ¥

\return Abstract network address

*/
HG_EXPORT na_addr_t
HG_Handler_get_addr(hg_handle_t handle);

/**
* Get input from handle (requires registration of input proc to deserialize
* parameters).

* This is equivalent to:

* - HG_Handler_get_input_buf

* - Call hg_proc to deserialize parameters

*

* \param handle [IN] abstract RPC handle

* \param in_struct [OUT] pointer to input structure that will be

* filled with deserialized input parameters of
* RPC call.

*

*

\return HG_SUCCESS or corresponding HG error code
*/
HG_EXPORT hg_return_t
HG_Handler_get_input(hg_handle_t handle, void *in_struct);

/**
* Free input members allocated during deserialization operation.
*/

HG_EXPORT hg_return_t

HG_Handler_free_input(hg _handle_t handle, void *in_struct);

/**
* Start sending output from handle (requires registration of output proc to
* serialize parameters)

* This is equivalent to:

* - HG_Handler_get_output_buf
- Call hg_proc to serialize parameters
- HG_Handler_start_response

\param handle [IN] abstract RPC handle

\param out_struct [IN] pointer to output structure that has been
filled with output parameters and which will
be serialized into a buffer. This buffer is then
sent using a non-blocking expected send.

* K X X X ¥ ¥ X ¥ *

\return HG_SUCCESS or corresponding HG error code
*/

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 20 06/30/14

HG_EXPORT hg_return_t
HG_Handler_start_output(hg _handle t handle, void *out_struct);

/%*

* Release resources allocated for handling the RPC.
*
* \param handle [IN] abstract RPC handle
*
*

\return HG_SUCCESS or corresponding HG error code
*/
HG_EXPORT hg_return_t
HG_Handler_free(hg handle_t handle);

Mercury bulk API

The bulk data API is used on both the server and the client, although only the server
initiates transfers. The client only uses the first functions (HG_Bulk_handle_create,
HG_Bulk_handle_free, HG_Bulk_handle_serialize) to create a bulk data handle and send
it to the function shipper server. The function shipper server uses the other functions to
get/put the data to the local/remote memory location. Note that when registering non-
contiguous memory regions using HG_Bulk_handle_create, the memory handle produced
may be variable size depending on the network abstraction layer plugin used. If the
corresponding serialized memory handle is too large to be sent using the function shipper
interface (which makes use of unexpected messaging), a bulk data descriptor of the
buffer that contains the serialized handle is automatically created and sent to the server,
which can in turn pull that buffer using the bulk data shipper API.

Note also that if the address passed to HG_Bulk_transfer is “self”, data will be copied
locally, from one memory region to the other. To avoid copy, one can use
HG_Bulk_handle_access directly on the bulk data descriptor and access data pointers
transparently.

The following routines compose the bulk data shipper API:

/**
Initialize the Mercury bulk layer.
The NA class can be different from the one used for the RPC interface.

*
*
*
* \param na_class [IN] pointer to network class
*
*

\return HG_SUCCESS or corresponding HG error code
*/

HG_EXPORT hg_return_t

HG_Bulk_init(na_class_t *na_class);

/%*

* Finalize the Mercury bulk layer.
*

* \return HG_SUCCESS or corresponding HG error code
*/

HG_EXPORT hg_return_t

HG_Bulk_finalize(void);

/**
* Create abstract bulk handle from specified memory segments.
* Note.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 21 06/30/14

If NULL is passed to buf_ptrs, i.e.,

HG_Bulk_handle_create(count, NULL, buf_sizes, flags, &handle)
memory for the missing buf_ptrs array will be internally allocated.
Memory allocated is then freed when HG_Bulk_handle free is called.

\param count [IN] number of segments
\param buf_ptrs [IN] array of pointers
\param buf_sizes [IN] array of sizes
\param flags [IN] permission flag:
- HG_BULK_READWRITE
- HG_BULK_READ_ONLY
- HG_BULK_WRITE_ONLY
\param handle [OUT] pointer to returned abstract bulk handle

¥R K X X X X X X X X ¥ ¥ X *

\return HG_SUCCESS or corresponding HG error code
*/
HG_EXPORT hg_return_t
HG_Bulk_handle create(size_t count, void **buf ptrs, const size t *buf_sizes,
unsigned long flags, hg bulk_t *handle);

* Free bulk handle.

*

* \param handle [IN/OUT] abstract bulk handle
*

* \return HG_SUCCESS or corresponding HG error code
*/

HG_EXPORT hg_return_t
HG_Bulk_handle_free(hg bulk t handle);

/**

* Access bulk handle to retrieve memory segments abstracted by handle.

* When using mercury in coresident mode (i.e., when addr passed is self addr),
* it is possible to avoid copy of bulk data by accessing pointers

* from an existing bulk handle directly.

*

* \param handle [IN] abstract bulk handle

* \param offset [IN] bulk offset

* \param size [IN] bulk size

* \param flags [IN] permission flag:

* - HG_BULK_READWRITE

* - HG_BULK_READ_ONLY

* \param max_count [IN] maximum number of segments to be returned
* \param buf_ptrs [IN/OUT] array of buffer pointers

* \param buf_sizes [IN/OUT] array of buffer sizes

* \param actual count [OUT] actual number of segments returned

*

*

\return HG_SUCCESS or corresponding HG error code

*/
HG_EXPORT hg_return_t
HG_Bulk_handle_access(hg bulk_t handle, size t offset, size t size,
unsigned long flags, unsigned int max_count, void **buf_ptrs,
size_t *buf_sizes, unsigned int *actual_count);

/%*

* Get total size of data abstracted by bulk handle.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 22 06/30/14

\param handle [IN] abstract bulk handle

* ¥ * *

\return Non-negative value

*/
HG_EXPORT size_t
HG_Bulk_handle_get_size(hg_bulk_t handle);

/%*

Get total number of segments abstracted by bulk handle.

\param handle [IN] abstract bulk handle

* ¥ ¥ ¥ ¥

\return Non-negative value

*/
HG_EXPORT size_ t
HG_Bulk_handle_get_segment_count(hg bulk_t handle);

/%*

* Get size required to serialize bulk handle.

*

* \param handle [IN] abstract bulk handle
*

*

\return Non-negative value
*/
HG_EXPORT size_ t
HG_Bulk_handle_get_serialize_size(hg bulk_t handle);

/**
* Serialize bulk handle into a buffer.

*

* \param buf [IN/OUT] pointer to buffer

* \param buf_size [IN] buffer size

* \param handle [IN] abstract bulk handle
*

*

\return HG_SUCCESS or corresponding HG error code
*/
HG_EXPORT hg_return_t
HG_Bulk_handle_serialize(void *buf, size t buf_size, hg bulk_t handle);

/**
* Deserialize bulk handle from a buffer.

*

* \param handle [OUT] abstract bulk handle
* \param buf [IN] pointer to buffer

* \param buf_size [IN] buffer size

*

*

\return HG_SUCCESS or corresponding HG error code
*/
HG_EXPORT hg_return_t
HG_Bulk_handle_deserialize(hg bulk t *handle, const void *buf, size t buf_size);

/%*

* Transfer data to/from origin using abstract bulk handles.
*

* \param op [IN] transfer operation:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 23 06/30/14

- HG_BULK_PUSH

- HG_BULK_PULL
\param origin_addr [IN] abstract NA address of origin
\param origin_handle [IN] abstract bulk handle
\param origin_offset [IN] offset

\param local_handle [IN] abstract bulk handle

\param local_offset [IN] offset

\param size [IN] size of data to be transferred
\param request [OUT] pointer to returned bulk request

* X X X X X ¥ X X X *

\return HG_SUCCESS or corresponding HG error code
*/
HG_EXPORT hg_return_t
HG_Bulk_transfer(hg_bulk _op_t op, na_addr_t origin_addr, hg bulk_t origin_handle,
size_t origin_offset, hg_bulk_t local_handle, size_t local_offset,
size t size, hg bulk request_t *request);

/**

* Wait for a bulk operation request to complete.

*

* \param request [IN] bulk request

* \param timeout [IN] timeout (in milliseconds)
* \param status [OUT] pointer to returned status
*

*

\return HG_SUCCESS or corresponding HG error code
*/
HG_EXPORT hg_return_t
HG_Bulk wait(hg bulk request_t request, unsigned int timeout,
hg status_t *status);

Abstract checksums and Checksum API

Computing checksums on data encoded and decoded by Mercury has the advantage of
guaranteeing to the caller that not only has the data been correctly transmitted over the
network but also that every parameter encoded has been decoded. Checksums in
Mercury are only provided for metadata and it is left to the caller to checksum bulk data.

Internal metadata checksumming is implemented by using an abstract checksum object.
Currently a CRC64 method has been implemented, but multiple methods can be
implemented in the future and dynamically selected. An abstract checksum is attached to
every Mercury proc object that encodes or decodes data. The checksum is incrementally
updated every time a proc routine is called. Finally once all parameters have been
encoded or decoded, the checksum’s hash value is retrieved from the abstract checksum
object. The hash value is then transmitted along with the metadata to the server or client
(in the case of an encoding operation) or used to verify that the data matches the
checksum that was previously received (in the case of a decoding operation).

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 24 06/30/14

/* Initialize the checksum with the specified hash method. */
int hg_checksum_init(const char *hash_method, hg_checksum_t *checksum);

/* Destroy the checksum. */
int hg_checksum_destroy(hg_checksum_t checksum);

/* Reset the checksum. */
int hg_checksum_reset(hg_checksum_t checksum);

/* Get size of checksum. */
size_t hg_checksum_get_size(hg_checksum_t checksum);

/* Get checksum and copy it into buf (finalize to add padding). */
int hg_checksum_get(hg_checksum_t checksum, void *buf, size t size, int finalize);

/* Accumulate a partial checksum of the input data. */
int hg_checksum_update(hg_checksum_t checksum, const void *data, size_t size);

Open Issues
Bulk data transfers

The bulk data API allows large data (contiguous or non-contiguous) to be efficiently
transferred. However, in most cases, executing the RPC call on the server requires all the
data to be transferred before it can be actually executed. This introduces two potential
issues: the data must fit in the server memory and the user has to pay the cost of the
latency introduced by a full RMA transfer.

To prevent these two issues, overlapping transfers and execution by using fine-grained
transfers (which our API enables) and pipelining techniques should be encouraged as
much as possible in the future.

Callback model

While the network abstraction layer API has been switched to make use of a callback
model, the main Mercury API should be switched to that model in order to make progress
on completion of RPC calls and global communication more efficiently, using separate
threads for example (in a particular context).

Risks & Unknowns

The main unknown currently is the final network abstraction layer implementation, which
should be addressed in the future so that specific network plugins can be developed,
which will implement both unexpected messaging and RMA transfers efficiently.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2012, Intel Corporation.

B599860-SS 25 06/30/14

