
 

 

 

LLNS	  Subcontract	  No.	   B599860	  
Subcontractor	  Name	   Intel	  Federal	  LLC	  
Subcontractor	  Address	   2200	  Mission	  College	  Blvd.	  

Santa	  Clara,	  CA	  95052	  
 

 

 

 

 

 

 

 

Copyright	  2014,	  The	  HDF	  Group.	  All	  Rights	  Reserved.	   	  
B599860-‐SS	  

Date:	  
June	  30,	  2014	  

Delivered	  as	  part	  of	  Milestones	  
8.1,	  8.2,	  8.5	  

User’s	  Guide	  to	  FastForward	  Features	  in	  
HDF5	  

FOR	  EXTREME-‐SCALE	  COMPUTING	  
RESEARCH	  AND	  DEVELOPMENT	  (FAST	  
FORWARD)	  STORAGE	  AND	  I/O	  

NOTICE:	  THIS	  MANUSCRIPT	  HAS	  BEEN	  AUTHORED	  BY	  THE	  HDF	  GROUP	  UNDER	  THE	  INTEL	  SUBCONTRACT	  WITH	  LAWRENCE	  
LIVERMORE	  NATIONAL	  SECURITY,	  LLC	  WHO	  IS	  THE	  OPERATOR	  AND	  MANAGER	  OF	  LAWRENCE	  LIVERMORE	  NATIONAL	  LABORATORY	  
UNDER	  CONTRACT	  NO.	  DE-‐AC52-‐07NA27344	  WITH	  THE	  U.S.	  DEPARTMENT	  OF	  ENERGY.	  	  THE	  UNITED	  STATES	  GOVERNMENT	  
RETAINS	  AND	  THE	  PUBLISHER,	  BY	  ACCEPTING	  THE	  ARTICLE	  OF	  PUBLICATION,	  ACKNOWLEDGES	  THAT	  THE	  UNITED	  STATES	  
GOVERNMENT	  RETAINS	  A	  NON-‐EXCLUSIVE,	  PAID-‐UP,	  IRREVOCABLE,	  WORLD-‐WIDE	  LICENSE	  TO	  PUBLISH	  OR	  REPRODUCE	  THE	  
PUBLISHED	  FORM	  OF	  THIS	  MANUSCRIPT,	  OR	  ALLOW	  OTHERS	  TO	  DO	  SO,	  FOR	  UNITED	  STATES	  GOVERNMENT	  PURPOSES.	  	  THE	  
VIEWS	  AND	  OPINIONS	  OF	  AUTHORS	  EXPRESSED	  HEREIN	  DO	  NOT	  NECESSARILY	  REFLECT	  THOSE	  OF	  THE	  UNITED	  STATES	  
GOVERNMENT	  OR	  LAWRENCE	  LIVERMORE	  NATIONAL	  SECURITY,	  LLC.	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   i	   	   	   	   	   	   06/30/2014	  

 

Revision	  History	  ..............................................................................................................................................	  v	  

1	   Introduction	  ..............................................................................................................................................	  1	  

2	   Definitions	  ................................................................................................................................................	  1	  

3	   EFF	  API	  reference	  manual	  pages	  ...............................................................................................................	  2	  
3.1	   Startup	  and	  Shutdown	  APIs	  ..............................................................................................................................................................................	  3	  
3.1.1	   EFF_finalize	  ...............................................................................................................................................................................................................	  4	  
3.1.2	   EFF_init	  ........................................................................................................................................................................................................................	  5	  
3.1.3	   EFF_start_server	  .....................................................................................................................................................................................................	  6	  

4	   HDF5	  API	  reference	  manual	  pages	  ...........................................................................................................	  7	  
4.1	   H5:	  General	  HDF5	  APIs	  .......................................................................................................................................................................................	  8	  
4.1.1	   H5checksum	  ..............................................................................................................................................................................................................	  9	  

4.2	   H5A:	  Attribute	  APIs	  ............................................................................................................................................................................................	  11	  
4.2.1	   H5Aclose_ff	  .............................................................................................................................................................................................................	  13	  
4.2.2	   H5Acreate_ff	  ..........................................................................................................................................................................................................	  14	  
4.2.3	   H5Acreate_by_name_ff	  .....................................................................................................................................................................................	  16	  
4.2.4	   H5Adelete_ff	  ...........................................................................................................................................................................................................	  18	  
4.2.5	   H5Adelete_by_name_ff	  .....................................................................................................................................................................................	  19	  
4.2.6	   H5Aevict_ff	  ..............................................................................................................................................................................................................	  21	  
4.2.7	   H5Aexists_ff	  ............................................................................................................................................................................................................	  23	  
4.2.8	   H5Aexists_by_name_ff	  ......................................................................................................................................................................................	  25	  
4.2.9	   H5Aopen_ff	  .............................................................................................................................................................................................................	  27	  
4.2.10	   H5Aopen_by_name_ff	  .....................................................................................................................................................................................	  28	  
4.2.11	   H5Aprefetch_ff	  ...................................................................................................................................................................................................	  30	  
4.2.12	   H5Aread_ff	  ...........................................................................................................................................................................................................	  32	  
4.2.13	   H5Arename_ff	  ....................................................................................................................................................................................................	  33	  
4.2.14	   H5Arename_by_name_ff	  ..............................................................................................................................................................................	  34	  
4.2.15	   H5Awrite_ff	  ..........................................................................................................................................................................................................	  36	  

4.3	   H5AS:	  Analysis	  Shipping	  APIs	  .......................................................................................................................................................................	  38	  
4.3.1	   H5ASinvoke	  ............................................................................................................................................................................................................	  39	  

4.4	   H5D:	  Dataset	  APIs	  ...............................................................................................................................................................................................	  41	  
4.4.1	   H5Dclose_ff	  .............................................................................................................................................................................................................	  42	  
4.4.2	   H5Dcreate_ff	  ..........................................................................................................................................................................................................	  43	  
4.4.3	   H5Dcreate_anon_ff	  .............................................................................................................................................................................................	  45	  
4.4.4	   H5Devict_ff	  .............................................................................................................................................................................................................	  47	  
4.4.5	   H5Dopen_ff	  .............................................................................................................................................................................................................	  49	  
4.4.6	   H5Dprefetch_ff	  ......................................................................................................................................................................................................	  51	  
4.4.7	   H5Dquery_ff	  ...........................................................................................................................................................................................................	  53	  
4.4.8	   H5Dread_ff	  ..............................................................................................................................................................................................................	  55	  
4.4.9	   H5Dset_extent_ff	  ..................................................................................................................................................................................................	  58	  
4.4.10	   H5Dwrite_ff	  .........................................................................................................................................................................................................	  59	  

4.5	   H5ES:	  Event	  Stack	  APIs	  ....................................................................................................................................................................................	  62	  
4.5.1	   H5EScancel	  .............................................................................................................................................................................................................	  63	  
4.5.2	   H5EScancel_all	  .....................................................................................................................................................................................................	  64	  
4.5.3	   H5ESclear	  ................................................................................................................................................................................................................	  65	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   ii	   	   	   	   	   	   06/30/2014	  

 

4.5.4	   H5ESclose	  ................................................................................................................................................................................................................	  66	  
4.5.5	   H5EScreate	  .............................................................................................................................................................................................................	  67	  
4.5.6	   H5ESget_count	  .....................................................................................................................................................................................................	  68	  
4.5.7	   H5ESget_event_info	  ...........................................................................................................................................................................................	  69	  
4.5.8	   H5EStest	  ...................................................................................................................................................................................................................	  71	  
4.5.9	   H5EStest_all	  ...........................................................................................................................................................................................................	  72	  
4.5.10	   H5ESwait	  ..............................................................................................................................................................................................................	  73	  
4.5.11	   H5ESwait_all	  ......................................................................................................................................................................................................	  74	  

4.6	   H5F:	  File	  (Container)	  APIs	  ..............................................................................................................................................................................	  75	  
4.6.1	   H5Fclose_ff	  ..............................................................................................................................................................................................................	  77	  
4.6.2	   H5Fcreate_ff	  ...........................................................................................................................................................................................................	  78	  
4.6.3	   H5Fopen_ff	  ..............................................................................................................................................................................................................	  80	  

4.7	   H5G:	  Group	  APIs	  ..................................................................................................................................................................................................	  82	  
4.7.1	   H5Gclose_ff	  .............................................................................................................................................................................................................	  83	  
4.7.2	   H5Gcreate_ff	  ..........................................................................................................................................................................................................	  84	  
4.7.3	   H5Gevict_ff	  ..............................................................................................................................................................................................................	  86	  
4.7.4	   H5Gopen_ff	  .............................................................................................................................................................................................................	  88	  
4.7.5	   H5Gprefetch_ff	  ......................................................................................................................................................................................................	  90	  

4.8	   H5L:	  Link	  APIs	  .......................................................................................................................................................................................................	  92	  
4.8.1	   H5Lcopy_ff	  ..............................................................................................................................................................................................................	  93	  
4.8.2	   H5Lcreate_hard_ff	  ..............................................................................................................................................................................................	  95	  
4.8.3	   H5Lcreate_soft_ff	  .................................................................................................................................................................................................	  97	  
4.8.4	   H5Ldelete_ff	  ...........................................................................................................................................................................................................	  99	  
4.8.5	   H5Lexists_ff	  ..........................................................................................................................................................................................................	  101	  
4.8.6	   H5Lget_info_ff	  ....................................................................................................................................................................................................	  103	  
4.8.7	   H5Lget_val_ff	  ......................................................................................................................................................................................................	  105	  
4.8.8	   H5Lmove_ff	  ..........................................................................................................................................................................................................	  107	  

4.9	   H5M:	  Map	  APIs	  ..................................................................................................................................................................................................	  109	  
4.9.1	   H5Mclose_ff	  .........................................................................................................................................................................................................	  110	  
4.9.2	   H5Mcreate_ff	  ......................................................................................................................................................................................................	  111	  
4.9.3	   H5Mdelete_ff	  .......................................................................................................................................................................................................	  113	  
4.9.4	   H5Mevict_ff	  ..........................................................................................................................................................................................................	  114	  
4.9.5	   H5Mexists_ff	  ........................................................................................................................................................................................................	  116	  
4.9.6	   H5Mget_ff	  .............................................................................................................................................................................................................	  118	  
4.9.7	   H5Mget_count_ff	  ..............................................................................................................................................................................................	  120	  
4.9.8	   H5Mget_types_ff	  ...............................................................................................................................................................................................	  121	  
4.9.9	   H5Miterate_ff	  .....................................................................................................................................................................................................	  122	  
4.9.10	   H5Mopen_ff	  ......................................................................................................................................................................................................	  124	  
4.9.11	   H5Mprefetch_ff	  ...............................................................................................................................................................................................	  126	  
4.9.12	   H5Mset_ff	  ...........................................................................................................................................................................................................	  128	  

4.10	   H5O:	  Object	  APIs	  ............................................................................................................................................................................................	  130	  
4.10.1	   H5Oclose_ff	  .......................................................................................................................................................................................................	  131	  
4.10.2	   H5Oexists_by_name_ff	  ................................................................................................................................................................................	  132	  
4.10.3	   H5Oget_comment_ff	  ....................................................................................................................................................................................	  134	  
4.10.4	   H5Oget_comment_by_name_ff	  ..............................................................................................................................................................	  136	  
4.10.5	   H5Oget_info_ff	  .................................................................................................................................................................................................	  138	  
4.10.6	   H5Oget_info_by_name_ff	  ...........................................................................................................................................................................	  140	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   iii	   	   	   	   	   	   06/30/2014	  

 

4.10.7	   H5Oget_token	  ..................................................................................................................................................................................................	  142	  
4.10.8	   H5Olink_ff	  ..........................................................................................................................................................................................................	  143	  
4.10.9	   H5Oopen_ff	  .......................................................................................................................................................................................................	  145	  
4.10.10	   H5Oopen_by_token	  ....................................................................................................................................................................................	  146	  
4.10.11	   H5Oset_comment_ff	  ..................................................................................................................................................................................	  147	  
4.10.12	   H5Oset_comment_by_name_ff	  ............................................................................................................................................................	  148	  

4.11	   H5P:	  Property	  APIs	  .......................................................................................................................................................................................	  150	  
4.11.1	   H5Pset_dcpl_dim_layout	  ...........................................................................................................................................................................	  152	  
4.11.2	   H5Pset_dcpl_stripe_count	  .........................................................................................................................................................................	  153	  
4.11.3	   H5Pset_dcpl_stripe_size	  .............................................................................................................................................................................	  154	  
4.11.4	   H5Pset_dxpl_checksum	  ..............................................................................................................................................................................	  155	  
4.11.5	   H5Pset_dxpl_checksum_ptr	  .....................................................................................................................................................................	  156	  
4.11.6	   H5Pset_dxpl_inject_corruption	  ..............................................................................................................................................................	  157	  
4.11.7	   H5Pset_dxpl_replica	  .....................................................................................................................................................................................	  158	  
4.11.8	   H5Pset_fapl_iod	  ..............................................................................................................................................................................................	  159	  
4.11.9	   H5Pset_metadata_integrity_scope	  ......................................................................................................................................................	  160	  
4.11.10	   H5Pset_ocpl_enable_checksum	  ..........................................................................................................................................................	  161	  
4.11.11	   H5Pset_prefetch_layout	  ..........................................................................................................................................................................	  162	  
4.11.12	   H5Pset_prefetch_range	  ...........................................................................................................................................................................	  163	  
4.11.13	   H5Pset_prefetch_selection	  .....................................................................................................................................................................	  164	  
4.11.14	   H5Pset_rawdata_integrity_scope	  ......................................................................................................................................................	  165	  
4.11.15	   H5Pset_rcapl_version_request	  ............................................................................................................................................................	  166	  
4.11.16	   H5Pset_	  trspl_num_peers	  .......................................................................................................................................................................	  167	  
4.11.17	   H5Pset_view_elmt_scope	  ........................................................................................................................................................................	  168	  
4.11.18	   H5Pget_	  xapl_read_context	  ...................................................................................................................................................................	  169	  
4.11.19	   H5Pget_	  xapl_transaction	  .....................................................................................................................................................................	  170	  
4.11.20	   H5Pget_	  xxpl_read_context	  ...................................................................................................................................................................	  171	  
4.11.21	   H5Pget_	  xxpl_transaction	  ......................................................................................................................................................................	  172	  

4.12	   H5Q:	  Query	  APIs	  .............................................................................................................................................................................................	  173	  
4.12.1	   H5Qclose	  ............................................................................................................................................................................................................	  174	  
4.12.2	   H5Qcombine	  ....................................................................................................................................................................................................	  175	  
4.12.3	   H5Qcreate	  .........................................................................................................................................................................................................	  178	  
4.12.4	   H5Qdecode	  ........................................................................................................................................................................................................	  180	  
4.12.5	   H5Qencode	  ........................................................................................................................................................................................................	  181	  
4.12.6	   H5Qget_combine_op	  ....................................................................................................................................................................................	  182	  
4.12.7	   H5Qget_components	  ...................................................................................................................................................................................	  183	  
4.12.8	   H5Qget_match_op	  ........................................................................................................................................................................................	  184	  
4.12.9	   H5Qget_type	  ....................................................................................................................................................................................................	  185	  

4.13	   H5RC:	  Read	  Context	  APIs	  ..........................................................................................................................................................................	  186	  
4.13.1	   H5RCacquire	  ....................................................................................................................................................................................................	  187	  
4.13.2	   H5RCclose	  ..........................................................................................................................................................................................................	  189	  
4.13.3	   H5RCcreate	  .......................................................................................................................................................................................................	  190	  
4.13.4	   H5RCget_version	  ...........................................................................................................................................................................................	  191	  
4.13.5	   H5RCpersist	  ......................................................................................................................................................................................................	  192	  
4.13.6	   H5RCrelease	  .....................................................................................................................................................................................................	  193	  
4.13.7	   H5RCsnapshot	  ................................................................................................................................................................................................	  194	  

4.14	   H5T:	  Datatype	  APIs	  ......................................................................................................................................................................................	  195	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   iv	   	   	   	   	   	   06/30/2014	  

 

4.14.1	   H5Tclose_ff	  ........................................................................................................................................................................................................	  196	  
4.14.2	   H5Tcommit_ff	  ..................................................................................................................................................................................................	  197	  
4.14.3	   H5Tevict_ff	  ........................................................................................................................................................................................................	  199	  
4.14.4	   H5Topen_ff	  ........................................................................................................................................................................................................	  201	  
4.14.5	   H5Tprefetch_ff	  ................................................................................................................................................................................................	  202	  

4.15	   H5TR:	  Transaction	  Operation	  APIs	  .....................................................................................................................................................	  204	  
4.15.1	   H5TRabort	  ........................................................................................................................................................................................................	  205	  
4.15.2	   H5TRclose	  ..........................................................................................................................................................................................................	  206	  
4.15.3	   H5TRcreate	  ......................................................................................................................................................................................................	  207	  
4.15.4	   H5TRfinish	  ........................................................................................................................................................................................................	  208	  
4.15.5	   H5TRget_trans_num	  ...................................................................................................................................................................................	  210	  
4.15.6	   H5TRget_version	  ...........................................................................................................................................................................................	  211	  
4.15.7	   H5TRset_dependency	  .................................................................................................................................................................................	  212	  
4.15.8	   H5TRskip	  ...........................................................................................................................................................................................................	  213	  
4.15.9	   H5TRstart	  ..........................................................................................................................................................................................................	  214	  

4.16	   H5V:	  View	  Operation	  APIs	  ........................................................................................................................................................................	  216	  
4.16.1	   H5Vcreate_ff	  .....................................................................................................................................................................................................	  217	  
4.16.2	   H5Vget_location_ff	  ........................................................................................................................................................................................	  220	  
4.16.3	   H5Vget_query	  ..................................................................................................................................................................................................	  221	  
4.16.4	   H5Vget_counts	  ................................................................................................................................................................................................	  222	  
4.16.5	   H5Vget_attrs_ff	  ...............................................................................................................................................................................................	  223	  
4.16.6	   H5Vget_objs_ff	  .................................................................................................................................................................................................	  224	  
4.16.7	   H5Vget_elem_regions_ff	  .............................................................................................................................................................................	  225	  
4.16.8	   H5Vclose	  .............................................................................................................................................................................................................	  227	  

4.17	   H5X:	  Index	  Operation	  APIs	  .......................................................................................................................................................................	  228	  
4.17.1	   H5Xcreate_ff	  .....................................................................................................................................................................................................	  229	  
4.17.2	   H5Xget_count_ff	  .............................................................................................................................................................................................	  231	  
4.17.3	   H5Xremove_ff	  ..................................................................................................................................................................................................	  232	  
4.17.4	   H5Xregister	  ......................................................................................................................................................................................................	  234	  
4.17.5	   H5Xunregister	  .................................................................................................................................................................................................	  235	  

5	   Index	  Plugin	  Interface	  ...........................................................................................................................	  236	  
5.1	   Index	  Plugin	  Callbacks	  ...................................................................................................................................................................................	  236	  
5.2	   Index	  Plugin	  Types	  ...........................................................................................................................................................................................	  240	  
5.2.1	   H5X_type_t	  ...........................................................................................................................................................................................................	  240	  
5.2.2	   H5X_class_t	  ..........................................................................................................................................................................................................	  241	  

5.3	   Sample	  Codeflow	  ..............................................................................................................................................................................................	  241	  

6	   Description	  of	  example	  programs	  ........................................................................................................	  246	  
6.1	   h5ff_server.c	  .........................................................................................................................................................................................................	  246	  
6.2	   h5ff_client_*.c	  ......................................................................................................................................................................................................	  247	  

7	   Instructions	  for	  building	  and	  running	  demo	  code	  ................................................................................	  248	  

8	   Instructions	  for	  Building	  Python	  Wrappers	  &	  Regression	  Test	  Suite	  .....................................................	  250	  
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   v	   	   	   	   	   	   06/30/2014	  

 

Revision	  History	  
Date	   Revision	   Description	   Authors	  
03/22/2013 1.0 Delivered to DOE stakeholders as part of 

Milestone 3.3 demonstration output. 
Ruth Aydt, Mohamad 
Chaarawi, Quincey Koziol,   
Jerome Soumagne 

06/18/2013 2.0 Delivered to DOE stakeholders as part of 
Milestones 4.2, 4.3, 4.4 demonstration 
output. 

Ruth Aydt, Mohamad 
Chaarawi, Quincey Koziol,   
Jerome Soumagne 

9/26/2013 3.0 • Updated Introduction section for Q5. 
• Changed placeholder ID to future ID.  
• Indicated that H5EQ and H5AO routines 

will be consolidated into H5ES; Added 
H5ES section and man pages.  

• Removed H5DO section. 
• Added H5RC and H5TR sections. 
• Added several new routines to H5P. 
• Updated RM section tables and man 

pages for Q5.  See section table notes 
and History on man pages for details. 

• Updated instructions on how to build the 
EFF stack. 

• Updated test sections with the new 
testing framework. 

• Removed Appendix with Q4 example 
code. Did not include Q5 example code as 
it is much larger; see source distribution. 

• Delivered to DOE stakeholders as part of 
Milestones 5.6, 5.7 demonstration output. 

Ruth Aydt, Mohamad 
Chaarawi, Quincey Koziol 

12/20/2013 4.0.2 • Removed H5EQ and H5AO APIs – now 
consolidated into H5ES 

• Updated tables at beginning of each API 
section to reflect current status. 

• Updated list of example client programs 
and build instructions. 

• Fixed typos 
• Delivered to DOE stakeholders as part of 

Milestone 6.2, 6.3 demonstration output 

Ruth Aydt, Mohamad 
Chaarawi 

12/20/2013 4.0.3 • Added H5Qcreate/combine/close 
• Added H5ASexecute 

Quincey Koziol, Jerome 
Soumagne 

12/23/2013 4.0.4 • Final edit pass 
• Date on title page reconciled and 

highlight in section 1 removed without 
version change on 1/4/14. 

Quincey Koziol 

02/07/2104 5.1 • Update data markings and copyright year 
• Begin changes for Quarter 7 milestones 
• Added H5TRget_trans_num and 

H5TRget_version 

Ruth Aydt 

02/26/2014 5.2 • Added EFF API reference manual pages. Ruth Aydt, Mohamad 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   vi	   	   	   	   	   	   06/30/2014	  

 

(EFF_finalize, EFF_init, EFF_start_server) 
• Add note to H5Dopen about using object 

id to access other CVs. 

Chaarawi 

03/10/2014 5.3 • Added persist flag to H5Fclose_ff Mohamad Chaarawi 
03/30/2014 5.4 • Added man pages for prefetch and evict 

routines and related properties. 
• Noted that H5V and H5X reference 

manual pages will be added in Q8, with 
pointer to draft versions in the design 
doc. 

• Updated list of client examples and build 
instructions. 

• Updated status in Section 4.x tables 
• Deliver to DOE as part of Q7 milestones. 

Ruth Aydt, Mohamad 
Chaarawi 

04/10/2014 6.0 • Base version for Q8. Ruth Aydt 
5/6/2014 6.1 • Added H5O*token man pages. 

• Add open issue to H5RCsnapshot 
• Add H5Aevict_ff man page; update 

H5*evict_ff to reflect Q8 work. 

Mohamad Chaarawi, Ruth 
Aydt 

5/22/2014 6.2 • Update H5RCacquire with Limitations and 
Open Issues. 

Ruth Aydt 

6/26/2014 6.3 • Update Introduction for final quarter. 
• Small corrections throughout document. 
• Added sections for H5V & H5X; Added 

missing entries in section tables 
throughout. 

• Added section for Python work. 
• Added H5Pset_ocpl_enable_checksum 

Ruth Aydt 

6/27/2014 6.4 • Add templates and some content for 
H5V*, H5Lget_info_ff, H5Lget_val_ff, 
H5P* entries completed. 

Ruth Aydt, Mohamad 
Chaarawi 

6/28/2014 6.5 • Added templates and some content for 
H5Q*.  Misc updates elsewhere. 

Ruth Aydt 

6/30/2014 6.6 • Moved the index plugin section to this 
document (from the Design Doc), along 
with a lot of cleanup on its formatting. 

• Updated H5X*; reviewed H5L* 

Quincey Koziol, Mohamad 
Chaarawi 

6/30/2014 6.7 • Formatting updates;  Ruth Aydt 
6/30/2014 6.8 • Updated H5V*; working on H5Q* Quincey Koziol 
6/30/2014 6.9 • Updated H5Q*; Added 

H5Dcreate_anon_ff and H5Dquery_ff; 
Added H5Aprefetch_ff; Alphabetized 
H5P* routines; Added missing H5P* 
routines; Added instructions for building 
the Python wrappers and test suite; 
Updated H5AS*; Final polishing pass; 

• Delivered to DOE stakeholders as part of 
Milestone 8.1/8.2/8.5 demonstration 
output. 

Quincey Koziol 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   1	   	   	   	   	   06/30/2014	  

1 Introduction	  
This document is a deliverable for all of these Quarter 8 Milestones: 

• Milestone 8.1: HDF5 Index Demonstration 

• Milestone 8.2: Advanced Analysis Shipping Demonstration 

• Milestone 8.5: End-to-End Demonstration with Final Design Documentation and 
Report 

The document reflects the status of the software stack at the completion of the Extreme-Scale 
Computing Research and Development (Fast Forward) Storage and I/O prototype project. 

This document provides reference manual pages for API routines, high-level descriptions of 
example programs, and instructions for building and running both the HDF5 and example 
packages in the demonstration environment.  Separate documents provided over the course of 
the project contain additional program notes for the Milestone demo programs.  Usage guidance 
is included in the reference manual section overviews, the reference manual pages, the design 
document, project presentations, and example program comments. 

2 Definitions	  
ACG – Arbitrarily Connected Graphs 

AXE – Asynchronous eXecution Engine 

CN – Compute Node 

EFF – Exascale Fast Forward 

FS – Function Shipper, also known as Mercury 

IOD – I/O Dispatcher 

ION – I/O Node 

Mercury – Name of Function Shipper 

VOL – Virtual Object Layer 

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   2	   	   	   	   	   06/30/2014	  

3 EFF	  API	  reference	  manual	  pages	  
This section contains the reference manual pages for new routines that are part of the Exascale 
Fast Forward I/O stack, but that are not specifically related to HDF5.  These routines are used to 
start the Asynchronous eXecution Engine (AXE) and the function shipper (Mercury) server and 
clients – components that provide the foundation for the HDF5-IOD VOL plugin operations in the 
EFF stack. 

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   3	   	   	   	   	   06/30/2014	  

3.1 Startup	  and	  Shutdown	  APIs	  

These routines start and stop components of the EFF stack such as the Asynchronous eXecution 
Engine (AXE) and the function shipper (Mercury). 

 

Routine Implemented Notes 

EFF_finalize Quarter 4  

EFF_init Quarter 4  

EFF_start_server Quarter 4  

	  
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   4	   	   	   	   	   06/30/2014	  

3.1.1 EFF_finalize 

Name: EFF_finalize 

Signature:  
herr_t EFF_finalize( void )  

Purpose:  
Shut down the EFF stack. 
 

Description:  
EFF_finalize shuts down the EFF stack, stopping the Asynchronous eXecution Engine (AXE), finalizing 
IOD,  and shutting down the function shipper (Mercury) that were started by a call to EFF_init. 
 
The application must call EFF_finalize after all calls to the HDF5 routines had been completed.  The 
normal sequence of calls at the end of an application running on the EFF stack is: 

MPI_Barrier( MPI_COMM_WORLD ); 
    EFF_finalize(); 
    MPI_Finalize(); 
 

Parameters:  
none  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Routine added in Quarter 4. 
Man page added in Quarter 7. 

 
Man Page Status:  

No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   5	   	   	   	   	   06/30/2014	  

3.1.2 EFF_init 

Name: EFF_init 

Signature:  
herr_t EFF_init( MPI_Comm comm, MPI_Info info )  

Purpose:  
Initialize the EFF stack. 
 

Description:  
EFF_init initializes the EFF stack by setting up the connection to the Mercury server running the HDF5 VOL 
server, so that the HDF5 IOD VOL plugin at the client side can transparently forward requests to it. The call also 
triggers the initialization of the IOD library.     
 
The application must call EFF_init after the function shipping (Mercury) server has been started and before 
the application makes any calls to the HDF5 routines. 
 
comm is the MPI communicator for the compute processes. 

info passes hints to the MPI library.  MPI_INFO_NULL can be used if no hints need to be passed. .   

Parameters:  
MPI_Comm comm IN: MPI communicator  

MPI_Info   info IN: MPI info. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 4. 
Man page added in Quarter 7. 

 
Man Page Status:  

No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   6	   	   	   	   	   06/30/2014	  

3.1.3 EFF_start_server 

Name: EFF_start_server 

Signature:  
herr_t EFF_start_server( MPI_Comm comm, MPI_Info info )  

Purpose:  
Start the function shipper server that is used with the EFF stack. 
 

Description:  
EFF_start_server starts the function shipper server that listens for incoming connections from clients. 
Once a connection has been established, the client will transparently forward calls to the server it has connected 
to.     
 
EFF_start_server must be called in the server code before the user’s application calls EFF_init. 
 
comm is the MPI communicator for the compute processes. 

info passes hints to the MPI library.  MPI_INFO_NULL can be used if no hints need to be passed.  

Parameters:  
MPI_Comm comm IN: MPI communicator  

MPI_Info   info IN: MPI info. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 4. 
Man page added in Quarter 7. 

 
Man Page Status:  

No known issues. 

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   7	   	   	   	   	   06/30/2014	  

4 HDF5	  API	  reference	  manual	  pages	  
This section contains the reference manual pages for the modified and new HDF5 API routines 
that are part of the Fast Forward extensions to HDF5.   

Tables at the beginning of each section also note routines that were implemented in the HDF5 
IOD VOL client/server as part of the Fast Forward extensions to HDF5 for which the user 
interface is unchanged.  Readers are directed to the standard HDF5 man pages, found at 
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html, for those routines. 
 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   8	   	   	   	   	   06/30/2014	  

4.1 H5:	  General	  HDF5	  APIs	  

These routines serve general-purpose needs of the HDF5 library and its users. 

 

Routine Implemented Notes 

H5checksum Quarter 4 New for EFF.   

	  
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   9	   	   	   	   	   06/30/2014	  

4.1.1 H5checksum 

Name: H5checksum 

Signature:  
uint32_t H5checksum( const void *buf, hsize_t length,  H5_checksum_seed_t *cseed  )  

Purpose:  
Generate a checksum. 
 

Description:  
H5checksum generates a checksum for the data in buf with size length bytes.  
 
H5checksum will generate the same checksum for identical data regardless of whether the data is stored in a 
single contiguous buffer or in multiple non-continguous buffers.  For non-contiguous buffers, H5checksum 
must be called once for each buffer to “accumulate” the checksum for the complete data. 
 
The checksum seed structure is defined as follows:  

typedef struct H5_checksum_seed_t { 
    uint32_t a; 
    uint32_t b; 
    uint32_t c; 
    int32_t state; 
    size_t total_length; 
} H5_checksum_seed_t; 

 
If the checksum is for a data in a contiguous buffer, call H5checksum with NULL for cseed parameter. 
 
Otherwise, for checksumming a set of non-contiguous regions that will be passed in a single call to 
H5Dwrite_ff, cseed captures the internal state of the checksum generation algorithm, allowing a single 
checksum to be generated for the set of non-contiguous data that is identical to the checksum that would be 
generated if the same data was checksummed in one contiguous block.  

When creating a checksum for a set of non-contiguous buffers, H5checksum should be called on each 
contiguous portion of the buffer with length set to that portion’s corresponding size in bytes.  The a, b, c, 
and state fields in the checksum seed structure should be initialized to 0 for the first call to H5checksum, 
and total_length should be set to the total size in bytes of all the data to be checksummed (over all the non-
contiguous sections of the data to checksum). Each call to H5checksum updates fields in cseed to capture the 
current internal state of the parameters used to compute the checksum and returns the updated checksum of the 
entire data that have been passed in so far to the routine with the same cseed parameter. The return values of the 
intermediate calls to H5checksum for a non-contiguous buffer can be discarded; only the last returned value is 
used as the checksum for the non-contiguous data. By using the same cseed structure in subsequent calls to 
H5checksum for each of the non-continguous buffers, the overall checksum is computed step-by-step. 

The generated checksum can be used with H5Pset_dxpl_checksum to attach a checksum to 
H5Dwrite_ff and H5Mput transfers and to verify the checksum returned by H5Dread_ff and H5Mget 
in the buffer specified by H5Pset_dxpl_checksum_ptr. 

See Design and Implementation of FastForward Features in HDF5 for information on the interaction between 
transformation operations, such as datatype conversion, and end-to-end integrity support with checksums. 

Parameters:  
const void *buf IN: Buffer with data to be checksummed  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   10	   	   	   	   	   06/30/2014	  

hsize_t length IN: Length, in bytes, of the data in buf 

H5_checksum_seed_t *cseed   IN/OUT: Checksum state structure used to seed each invocation of 
H5checksum. Use NULL if data is in a contiguous buffer.  If the data 
is in multiple non-contiguous buffers, use the same cseed structure 
for each call to H5checksum, which will be called once per buffer. 

Returns:  
Returns the checksum.   In the case of checksumming data stored in non-contiguous buffers, the checksum 
returned for all calls but the last can be discarded 
 

History:  
Added in Quarter 4. 
Quarter 5: Added note about interactions between checksums and data transformations. 

 
Man Page Status:  

No known issues. 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   11	   	   	   	   	   06/30/2014	  

4.2 H5A:	  Attribute	  APIs	  

These routines are used to operate on HDF5 Attribute Objects.   

The routines ending in _ff have different signatures than the standard HDF5 library routines. 

Man pages for routines whose user interface is unchanged from the standard HDF5 
implementation can be found at: http://www.hdfgroup.org/HDF5/doc/RM/RM_H5A.html. 

 

Routine Implemented Notes 

H5Aclose_ff Quarter 4  

H5Acreate_ff Quarter 4  

H5Acreate_by_name_ff Quarter 4  

H5Adelete_ff Quarter 4  

H5Adelete_by_name_ff Quarter 4  

H5Aevict_ff Quarter 8  

H5Aexists_ff Quarter 4  

H5Aexists_by_name_ff Quarter 4  

H5Aopen_ff Quarter 4  

H5Aopen_by_name_ff Quarter 4  

H5Aprefetch_ff Quarter 8  

H5Aread_ff Quarter 4  

H5Arename_ff Quarter 4  

H5Arename_by_name_ff Quarter 4  

H5Awrite_ff Quarter 4  

H5Aget_create_plist Quarter 4 See standard HDF5 man page 

H5Aget_name Quarter 4 See standard HDF5 man page 

H5Aget_space Quarter 4 See standard HDF5 man page 

H5Aget_type Quarter 4 See standard HDF5 man page 

H5Aget_info_ff  Not implemented in Prototype 

H5Aget_info_by_name_ff  Not implemented in Prototype 

H5Aiterate_ff  Not implemented in Prototype 

H5Aiterate_by_name_ff  Not implemented in Prototype 

H5Aget_storage_size_ff  Not implemented in Prototype 

H5Adelete_by_idx  Not implemented in Prototype 

H5Aget_info_by_idx  Not implemented in Prototype 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   12	   	   	   	   	   06/30/2014	  

H5Aget_name_by_idx  Not implemented in Prototype 

H5Aopen_by_idx  Not implemented in Prototype 
 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   13	   	   	   	   	   06/30/2014	  

4.2.1 H5Aclose_ff 

Name: H5Aclose_ff   

Signature:  
herr_t H5Aclose_ff( hid_t attr_id, hid_t es_id  )  

Purpose:  
Close the specified attribute, possibly asynchronously. 
 

Description:  
H5Aclose_ff terminates access to the attribute specified by attr_id by releasing the identifier. 

Further use of a released attribute identifier is illegal; a function using such an identifier will fail.   

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t attr_id  IN: Identifier of the attribute to release access to.  

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  
 

History:  
Added in Quarter 4. 
Quarter 5: Changed from event queue to event stack. 

 
Man Page Status:  

No known issues. 
 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   14	   	   	   	   	   06/30/2014	  

4.2.2 H5Acreate_ff 

Name: H5Acreate_ff   

Signature:  
hid_t  H5Acreate_ff( hid_t loc_id,  const char *attr_name,  hid_t type_id,  hid_t space_id,   
hid_t acpl_id,  hid_t aapl_id,  hid_t trans_id, hid_t es_id )  

Purpose:  
Create an attribute attached to the specified object, possibly asynchronously. 

 
Description:  

H5Acreate_ff creates an attribute, attr_name, which is attached to the object specified by the identifier 
loc_id. loc_id must be in scope for the transaction identified by trans_id. 

The attribute name, attr_name, must be unique for the object.  

The attribute is created with the specified datatype and dataspace, type_id and space_id, which are created 
with the H5T and H5S interfaces, respectively.  

If type_id is either a fixed-length or variable-length string, it is important to set the string length when defining 
the datatype. String datatypes are derived from H5T_C_S1, which defaults to 1 character in size. See 
H5Tset_size and “Creating variable-length string datatypes.”    

The attribute creation and access property lists, acpl_id and aapl_id, are currently unused, but will be used 
in the future for optional attribute creation and access properties. These property lists should currently be 
H5P_DEFAULT.  

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The attribute identifier returned by this function must be released with H5Aclose_ff or resource leaks will 
develop.  

Parameters:  
hid_t loc_id  IN: Location identifier  

May be any HDF5 object identifier (group, dataset, map, or named datatype) or 
file identifier that is in scope for the transaction. If loc_id is a file identifier, 
the attribute will be attached to that file’s root group. 

const char *attr_name      IN: Attribute name  

hid_t type_id  IN: Attribute datatype identifier  

hid_t space_id  IN: Attribute dataspace identifier  

hid_t acpl_id  IN: Attribute creation property list . 
Currently not used; specify H5P_DEFAULT. 

hid_t aapl_id  IN: Attribute access property list  
Currently not used; specify H5P_DEFAULT. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   15	   	   	   	   	   06/30/2014	  

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for 
synchronous execution. 

Returns:  
Returns an attribute identifier if successful; otherwise returns a negative value. When executed asynchronously, 
a future ID for the new attribute is returned initially.  Upon completion of the asynchronous operation, the 
future ID will be transparently modified to be a “normal” attribute identifier. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement and map object. 

Man Page Status:  
No known issues. 
 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   16	   	   	   	   	   06/30/2014	  

4.2.3 H5Acreate_by_name_ff 

Name: H5Acreate_by_name_ff   

Signature:  
hid_t  H5Acreate_by_name_ff ( hid_t loc_id,  const char *obj_name,  const char *attr_name,   
hid_t type_id,  hid_t space_id,  hid_t acpl_id,  hid_t aapl_id,  hid_t lapl_id,  hid_t trans_id,  
hid_t es_id )  

Purpose:  
Create an attribute attached to the specified object, possibly asynchronously. 

 
Description:  

H5Acreate_by_name_ff creates an attribute, attr_name, which is attached to the object specified by 
loc_id and obj_name.  

loc_id is a location identifier; obj_name is the path to the object relative to loc_id. If loc_id fully 
specifies the object to which the attribute is to be attached, obj_name should be '.' (a dot).  Both loc_id and 
obj_name must be in scope for the transaction identified by trans_id. 

The attribute name, attr_name, must be unique for the object.  

The attribute is created with the specified datatype and dataspace, type_id and space_id, which are created 
with the H5T and H5S interfaces, respectively.  

The attribute creation and access property lists, acpl_id and aapl_id, are currently unused, but will be used 
in the future for optional attribute creation and access properties. These property lists should currently be 
H5P_DEFAULT.  

The link access property list, lapl_id, may provide information regarding the properties of links required to 
access the object, obj_name. See “Link Access Properties” in the H5P APIs.  The link access property list 
currently has no effect in the EFF stack and should be set to H5P_DEFAULT. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The attribute identifier returned by this function must be released with H5Aclose_ff or resource leaks will 
develop.  

Parameters:  
hid_t loc_id  IN: Location identifier  

May be any HDF5 object identifier (group, dataset, map, or named datatype) or 
file identifier that is in scope for the transaction.  

const char *obj_name IN: Object name 
The object name (path to the object) can be specified relative to loc_id, absolute 
from the file’s root group, or '.' (a dot), and must be in scope for the transaction. 

const char *attr_name      IN: Attribute name  

hid_t type_id  IN: Attribute datatype identifier  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   17	   	   	   	   	   06/30/2014	  

hid_t space_id  IN: Attribute dataspace identifier  

hid_t acpl_id  IN: Attribute creation property list  
Currently not used; specify H5P_DEFAULT. 

hid_t aapl_id  IN: Attribute access property list  
Currently not used; specify H5P_DEFAULT. 

hid_t lapl_id IN: Link access property list  
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for 
synchronous execution 

Returns:  
Returns an attribute identifier if successful; otherwise returns a negative value. When executed asynchronously, 
a future ID for the new attribute is returned initially. Upon completion of the asynchronous operation, the 
future ID will be transparently modified to be a “normal” attribute identifier. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement and map object. Noted lapl not used in EFF. 

Man Page Status:  
No known issues. 

 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   18	   	   	   	   	   06/30/2014	  

4.2.4 H5Adelete_ff 

Name: H5Adelete_ff   

Signature:  
herr_t H5Adelete_ff( hid_t loc_id, const char *attr_name, hid_t trans_id, hid_t es_id )  

Purpose:  
Delete an attribute from a specified location, possibly asynchronously. 
 

Description:  
H5Adelete_ff removes the attribute specified by its name, attr_name, from the object specified by 
loc_id. This function should not be used when attribute identifiers are open on loc_id as it may cause the 
internal indexes of the attributes to change and future writes to the open attributes to produce incorrect results.  
loc_id must be in scope for the transaction identified by trans_id. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t loc_id  May be any HDF5 object identifier (group, dataset, map, or named datatype) or file 

identifier that is in scope for the transaction. If loc_id is a file identifier, the 
attribute will be deleted from that file’s root group. 

const char *attr_name IN: Name of the attribute to delete 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement and map object. 

 
Man Page Status:  

No known issues. 
 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   19	   	   	   	   	   06/30/2014	  

4.2.5 H5Adelete_by_name_ff 

Name: H5Adelete_by_name_ff   

Signature:  
herr_t H5Adelete_by_name_ff( hid_t loc_id, const char *obj_name, const char *attr_name,  
hid_t lapl_id,  hid_t trans_id, hid_t es_id )  

Purpose:  
Delete an attribute from a specified location, possibly asynchronously. 
 

Description:  
H5Adelete_by_name_ff removes the attribute attr_name from an object specified by loc_id and 
obj_name.  

loc_id is a location identifier; obj_name is the path to the object relative to loc_id. If loc_id fully 
specifies the object from which the attribute is to be deleted, obj_name should be '.' (a dot).  Both loc_id 
and obj_name must be in scope for the transaction identified by trans_id. 

The link access property list, lapl_id, may provide information regarding the properties of links required to 
access the object, obj_name. See “Link Access Properties” in the H5P APIs.  The link access property list 
currently has no effect in the EFF stack and should be set to H5P_DEFAULT. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t loc_id IN: May be any HDF5 object identifier (group, dataset, map, or named datatype) or 

file identifier that is in scope for the transaction. 

const char *obj_name IN: Name of object from which attribute is to be removed. 
The object name (path to the object) can be specified relative to loc_id, absolute 
from the file’s root group, or '.' (a dot), and must be in scope for the transaction. 

const char *attr_name In: Name of attribute to delete 

hid_t lapl_id IN: Link access property list 
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t trans_id IN: Value used to indicate transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   20	   	   	   	   	   06/30/2014	  

 
History:  

Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement and map object. Noted lapl not used in EFF. 
 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   21	   	   	   	   	   06/30/2014	  

4.2.6 H5Aevict_ff  

Name: H5Aevict_ff 

Signature:  
herr_t H5Aevict_ff( hid_t attr_id, uint64_t container_version, hid_t dxpl_id,  
hid_t es_id )  

Purpose:  
Evict attribute from the burst buffer, possibly asynchronously. 

Description:  
H5Aevict_ff evicts data associated with an attribute from the burst buffer.   

The data to be evicted may be resident in the burst buffer under two different scenarios 

In the first scenario, the data is resident in the burst buffer as the result of updates to the attribute made via the 
EFF transaction model.  For example, through a call to H5Awrite_ff.  This call adds updates to a transaction that 
are atomically applied to the attribute when the transaction is committed, and we refer to this data as transaction 
update data.   

When evicting transaction update data, the container version being evicted should first be persisted to permanent 
storage (DAOS), with the H5RCpersist command. The attribute’s transaction update data for the specified 
container version, as well as the attribute’s transaction update data for all lower-numbered container versions that 
has not yet been evicted from the burst buffer, will be evicted as the result of this call.  If evicting the data would 
result in container versions with open read contexts becoming inaccessible, the evict will fail. 

In the second scenario, the data is resident in the burst buffer as the result of a call to H5Aprefetch_ff.  This call 
replicates data from persistent storage (DAOS) to the burst buffer, and we refer to this data as replica data.  When 
replica data is evicted, only data in the burst buffer as a result of the exact replica specified is evicted – transaction 
update data and other replicas for the group remain in the burst buffer. 

The attr_id parameter specifies the attribute whose data is to be evicted. 

The version of the attribute to be evicted is specified by the container_version property.   	  

The replica property in the transfer property list,  dxpl_id, is used to specify that an attribute replica is to be 
evicted. H5Pset_dxpl_replica() sets the replica property.  If this is set, then replia data will be evicted, 
otherwise transaction update data will be evicted. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Limitations / Future Considerations:  
When evicting a replica, the container_version argument is redundant, as the replica identifier fully 
specifies the data to be evicted.   Consider revisiting and possibly revising the API prior to production release.  
Possibly have separate evict commands for eviction of transaction update data and of replicas. 

For other potential extensions that are beyond the scope of the EFF prototype project, refer to the document Burst 
Buffer Space Management – Prototype to Production. 

Parameters:  
hid_t attr_id IN: Identifier of the attribute being evicted. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   22	   	   	   	   	   06/30/2014	  

uint64_t  container_version IN: Container version specifying what version of the attribute to evict. 

hid_t aapl_id     IN: Identifier of an access property list.  If the access property list contains 
an evict replica property (set via H5Pset_evict_replica()), then 
the replica_id specified by that property will be evicted. 

hid_t es_id IN: The es_id parameter indicates the event stack the event object 
for this call should be pushed onto when the function is executed 
asynchronously. The function may be executed synchronously by 
passing in H5_EVENT_STACK_NULL for the es_id parameter.  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. 

 
History:  

Added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   23	   	   	   	   	   06/30/2014	  

4.2.7 H5Aexists_ff 

Name: H5Aexists_ff   

Signature:  
herr_t H5Aexists_ff( hid_t loc_id, const char *attr_name,  hbool_t *exists,  
hid_t rcntxt_id,  hid_t es_id )  

Purpose:  
Determine whether an attribute with a given name exists for an object, possibly asynchronously. 
 

Description:  
H5Aexists_ff determines whether the attribute, attr_name, exists for the object specified by loc_id.  
loc_id must be in scope for the read context identified by rcntxt_id.  

The results of the existence test are put in exists. Note that this value will not be set until after the function 
completes, which may be later than when the call returns for asynchronous execution.  Traditionally the existence 
results were indicated by the function call’s return value, but with the support for asynchronous execution that is 
no longer possible and the FastForward version included the new exists parameter. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t loc_id  IN: May be any HDF5 object identifier (group, dataset, map, or named datatype) or 

file identifier that is in scope for the read context. 

const char *attr_name IN: Attribute name 

hbool_t *exists OUT: Pointer to returned results indicating existence of attribute.  When successful, 
will be a positive value to indicate the attribute exists and 0 (zero) if the attribute 
does not exist.  The value pointed to will not be modified if the existence test failed 
for some reason. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. When the asynchronous execution 
completes successfully, exists will contain the existence test results. 
 

History:  
Added in Quarter 4. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   24	   	   	   	   	   06/30/2014	  

Quarter 5: Changed from obj_id to loc_id, from transaction to read context id, and from event queue to event 
stack. Added scope requirement and map object.  Changed from htri_t to hbool_t for exists parameter type 
and updated description of value returned on test failure. 
 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   25	   	   	   	   	   06/30/2014	  

 
4.2.8 H5Aexists_by_name_ff 

Name: H5Aexists_by_name_ff   

Signature:  
herr_t H5Aexists_by_name_ff( hid_t loc_id, const char *obj_name, const char *attr_name,  
hid_t lapl_id,  hbool_t *exists,  hid_t rcntxt_id,  hid_t es_id )  

Purpose:  
Determine whether an attribute with a given name exists for an object, possibly asynchronously. 
 

Description:  
H5Aexists_ff determines whether the attribute, attr_name, exists for the object specified by loc_id and 
obj_name.  

loc_id is a location identifier; obj_name is the path to the object relative to loc_id. If loc_id fully 
specifies the object the attribute may be attached to,  obj_name should be '.' (a dot).  Both loc_id and 
obj_name must be in scope for the read context identified by rcntxt_id. 

The link access property list, lapl_id, may provide information regarding the properties of links required to 
access the object, obj_name. See “Link Access Properties” in the H5P APIs.  The link access property list 
currently has no effect in the EFF stack and should be set to H5P_DEFAULT. 

The results of the existence test are put in exists. Note that this value will not be set until after the function 
completes, which may be later than when the call returns for asynchronous execution.  Traditionally the existence 
results were indicated by the function call’s return value, but with the support for asynchronous execution that is 
no longer possible and the FastForward version included the new exists parameter. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t loc_id  IN: Location identifier  

May be any HDF5 object identifier (group, dataset, map, or named datatype) or file 
identifier that is in scope for the read context. 

const char *obj_name IN: Object name  
The object name (path to the object) can be specified relative to loc_id, absolute from 
the file’s root group, or '.' (a dot), and must be in scope for the read context. 

const char *attr_name IN: Attribute name 

hid_t lapl_id IN: Link property access list 
Currently not used in EFF; specify H5P_DEFAULT. 

hbool_t *exists OUT: Pointer to returned results indicating existence of attribute.  When successful, 
will be a positive value to indicate the attribute exists and 0 (zero) if the attribute does 
not exist.  The value pointed to will not be modified if the existence test failed for 
some reason. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   26	   	   	   	   	   06/30/2014	  

hid_t rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor 
the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. When the asynchronous execution 
completes successfully, exists will contain the existence test results. 
 

History:  
Added in Quarter 4.  
Quarter 5: Changed from obj_id to loc_id, from transaction to read context id, and from event queue to 
event stack. Added scope requirement and map object. Noted lapl currently not used in EFF. Changed 
from htri_t to hbool_t for exists parameter type and updated description of value returned on test failure. 

 
Man Page Status:  

No known issues. 

 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   27	   	   	   	   	   06/30/2014	  

4.2.9 H5Aopen_ff 

Name: H5Aopen_ff   

Signature:  
hid_t H5Aopen_ff( hid_t loc_id, const char *attr_name,  hid_t  aapl_id,  hid_t rcntxt_id,  
hid_t es_id )  

Purpose:  
Open an attribute for an object, possibly asynchronously. 

Description:  
H5Aopen_ff opens an attribute, attr_name, which is attached to the object specified by loc_id.  

loc_id is a location identifier and must be in scope for the read context specified by rcntxt_id. 

The attribute access property list, aapl_id, is currently unused and should be H5P_DEFAULT.  

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.   

The attribute identifier returned by this function must be released with H5Aclose_ff or resource leaks will 
develop.  

Parameters:  
hid_t loc_id  IN: May be any HDF5 object identifier (group, dataset, map, or named datatype) or 

file identifier that is in scope for the read context. 

const char *attr_name IN: Attribute name 

hit_t aapl_id IN: Attribute access property list.  Currently not used. 

hid_t rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns an attribute identifier if successful; otherwise returns a negative value. When executed asynchronously, 
a future ID for the new attribute is returned initially. Upon completion of the asynchronous operation, the 
future ID will be transparently modified to be a “normal” attribute identifier. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to read context id and from event queue to event stack. Added scope 
requirement and map object. 

Man Page Status:  
No known issues.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   28	   	   	   	   	   06/30/2014	  

4.2.10 H5Aopen_by_name_ff 

Name: H5Aopen_by_name_ff  

Signature:  
hid_t H5Aopen_by_name_ff( hid_t loc_id, const char *obj_name, const char *attr_name,   
hid_t  aapl_id,  hid_t lapl_id, hid_t rcntxt_id, hid_t es_id )  

Purpose:  
Open an attribute for an object, possibly asynchronously. 

 
Description:  

H5Aopen_by_name_ff opens an attribute, attr_name, that is attached to an object specified by loc_id 
and obj_name.  

loc_id is a location identifier; obj_name is the path to the object relative to loc_id. If loc_id fully 
specifies the object to which the attribute is attached, obj_name should be '.' (a dot).  Both loc_id and 
obj_name must be in scope for the read context identified by rcntxt_id. 

The attribute access property list, aapl_id, is currently unused and should be H5P_DEFAULT.  

The link access property list, lapl_id, may provide information regarding the properties of links required to 
access the object, obj_name. See “Link Access Properties” in the H5P APIs. The link access property list 
currently has no effect in the EFF stack and should be set to H5P_DEFAULT. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.   

The attribute identifier returned by this function must be released with H5Aclose_ff or resource leaks will 
develop.  

Parameters:  
hid_t loc_id  IN: Location identifier  

May be any HDF5 object identifier (group, dataset, map, or named datatype) or file 
identifier that is in scope for the read context. 

const char 
*obj_name 

IN: Object name 
Either relative to loc_id, absolute from the file’s root group, or '.' (a dot) 

hid_t aapl_id IN: Attribute access property list.   
Currently not used; specify H5P_DEFAULT. 

hid_t  lapl_id IN: Link access property list. 
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   29	   	   	   	   	   06/30/2014	  

Returns an attribute identifier if successful; otherwise returns a negative value. When executed asynchronously, 
a future ID for the new attribute is returned initially. Upon completion of the asynchronous operation, the 
future ID will be transparently modified to be a “normal” attribute identifier. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to read context id and from event queue to event stack. Added scope 
requirement and map object. Noted lapl not used in EFF. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   30	   	   	   	   	   06/30/2014	  

4.2.11 H5Aprefetch_ff 

Name: H5Aprefetch_ff   

Signature:  
herr_t H5Aprefetch_ff( hid_t attr_id, hid_t rcntxt_id, hid_t *replica_id, hid_t dxpl_id,  
hid_t es_id )  

Purpose:  
Prefetch an attribute from persistent storage to burst buffer storage, possibly asynchronously. 

Description:  
H5Dprefetch_ff prefetches am attribute, specified by its identifier attr_id, from persistent storage 
(DAOS) into burst buffer storage.    

rcntxt_id indicates the read context for this operation. 

replica_id, the replica identifier, is set to indicate where the pre-fetched data can be found in the burst 
buffer, and is passed to subsequent H5Devict_ff calls. 

dxpl_id, a data transfer property list identifier, is not currently used and should be set to H5P_DEFAULT. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The replica_id is not valid until the operation has completed, if it is executing asynchronously. 

Limitations / Future Considerations:  
For the EFF prototype project, only the IOD Blob object associated with the HDF5 attribute will be prefetched; 
auxiliary IOD objects (including the Blob objects that hold variable-length data) remain on persistent storage 
(DAOS).  For more information, and other potential extensions, refer to the document Burst Buffer Space 
Management – Prototype to Production. 

This function was implemented for completeness, but since no access routines accept the attribute’s 
replica_id in this phase of the project, it has no practical value other than to demonstrate the ability to 
prefetch and evict attributes. 

Parameters:  
hid_t attr_id IN: Identifier of the attribute being prefetched. 

attr_id must be in scope for the read context. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t * replica_id IN: Identifier of the replicated data in the burst buffer. 

hid_t dapl_id     IN: Identifier of an access property list for this I/O operation. 

hid_t es_id IN: The es_id parameter indicates the event stack the event object for this call 
should be pushed onto when the function is executed asynchronously. The 
function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   31	   	   	   	   	   06/30/2014	  

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. 

 
History:  

Added in Quarter 7. 

Man Page Status:  
No known issues. 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   32	   	   	   	   	   06/30/2014	  

4.2.12 H5Aread_ff 

Name: H5Aread_ff   

Signature:  
herr_t H5Aread_ff( hid_t attr_id, hid_t mem_type_id, void *buf, hid_t rcntxt_id,  
hid_t es_id  )  

Purpose:  
Read an attribute, possibly asynchronously. 
 

Description:  
H5Aread_ff reads an attribute, specified by attr_id.  attr_id must be in scope for the read context 
identified by rcntxt_id. 

The attribute's memory datatype is specified with mem_type_id.  The entire attribute is read into buf from the 
file.  

Datatype conversion takes place at the time of a read and is automatic. See the Data Conversion section of The 
Data Type Interface (H5T) in the HDF5 User's Guide for a discussion of data conversion, including the range of 
conversions currently supported by the HDF5 libraries.  

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when 
the function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t attr_id  IN: Identifier of the attribute to read.  Must be in scope for the read context. 

hid_t mem_type_id IN: identifier of the attribute datatype (in memory) 

void *buf OUT: Buffer to receive data read from file 

hid_t rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t eq_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to read context id and from event queue to event stack. Added scope 
requirement. 
 

Man Page Status:  
No known issues.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   33	   	   	   	   	   06/30/2014	  

4.2.13 H5Arename_ff 

Name: H5Arename_ff   

Signature:  
herr_t H5Arename_ff( hid_t loc_id,  const char *old_attr_name, const char *new_attr_name,  
hid_t trans_id, hid_t es_id  )  

Purpose:  
Rename an attribute, possibly asynchronously. 
 

Description:  
H5Arename_ff changes the name of the attribute attached to the object specified by loc_id.  

loc_id is a location identifier and must be in scope for the transaction identified by trans_id. 

The old name, old_attr_name, is changed to the new name, new_attr_name. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t loc_id  IN: Location identifier for the object whose attribute is to be renamed. 

May be any HDF5 object identifier (group, dataset, map, or named datatype) or file 
identifier that is in scope for the transaction.  

const char 
*old_attr_name 

IN: Name of the attribute to be changed. 

const char 
*new_attr_name 

IN: New name for the attribute. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 
 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement and map object. 

 
Man Page Status:  

No known issues. 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   34	   	   	   	   	   06/30/2014	  

4.2.14 H5Arename_by_name_ff 

Name: H5Arename_by_name_ff   

Signature:  
herr_t H5Arename_by_name_ff( hid_t loc_id,  const char* obj_name,  
const char *old_attr_name, const char *new_attr_name,  hid_t lapl_id,  hid_t trans_id,  
hid_t es_id  )  

Purpose:  
Rename an attribute for an object, possibly asynchronously. 
 

Description:  
H5Arename_by_name_ff changes the name of the attribute that is attached to the object specified by 
loc_id and obj_name.   

loc_id is a location identifier; obj_name is the path to the object relative to loc_id. If loc_id fully 
specifies the object to which the attribute is attached, obj_name should be '.' (a dot).  Both loc_id and 
obj_name must be in scope for the transaction identified by trans_id. 

The attribute named old_attr_name is renamed new_attr_name. 

The link access property list, lapl_id, may provide information regarding the properties of links required to 
access obj_name. See “Link Access Properties” in the H5P APIs. The link access property list currently has no 
effect in the EFF stack and should be set to H5P_DEFAULT. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t loc_id  IN: Location identifier for the object whose attribute is to be renamed. 

May be any HDF5 object identifier (group, dataset, map, or named datatype) or file 
identifier that is in scope for the transaction.   

const char 
*obj_name 

IN: Name of the object whose attribute is to be renamed.  
The object name (path to the object) can be specified relative to loc_id, absolute 
from the file’s root group, or '.' (a dot), and must be in scope for the transaction. 

const char 
*old_attr_name 

IN: Name of the attribute to be changed. 

const char 
*new_attr_name 

IN: New name for the attribute. 

hid_t lapl_id IN: Link access property list identifier.  
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   35	   	   	   	   	   06/30/2014	  

Use H5_EVENT_STACK_NULL for synchronous execution 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement and map object. Noted LAPL not used in EFF. 

 
Man Page Status:  

No known issues. 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   36	   	   	   	   	   06/30/2014	  

4.2.15 H5Awrite_ff 

Name: H5Awrite_ff   

Signature:  
herr_t H5Awrite_ff( hid_t attr_id, hid_t mem_type_id, const void *buf, hid_t trans_id,  
hid_t es_id  )  

Purpose:  
Write data to an attribute, possibly asynchronously. 

Description:  
H5Awrite_ff writes an attribute specified with attr_id.  attr_id must be in scope for the transaction 
identified by trans_id. 

The attribute's memory datatype is specified with mem_type_id.  The entire attribute is written from buf into 
the file.  

If mem_type_id is either a fixed-length or variable-length string, it is important to set the string length when 
defining the datatype. String datatypes are derived from H5T_C_S1, which defaults to 1 character in size. See 
H5Tset_size and “Creating variable-length string datatypes.” 

Datatype conversion takes place at the time of a write and is automatic. See the Data Conversion section of The 
Data Type Interface (H5T) in the HDF5 User's Guide for a discussion of data conversion, including the range of 
conversions currently supported by the HDF5 libraries.  

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t attr_id  IN: Identifier of the attribute to write.  Must be in scope for the transaction. 

hid_t mem_type_id IN: identifier of the attribute datatype (in memory) 

void *buf IN: Buffer with data to be written 

hid_t trans IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   37	   	   	   	   	   06/30/2014	  

 
Man Page Status:  

No known issues. 
 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   38	   	   	   	   	   06/30/2014	  

4.3 H5AS:	  Analysis	  Shipping	  APIs	  	  

These routines are used to perform an analysis shipping operation on data contained in HDF5 
Files (containers) in the Exascale Fast Forward stack. 

Analysis shipping operations apply Python operations on data in situ, restricted to the results 
matching an HDF5 query operation. 

These routines did not exist prior to the Exascale FastForward project. 

 

Routine Implemented Notes 

H5ASinvoke Quarter 6 Renamed from H5ASexecute to H5ASinvoke and 
expanded to support any query type in Q8 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   39	   	   	   	   	   06/30/2014	  

4.3.1 H5ASinvoke 

Name: H5ASinvoke 
 
Signature:  

herr_t H5ASinvoke ( const char *file_name, hid_t query_id, const char *split_script, const char 
*combine_script, const char *integrate_script, hid_t estack_id)  

Purpose:  
Perform an analysis shipping operation on a HDF5 dataset. 

Description:  
H5ASinvoke ships to a remote server node an analysis operation that executes on data locally stored and 
selected by the user-defined query query_id.  The analysis operation is received on a master I/O or storage 
server node, which first generates a view for the supplied query.  Then, for each dataset in the view, the master 
node queries the layout of the dataset in the container named file_name. The split_script is then farmed 
to the helper I/O or storage server nodes that locally own a portion of the dataset. The helper nodes read data that 
is local to the node, run the split_script and send the resulting data back to the master node. The master 
node executes combine_script on the data it has gathered from the helper nodes for each dataset.  When all 
datasets have been farmed out and returned, the master node executes integrate_script over all the buffers 
from the combine_script executions and sends the final result back to the application that initiated the 
analysis operation. 

Each script parameter is a string that contains a Python script, each of which accepts a Python buffer as a 
parameter and returns a Python buffer as its return value. 

Note that the final data output result is not directly returned by this call; an application would need to either 
explicity request it (assuming that it can be easily transferred) or write it to a separate container on the server.  

Parameters:  
const char *file_name IN: Name of the file. 

hid_t query_id IN: Identifier of the query that will be applied to create a view to apply the 
scripts to. 

const char *split_script IN: String defining a Python script. The script must define a Python 
function named split, which will be applied locally on the helper 
nodes that contain data matching the query.  

const char *combine_script IN: String defining a combine Python script. The script must define a 
Python function named combine, which will be applied on the master 
node once the data from the farmed split operations has been gathered. 

const char *integrate_script IN: String defining an integrate Python script. The script must define 
a Python function named integate, which will be applied on the 
master node once the data from all the combine operations is available. 

hid_t estack_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for 
synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   40	   	   	   	   	   06/30/2014	  

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 

 
History:  

Added in Quarter 8. 

Man Page Status:  
No known issues. 

 
 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   41	   	   	   	   	   06/30/2014	  

4.4 H5D:	  Dataset	  APIs	  

These routines are used to operate on HDF5 Datasets Objects.  

The routines ending in _ff have different signatures than the standard HDF5 library routines. 

Man pages for routines whose user interface is unchanged from the standard HDF5 
implementation can be found at: http://www.hdfgroup.org/HDF5/doc/RM/RM_H5D.html. 

 

Routine Implemented Notes 

H5Dclose_ff Quarter 4  

H5Dcreate_ff Quarter 3  

H5Dcreate_anon_ff Quarter 8  

H5Devict_ff Quarter 7  

H5Dopen_ff Quarter 3  

H5Dprefetch_ff Quarter 7  

H5Dread_ff Quarter 3  

H5Dset_extent_ff Quarter 4  

H5Dwrite_ff Quarter 3  

H5Dquery_ff Quarter 8  

H5Dget_access_plist Quarter 3 See standard HDF5 man page 

H5Dget_create_plist Quarter 3 See standard HDF5 man page 

H5Dget_space Quarter 3 See standard HDF5 man page 

H5Dget_type Quarter 3 See standard HDF5 man page 

H5Dget_storage_size_ff  Not implemented in prototype. 

H5Dget_space_status  Not implemented in prototype. 

H5Dget_offset  Doesn’t make sense for FF storage; will not 
implement 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   42	   	   	   	   	   06/30/2014	  

4.4.1 H5Dclose_ff 

Name: H5Dclose_ff   

Signature:  
hid_t H5Dclose_ff( hid_t dset_id, hid_t es_id  )  

Purpose:  
Close the specified dataset, possibly asynchronously. 

Description:  
H5Dclose_ff ends access to a dataset specified by dset_id and releases resources used by it. Further use of 
the dataset identifier is illegal in calls to the dataset API. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.   

Parameters:  
hid_t dset_id  IN: Identifier of the dataset to close access to.  

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 4. 
Quarter 5: Changed from event queue to event stack. 

 
Man Page Status:  

No known issues. 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   43	   	   	   	   	   06/30/2014	  

4.4.2 H5Dcreate_ff 

Name: H5Dcreate_ff   

Signature:  
hid_t  H5Dcreate_ff ( hid_t loc_id,  const char *name,  hid_t dtype_id,  hid_t space_id,  
hid_t lcpl_id,  hid_t dcpl_id,  hid_t dapl_id, hid_t trans_id, hid_t es_id )  

Purpose:  
Create a new dataset and link it into the file, possibly asynchronously. 

Description:  
H5Dcreate_ff creates a new dataset named name at the location specified by loc_id, and associates 
constant and initial persistent properties with that dataset, including dtype_id, the datatype of each data 
element as stored in the file; space_id, the dataspace of the dataset; and other initial properties as defined in the 
dataset creation property and access property lists, dcpl_id and dapl_id, respectively. Once created, the 
dataset is opened for access.  

loc_id may be a file identifier or a group identifier. name may be either an absolute path in the file or a relative 
path from loc_id naming the dataset.  Both loc_id and name must be in scope for the transaction identified 
by trans_id. 

If dtype_id is either a fixed-length or variable-length string, it is important to set the string length when 
defining the datatype. String datatypes are derived from H5T_C_S1, which defaults to 1 character in size. See 
H5Tset_size and “Creating variable-length string datatypes.”  

Currently in the Exascale Fast Forward stack you cannot have nested variable-length datatypes, nor a complex or 
array datatype with variable-length elements.   

In the Exascale Fast Forward stack, only the first dimension in the dataset can be unlimited.  The maximum 
dimensions for the dataspace specified by space_id control this constraint. 

The link creation property list, lcpl_id, governs creation of the link(s) by which the new dataset is accessed 
and the creation of any intermediate groups that may be missing. In the EFF stack, automatic creation of missing 
intermediate groups (controlled by H5Pset_create_intermediate_group) is not supported.  The link 
access property list currently has no effect in the EFF stack and should be set to H5P_DEFAULT. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The datatype and dataspace properties and the dataset creation and access property lists are attached to the dataset, 
so the caller may derive new datatypes, dataspaces, and creation and access properties from the old ones, and 
reuse them in calls to create additional datasets.  

Once created, the dataset is ready to receive raw data. Immediately attempting to read raw data from the dataset 
will return zeros.  Note that this behavior differs from traditional HDF5 files, where the fill value will be returned. 

To conserve and release resources, the dataset should be closed when access is no longer required.  

Parameters:  
hid_t loc_id  IN: Location identifier  

May be any HDF5 group identifier or file identifier that is in scope for the transaction 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   44	   	   	   	   	   06/30/2014	  

const char *name      IN: Dataset name  
The dataset name (path to the dataset) can be specified relative to loc_id or absolute 
from the file’s root group, and must be in scope for the transaction. 

hid_t dtype_id  IN: Datatype identifier  

hid_t space_id  IN: Dataspace identifier  

hid_t lcpl_id  IN: Link creation property list  
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t dcpl_id  IN: Dataset creation property list  

hid_t dapl_id  IN: Dataset access property list  

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 
 

Returns:  
Returns a dataset identifier if successful; otherwise returns a negative value. When executed asynchronously, a 
future ID for the new dataset is returned initially.  Upon completion of the asynchronous operation, the 
future ID will be transparently modified to be a “normal” dataset identifier. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 3. 
Quarter 4: Updated to reflect switch from parameter H5_request_t request_ptr to hid_t eq_id. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement. Noted that lapl is currently not used in EFF. Noted current restrictions on support for 
variable-length types in EFF stack. Noted that only first dimension can be extensible in EFF. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   45	   	   	   	   	   06/30/2014	  

4.4.3 H5Dcreate_anon_ff 

Name: H5Dcreate_anon_ff   

Signature:  
hid_t  H5Dcreate_anon_ff ( hid_t loc_id, hid_t dtype_id,  hid_t space_id, hid_t dcpl_id,  hid_t 
dapl_id, hid_t trans_id, hid_t es_id )  

Purpose:  
Create a new anonymous dataset that is not attached to the group hierarchy, possibly asynchronously. 

Description:  
H5Dcreate_anon_ff creates a new dataset in the container specified by loc_id, and associates constant 
and initial persistent properties with that dataset, including dtype_id, the datatype of each data element as 
stored in the file; space_id, the dataspace of the dataset; and other initial properties as defined in the dataset 
creation property and access property lists, dcpl_id and dapl_id, respectively. Once created, the dataset is 
opened for access.  

loc_id may be a file identifier or a group identifier and is only used to identify the container in which to create 
the dataset. loc_id must be in scope for the transaction identified by trans_id. 

If dtype_id is either a fixed-length or variable-length string, it is important to set the string length when 
defining the datatype. String datatypes are derived from H5T_C_S1, which defaults to 1 character in size. See 
H5Tset_size and “Creating variable-length string datatypes.”  

Currently in the Exascale Fast Forward stack you cannot have nested variable-length datatypes, nor a complex or 
array datatype with variable-length elements.   

In the Exascale Fast Forward stack, only the first dimension in the dataset can be unlimited.  The maximum 
dimensions for the dataspace specified by space_id control this constraint. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The datatype and dataspace properties and the dataset creation and access property lists are attached to the dataset, 
so the caller may derive new datatypes, dataspaces, and creation and access properties from the old ones, and 
reuse them in calls to create additional datasets.  

Once created, the dataset is ready to receive raw data. Immediately attempting to read raw data from the dataset 
will return zeros.  Note that this behavior differs from traditional HDF5 files, where the fill value will be returned. 

Anonymous datasets will be removed from the container when the dataset ID is closed, unless 
H5Oincr_refcount is used to increase the dataset’s reference count in the file. 

To conserve and release resources, the dataset should be closed when access is no longer required.  

Parameters:  
hid_t 
loc_id  

IN: Location identifier  
May be any HDF5 group identifier or file identifier that is in scope for the transaction 

hid_t 
dtype_id  

IN: Datatype identifier  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   46	   	   	   	   	   06/30/2014	  

hid_t 
space_id  

IN: Dataspace identifier  

hid_t 
dcpl_id  

IN: Dataset creation property list  

hid_t 
dapl_id  

IN: Dataset access property list  

hid_t 
trans_id 

IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t 
es_id 

IN: Event stack identifier specifying the event stack that will be used to monitor the status of 
the event associated with this function call when executed asynchronously. Use 
H5_EVENT_STACK_NULL for synchronous execution. 
 

Returns:  
Returns a dataset identifier if successful; otherwise returns a negative value. When executed asynchronously, a 
future ID for the new dataset is returned initially.  Upon completion of the asynchronous operation, the 
future ID will be transparently modified to be a “normal” dataset identifier. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 8. 
 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   47	   	   	   	   	   06/30/2014	  

4.4.4 H5Devict_ff  

Name: H5Devict_ff 

Signature:  
herr_t H5Devict_ff( hid_t dset_id, uint64_t container_version, hid_t dxpl_id,  
hid_t es_id )  

Purpose:  
Evict dataset from the burst buffer, possibly asynchronously. 

Description:  
H5Devict_ff evicts data associated with a dataset from the burst buffer.   

The data to be evicted may be resident in the burst buffer under two different scenarios 

In the first scenario, the data is resident in the burst buffer as the result of updates to the dataset made via the EFF 
transaction model.  For example, through calls to H5Dcreate_ff or H5Dwrite_ff.  These calls add updates to a 
transaction that are atomically applied to the dataset when the transaction is committed, and we refer to this data 
as transaction update data.   

When evicting transaction update data, the container version being evicted should first be persisted to permanent 
storage (DAOS), with the H5RCpersist command. The dataset’s transaction update data for the specified 
container version, as well as the dataset’s transaction update data for all lower-numbered container versions that 
has not yet been evicted from the burst buffer, will be evicted as the result of this call.  If evicting the data would 
result in container versions with open read contexts becoming inaccessible, the evict will fail. 

In the second scenario, the data is resident in the burst buffer as the result of a call to H5Dprefetch_ff.  This call 
replicates data from persistent storage (DAOS) to the burst buffer, and we refer to this data as replica data.  When 
replica data is evicted, only data in the burst buffer as a result of the exact replica specified is evicted – transaction 
update data and other replicas for the dataset remain in the burst buffer. 

The dset_id parameter specifies the dataset whose data is to be evicted. 

The version of the dataset to be evicted is specified by the container_version property.   	  

The replica property in the transfer property list,  dxpl_id, is used to specify that a dataset replica is to be 
evicted. H5Pset_dxpl_replica() sets the replica property.  If this is set, then replia data will be evicted, 
otherwise transaction update data will be evicted. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Limitations / Future Considerations:  
When evicting a replica, the container_version argument is redundant, as the replica identifier fully 
specifies the data to be evicted.   Consider revisiting and possibly revising the API prior to production release.  
Possibly have separate evict commands for eviction of transaction update data and of replicas. 

For other potential extensions that are beyond the scope of the EFF prototype project, refer to the document Burst 
Buffer Space Management – Prototype to Production. 

Parameters:  
hid_t dset_id IN: Identifier of the dataset being evicted. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   48	   	   	   	   	   06/30/2014	  

uint64_t  container_version IN: Container version specifying what version of the dataset to evict. 

hid_t dapl_id     IN: Identifier of an access property list.  If the access property list contains 
an evict replica property (set via H5Pset_evict_replica()), then 
the replica_id specified by that property will be evicted. 

hid_t es_id IN: The es_id parameter indicates the event stack the event object 
for this call should be pushed onto when the function is executed 
asynchronously. The function may be executed synchronously by 
passing in H5_EVENT_STACK_NULL for the es_id parameter.  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. 

 
History:  

Added in Quarter 7. 

Man Page Status:  
No known issues. 
 
 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   49	   	   	   	   	   06/30/2014	  

4.4.5 H5Dopen_ff 

Name: H5Dopen_ff   

Signature:  
hid_t H5Dopen_ff( hid_t loc_id,  const char *name,  hid_t dapl_id, hid_t rcntxt_id,  
hid_t es_id)  

Purpose:  
Open an existing dataset, possibly asynchronously. 

Description:  
H5Dopen_ff opens the existing dataset specified by loc_id and name.    

loc_id may be a file identifier or a group identifier. name may be either an absolute path in the file or a relative 
path from loc_id naming the dataset.  Both loc_id and name must be in scope for the read context identified 
by rcntxt_id. 

The dataset access property list, dapl_id, provides information regarding access to the dataset.  

rcntxt_id indicates the read context for this operation.  Note that the returned dataset identifier can be used in 
other calls that operate on different read contexts, as specified by the read context id passed to those calls.    

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.   

To conserve and release resources, the dataset should be closed with H5Dclose_ff when access is no longer 
required.  

Parameters:  
hid_t loc_id  IN: Location identifier  

May be any HDF5 group identifier or file identifier that is in scope for the read context. 

const char *name      IN: Dataset name 
The dataset name (path to the dataset) can be specified relative to loc_id or absolute 
from the file’s root group, and must be in scope for the read context.  

hid_t dapl_id  IN: Dataset access property list  

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t eq_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a dataset identifier if successful; otherwise returns a negative value. When executed asynchronously, a 
future ID for the dataset is returned initially.  Upon completion of the asynchronous operation, the future 
ID will be transparently modified to be a “normal” dataset identifier. 
 
The dataset identifier returned by this call can be used to access the dataset at different container versions, 
even though a specific read context (and associated container version) is passed in this routine.    
 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   50	   	   	   	   	   06/30/2014	  

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 3. 
Quarter 4: Updated to reflect switch from parameter H5_request_t request_ptr to hid_t eq_id. 
Quarter 5: Changed from transaction to read context id and from event queue to event stack. Added scope 
requirement. 
Quarter 7: Added note that the returned dataset ID can be used to access the dataset at other container 
versions – not just the one associated with the read context specified in this open call. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   51	   	   	   	   	   06/30/2014	  

4.4.6 H5Dprefetch_ff 

Name: H5Dprefetch_FF   

Signature:  
herr_t H5Dprefetch_ff( hid_t dset_id, hid_t rcntxt_id, hid_t *replica_id, hid_t dxpl_id,  
hid_t es_id )  

Purpose:  
Prefetch all or part of a dataset from persistent storage to burst buffer storage, possibly asynchronously. 

Description:  
H5Dprefetch_ff prefetches a (partial) dataset, specified by its identifier dset_id, from persistent storage 
(DAOS) into burst buffer storage.    

rcntxt_id indicates the read context for this operation. 

replica_id, the replica identifier, is set to indicate where the pre-fetched data can be found in the burst 
buffer, and is passed to subsequent H5Dread_ff and H5Devict_ff calls. 

dxpl_id, a data transfer property list identifier, is used to specify partial datasets (hyperslab selection) and 
control layout of the fetched data on the burst buffers. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The replica_id is not valid until the operation has completed, if it is executing asynchronously. 

Limitations / Future Considerations:  
For the EFF prototype project, only the primay IOD Array object associated with the HDF5 dataset will be 
prefetched; auxiliary IOD objects (including the Blob objects that hold variable-length data) remain on persistent 
storage (DAOS).  For more information, and other potential extensions, refer to the document Burst Buffer Space 
Management – Prototype to Production. 

The current API takes a read context identifier rather than simply specifying the container version to be 
prefetched.  Although this seems reasonable in the context of an application that will presumably do a read (on a 
read context) after a prefetch, in the case of a scheduler that might prefetch data on behalf of the application, a 
container version would be more appropriate.   Revisit and possibly revise the API prior to production release.   

In Quarter 7, only full datasets and the default layout are supported. 

Parameters:  
hid_t dset_id IN: Identifier of the dataset being prefetched. 

dset_id must be in scope for the read context. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t * replica_id IN: Identifier of the replicated data in the burst buffer. 

hid_t dapl_id     IN: Identifier of an access property list for this I/O operation. 

hid_t es_id IN: The es_id parameter indicates the event stack the event object for this call 
should be pushed onto when the function is executed asynchronously. The 
function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   52	   	   	   	   	   06/30/2014	  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. 

 
History:  

Added in Quarter 7. 

Man Page Status:  
Will need updates in Quarter 8 when additional features are implemented. 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   53	   	   	   	   	   06/30/2014	  

4.4.7 H5Dquery_ff 

Name: H5Dquery_ff   

Signature:  
hid_t H5Dquery_ff( hid_t dset_id, hid_t query_ id, hid_t dxpl_id, hid_t rcntxt_id,  
hid_t es_id )  

Purpose:  
Apply a query operation to a dataset, possibly asynchronously. 

Description:  
H5Dquery_ff applies a dataset element query, given by query_id, to a dataset, given by dset_id, 
generating a dataspace ID with a selection defined for the elements that match the query as a return value.  The 
dataset transfer property list, dxpl_id, allows for future expansion through properties that may influence the 
query operation.  

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The query may be a singleton or compound query, but must be of type H5Q_TYPE_DATA_ELEM. 

If an index is defined for the dataset, that index will be used to speed up the query operation. 

The dataspace returned from this routine must be released with H5Sclose, after the routine has completed, if it 
is executing asynchronously. 

Parameters:  
hid_t dset_id IN: Identifier of the dataset query. 

dset_id must be in scope for the read context. 

hid_t query_id IN: Identifier of the query. 

hid_t dxpl_id     IN: Identifier of a transfer property list for this I/O operation.  If specified, the read replica 
property directs the read to access pre-fetched data. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: The es_id parameter indicates the event stack the event object for this call 
should be pushed onto when the function is executed asynchronously. The function 
may be executed synchronously by passing in H5_EVENT_STACK_NULL for the 
es_id parameter.  

Returns:  
Returns a dataspace identifier with a selection for elements that match the query if successful; otherwise returns a 
negative value. When executed asynchronously, a future ID for the dataspace is returned initially.  Upon 
completion of the asynchronous operation, the future ID will be transparently modified to be a “normal” 
dataspace identifier. 
 
Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. 
 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   54	   	   	   	   	   06/30/2014	  

 
History:  

Added in Quarter 8. 
 

Man Page Status:  
No known issues. 
 

 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   55	   	   	   	   	   06/30/2014	  

4.4.8 H5Dread_ff 

Name: H5Dread_ff   

Signature:  
herr_t H5Dread_ff( hid_t dset_id, hid_t mem_type_id, hid_t mem_space_id, hid_t 
file_space_id, hid_t dxpl_id, void * buf, hid_t rcntxt_id,  
hid_t es_id )  

Purpose:  
Read raw data from a dataset into a buffer, possibly asynchronously. 

Description:  
H5Dread_ff reads a (partial) dataset, specified by its identifier dset_id, from the file into an application 
memory buffer buf. Data transfer properties are defined by the argument dxpl_id. The memory datatype of 
the (partial) dataset is identified by the identifier mem_type_id. The part of the dataset to read is defined by 
mem_space_id and file_space_id.  

file_space_id is used to specify only the selection within the file dataset's dataspace. Any dataspace 
specified in file_space_id is ignored by the library and the dataset's dataspace is always used. 
file_space_id can be the constant H5S_ALL. which indicates that the entire file dataspace, as defined by 
the current dimensions of the dataset, is to be selected.  

mem_space_id is used to specify both the memory dataspace and the selection within that dataspace. 
mem_space_id can be the constant H5S_ALL, in which case the file dataspace is used for the memory 
dataspace and the selection defined with file_space_id is used for the selection within that dataspace.  

If raw data storage space has not been allocated for the dataset, the returned buffer buf is filled with zeros. Note 
that fill values are not supported with the Exascale FastForward storage stack. 

The behavior of the library for the various combinations of valid dataspace identifiers and H5S_ALL for the 
mem_space_id and the file_space_id parameters is described below:  

mem_space_id    file_space_id    Behavior  

valid dataspace 
identifier  

valid dataspace 
identifier  

mem_space_id specifies the memory dataspace and the 
selection within it. file_space_id specifies the selection 
within the file dataset's dataspace.  

H5S_ALL  valid dataspace 
identifier  

The file dataset's dataspace is used for the memory dataspace and 
the selection specified with file_space_id specifies the 
selection within it. The combination of the file dataset's dataspace 
and the selection from file_space_id is used for memory 
also.  

valid dataspace 
identifier  

H5S_ALL  mem_space_id specifies the memory dataspace and the 
selection within it. The selection within the file dataset's dataspace 
is set to the "all" selection.  

H5S_ALL  H5S_ALL  The file dataset's dataspace is used for the memory dataspace and 
the selection within the memory dataspace is set to the "all" 
selection. The selection within the file dataset's dataspace is set to 
the "all" selection.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   56	   	   	   	   	   06/30/2014	  

Using H5S_ALL for the file dataspace selection indicates that the entire dataspace, as defined by the dimensions 
of the dataset’s dataspace for the specified read context, will be selected. The number of elements selected in the 
memory dataspace must match the number of elements selected in the file dataspace.  

dxpl_id can be the constant H5P_DEFAULT, in which case the default data transfer properties are used.  To 
read from a replica that was previously brought into the burst buffer by a call to H5Dprefetch_ff,  use the 
read replica property in the data transfer property list.  The call H5Pset_dxpl_replica() sets the read 
replica property.   

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The selected elements in the buffer are not valid until the operation has completed, if it is executing 
asynchronously. 

Data is automatically converted from the file datatype and dataspace to the memory datatype and dataspace at the 
time of the read. See the Data Conversion section of The Data Type Interface (H5T) in the HDF5 User's Guide 
for a discussion of data conversion, including the range of conversions currently supported by the HDF5 libraries.  

See Design and Implementation of FastForward Features in HDF5 for information on the interaction between 
transformation operations, such as datatype conversion, and end-to-end integrity support with checksums. 

Parameters:  
hid_t dset_id IN: Identifier of the dataset read from. 

dset_id must be in scope for the read context. 

hid_t mem_type_id IN: Identifier of the memory datatype. 

hid_t mem_space_id IN: Identifier of the memory dataspace. 

hid_t file_space_id IN: Identifier of the dataset's dataspace in the file. 

hid_t dxpl_id     IN: Identifier of a transfer property list for this I/O operation.  If specified, the read 
replica property directs the read to access pre-fetched data. 

void * buf OUT: Buffer to receive data read from file. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: The es_id parameter indicates the event stack the event object for this call 
should be pushed onto when the function is executed asynchronously. The 
function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. 
 
 

History:  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   57	   	   	   	   	   06/30/2014	  

Added in Quarter 3. 
Quarter 4: Updated to reflect switch from parameter H5_request_t request_ptr to hid_t eq_id. 
Quarter 5: Changed from transaction to read context id and from event queue to event stack. Added scope 
requirement. 
Quarter 7: Added information about reads from prefetched replicas. 

Man Page Status:  
No known issues. 
 

 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   58	   	   	   	   	   06/30/2014	  

4.4.9 H5Dset_extent_ff 

Name: H5Dset_extent_ff   

Signature:  
hid_t H5Dset_extent_ff( hid_t dset_id, const hsize_t size[], hid_t trans_id, hid_t es_id  )  

Purpose:  
Change the sizes of a dataset’s dimensions. 

Description:  
H5Dset_extent_ff sets the current dimensions of the dataset dset_id to the sizes specified in size.   

size is a 1-dimensional array with n elements, where n is the rank of the dataset’s dataspace.  

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Notes:  
If the sizes specified in size are smaller than the dataset’s current dimension sizes, H5Dset_extent_ff will 
reduce the dataset’s dimension sizes to the specified values.  In the EFF stack, with support for transactions and 
asynchronous operations, it is important to remember that the new sizes will not become part of the transaction 
until the asynchronous operation completes successfully, and will not be registered in the file until the transaction 
is committed.   

It is the user application’s responsibility to ensure that valuable data is not lost, as H5Dset_extent_ff does 
not check that the dataset size is growing. 

Parameters:  
hid_t dset_id  IN: Dataset identifier.  

dset_id must be in scope for the transaction. 

const hsize_t size[] IN: Array containing the new magnitude of each dimension of the dataset. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement. Removed discussion of space allocation time and fill values as not relevant for EFF. 

 
Man Page Status:  

No known issues.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   59	   	   	   	   	   06/30/2014	  

4.4.10 H5Dwrite_ff 

Name: H5Dwrite_ff   

Signature:  
herr_t H5Dwrite_ff( hid_t dset_id,  hid_t mem_type_id,  hid_t mem_space_id,   
hid_t file_space_id,  hid_t dxpl_id,  const void * buf,  hid_t trans_id,  
hid_t es_id)  

Purpose:  
Write raw data from a buffer to a dataset, possibly asynchronously. 
 

Description:  
H5Dwrite_ff writes a (partial) dataset, specified by its identifier dset_id, from the application memory buffer 
buf into the file. Data transfer properties are defined by the argument dxpl_id. The memory datatype of the 
(partial) dataset is identified by the identifier mem_type_id. The part of the dataset to write is defined by 
mem_space_id and file_space_id.  

If mem_type_id is either a fixed-length or variable-length string, it is important to set the string length when 
defining the datatype. String datatypes are derived from H5T_C_S1, which defaults to 1 character in size. See 
H5Tset_size and “Creating variable-length string datatypes.”  

file_space_id is used to specify only the selection within the file dataset's dataspace. Any dataspace 
specified in file_space_id is ignored by the library and the dataset's dataspace is always used. 
file_space_id can be the constant H5S_ALL, which indicates that the entire file dataspace, as defined by 
the current dimensions of the dataset, is to be selected.  

mem_space_id is used to specify both the memory dataspace and the selection within that dataspace. 
mem_space_id can be the constant H5S_ALL, in which case the file dataspace is used for the memory 
dataspace and the selection defined with file_space_id is used for the selection within that dataspace.  

The behavior of the library for the various combinations of valid dataspace IDs and H5S_ALL for the 
mem_space_id and the file_space_id parameters is described below:  

mem_space_id    file_space_id    Behavior  

valid dataspace 
identifier  

valid dataspace 
identifier  

mem_space_id specifies the memory dataspace and the 
selection within it. file_space_id specifies the selection 
within the file dataset's dataspace.  

H5S_ALL  valid dataspace 
identifier  

The file dataset's dataspace is used for the memory dataspace and 
the selection specified with file_space_id specifies the 
selection within it. The combination of the file dataset's dataspace 
and the selection from file_space_id is used for memory 
also.  

valid dataspace 
identifier  

H5S_ALL  mem_space_id specifies the memory dataspace and the 
selection within it. The selection within the file dataset's dataspace 
is set to the "all" selection.  

H5S_ALL  H5S_ALL  The file dataset's dataspace is used for the memory dataspace and 
the selection within the memory dataspace is set to the "all" 
selection. The selection within the file dataset's dataspace is set to 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   60	   	   	   	   	   06/30/2014	  

the "all" selection.  

Using H5S_ALL for the file dataspace selection indicates that the entire dataspace, as defined by the 
dimensions of the dataset’s dataspace for the read context associated with the transaction, will be selected. 
The number of elements selected in the memory dataspace must match the number of elements selected in 
the file dataspace.    

dxpl_id can be the constant H5P_DEFAULT, in which case the default data transfer properties are used.  

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

Writing to a dataset will fail if the HDF5 file was not opened with write access permissions.  

The selected elements in the buffer must not be modified until the operation has completed, if it is executing 
asynchronously. 

Data is automatically converted from the memory datatype and dataspace to the file datatype and dataspace at the 
time of the write. See the Data Conversion section of The Data Type Interface (H5T) in the HDF5 User's Guide 
for a discussion of data conversion, including the range of conversions currently supported by the HDF5 libraries.  

See Design and Implementation of FastForward Features in HDF5 for information on the interaction between 
transformation operations, such as datatype conversion, and end-to-end integrity support with checksums. 

Parameters:  
hid_t dset_id IN: Identifier of the dataset to write to. 

dset_id must be in scope for the transaction. 

hid_t mem_type_id IN: Identifier of the memory datatype. 

hid_t mem_space_id IN: Identifier of the memory dataspace. 

hid_t file_space_id     IN: Identifier of the dataset's dataspace in the file. 

hid_t dxpl_id IN: Identifier of a transfer property list for this I/O operation. 

const void * buf IN: Buffer with data to be written to the file. 

hid_t trans_id IN: IN: Transaction identifier specifying the transaction this operation is a part of 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   61	   	   	   	   	   06/30/2014	  

History:  
Added in Quarter 3. 
Quarter 4: Updated to reflect switch from parameter H5_request_t request_ptr to hid_t eq_id. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement. Noted the interaction between transformations and checksums. Removed space allocation, fill 
values, and compact representation text.  Noted that “all” is relative to the read context associated with the 
transaction. 

Man Page Status:  
No known issues. 

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   62	   	   	   	   	   06/30/2014	  

4.5 H5ES:	  Event	  Stack	  APIs	  

These routines allow the application to create and work with event stacks.  An event stack 
provides an organizing structure for managing and monitoring functions that have been called 
asynchronously.   

Once an event stack is created, its identifier can be passed to other HDF5 APIs that will be run 
asynchronously.  The event associated with an asynchronous operation will be pushed onto the 
event stack whose identifier was passed as a parameter to the function.  The application can use 
the H5ES APIs to monitor the completion status of an individual event or all events in an event 
stack. One or more of the events in an event stack can be cancelled. Monitoring or cancelling an 
event is equivalent to monitoring or cancelling the asynchronous operation the event is 
associated with. 

Event stacks are per-process and there may be multiple event stacks for any given process. The 
most recent event added to an event stack will always be at index 0 (useful for calls to 
H5EScancel, H5EStest, H5ESwait).  

The order in which asynchronous functions execute and complete is independent of their 
associated event objects’ location in any event stack. 

These routines did not exist prior to the Exascale FastForward project. 

 

Routine Implemented Notes 

H5EScancel Quarter 6  

H5EScancel_all Quarter 6  

H5ESclear Quarter 6  

H5ESclose Quarter 6  

H5EScreate Quarter 6  

H5ESget_count Quarter 6  

H5ESget_event_info  Not implemented in prototype. 

H5EStest Quarter 6  

H5EStest_all Quarter 6  

H5ESwait Quarter 6  

H5ESwait_all Quarter 6  

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   63	   	   	   	   	   06/30/2014	  

4.5.1 H5EScancel 

Name: H5EScancel 

Signature:  
herr_t H5EScancel( hid_t es_id, size_t event_idx, H5ES_status_t *status )   

Purpose:  
Cancel a particular event in an event stack. 
 

Description:  
H5EScancel cancels the in-progress event specified by event_idx in the event stack specified by es_id 
and indicates the event’s status.   

event_idx is the index of the event to be cancelled.  The most recent event pushed on to the event stack is at 
index 0. 

status is set to indicate whether the event was cancelled or had already completed.  Possible values for 
status and their meanings are: 

H5ES_STATUS_CANCEL Event was cancelled, either by this call or previously. 

H5ES_STATUS_SUCCEED Event completed successfully. 

H5ES_STATUS_FAIL Event completed unsuccessfully. 

Cancelled (and completed) events remain on the event stack until the stack is cleared. 

Parameters:  
hid_t es_id IN: Identifier of the event stack. 

size_t event_idx IN: Index of the event to be cancelled. 

H5ES_status_t *status OUT: Status of the event upon completion of the call. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

History:  
Quarter 5: Designed and documented but not yet implemented. 
Quarter 6: Implemented. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   64	   	   	   	   	   06/30/2014	  

4.5.2 H5EScancel_all 

Name: H5EScancel_all 

Signature:  
herr_t H5EScancel_all( hid_t es_id,  H5ES_status_t *status )   

Purpose:  
Cancel all events in an event stack that have not yet completed. 
 

Description:  
H5EScancel_all cancels the in-progress events in the event stack specified by es_id and indicates a status. 

status is set to indicate the overall status of the events in the event stack.  Possible values for status and 
their meanings are: 

H5ES_STATUS_CANCEL All events were cancelled, either by this call or previously. 

H5ES_STATUS_SUCCEED Some or all events completed, and all completed events succeeded.  

H5ES_STATUS_FAIL Some or all events completed, and one or more completed event 
failed. 

Cancelled (and completed) events remain on the event stack until the stack is cleared. 

Parameters:  
hid_t es_id IN: Identifier of the event stack. 

H5ES_status_t *status OUT: Overall status of the events in the event stack upon completion of the 
call. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

History:  
Quarter 5: Designed and documented but not yet implemented. 
Quarter 6: Implemented. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   65	   	   	   	   	   06/30/2014	  

4.5.3 H5ESclear 

Name: H5ESclear  

Signature:  
herr_t H5ESclear( hid_t es_id )  

Purpose:  
Clear all events from an event stack. 
 

Description:  
H5ESclear clears all event objects from the event stack specified by es_id, after first confirming that no in-
progress events remain in the stack.   If the stack does contain one or more in-progress events, no events are 
cleared and the call fails (a negative value is returned). 

If there are in-progress events on the stack, H5ESwait_all can be used to wait for their completion before 
calling H5ESclear. Alternatively, H5EScancel_all can be used to cancel the in-progress events before 
calling H5ESclear. 

Parameters:  
hid_t es_id IN: Identifier of the event stack to be cleared. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   If the event contains one or more 
in-progress events a negative value is returned. 

History:  
Quarter 5: Designed and documented but not yet implemented. 
Quarter 6: Implemented. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   66	   	   	   	   	   06/30/2014	  

4.5.4 H5ESclose 

Name: H5ESclose 

Signature:  
herr_t H5ESclose( hid_t es_id )  

Purpose:  
Close an event stack. 
 

Description:  
H5ESclose closes the event stack specified by es_id, after first confirming that no in-progress events remain 
in the stack.   If the stack does contain one or more in-progress events, the event stack is not closed and the call 
fails (a negative value is returned). 

If there are in-progress events on the stack, H5ESwait_all can be used to wait for their completion before 
calling H5ESclose. Alternatively, H5EScancel_all can be used to cancel the in-progress events before 
calling H5ESclose. 

Upon successful completion, the event stack identifier, es_id, is no longer valid. 

Parameters:  
hid_t es_id IN: Identifier of the event stack to be closed. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Quarter 5: Designed and documented but not yet implemented. 
Quarter 6: Implemented. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   67	   	   	   	   	   06/30/2014	  

4.5.5 H5EScreate 

Name: H5EScreate  

Signature:  
hid_t H5EScreate( void )  

Purpose:  
Create an event stack. 
 

Description:  
H5EScreate creates an event stack to monitor and manage the events associated with asynchronous function 
execution. Multiple event stacks can be created and used concurrently in a program. Events added to the event 
stack are bundled and tracked together, although they may also be monitored individually.  

The identifier for an event stack is used in all asynchronous function calls, which push the event associated with 
the function’s execution onto the event stack.  The order in which asynchronous functions execute and complete 
is independent of their associated event’s location in any event stack. 

Parameters:  
none  

Returns:  
Returns an event stack identifier if successful; otherwise returns a negative value.   

History:  
Quarter 5: Designed and documented but not yet implemented. 
Quarter 6: Implemented. 

Man Page Status:  
No known issues. 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   68	   	   	   	   	   06/30/2014	  

4.5.6 H5ESget_count 

Name: H5ESget_count 

Signature:  
herr_t H5ESget_count( hid_t es_id, size_t *count)  

Purpose:  
Query the number of events in an event stack. 
 

Description:  
H5ESget_count retrieves the number of events in the event stack specified by es_id.   

Parameters:  
hid_t es_id IN: Identifier of the event stack. 

size_t *count OUT: Number of events. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

History:  
Quarter 5: Designed and documented but not yet implemented. 
Quarter 6: Implemented. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   69	   	   	   	   	   06/30/2014	  

4.5.7 H5ESget_event_info 

Name: H5ESget_event_info 

Signature:  
herr_t H5ESget_event_info( hid_t es_id,  size_t start_idx,  size_t count,  
const char *ev_trace_str_arr[], H5ES_status_t ev_status_arr[],  
H5E_stack_id ev_err_stack_id_arr[] ) 

Purpose:  
Retrieve information about events in an event stack. 
 

Description:  
H5ESget_event_info retrieves a variety of information about events in the event stack specified by es_id. 

start_idx gives the index of the first event to retrieve information about. The most recent event pushed on the 
event stack is at index 0. 

count gives the number of events to retrieve information about.  

The array parameters ev_trace_str_arr, ev_status_arr, and ev_err_stack_id_arr must 
each be large enough to hold at least count entries. Passing a NULL pointer for any of the array parameters 
indicates the information normally returned in that array will not be retrieved. 

ev_trace_str_arr  is an array that holds tracing strings that document the API call and parameters for each 
event. 

ev_status_arr is an array that holds the completion status ( H5ES_STATUS_SUCCEED, 
H5ES_STATUS_FAIL, H5ES_STATUS_IN_PROGRESS, or H5ES_STATUS_CANCEL) for each event. 

ev_err_stack_id_arr is an array that holds HDF5 error stack IDs for the operations associated with each 
event.  Events that are in progress, have been cancelled, or have completed successfully will have a -1 value for 
the error stack ID.  Error stacks retrieved from this routine may be queried with the H5E API calls. 

This call may be made before or after all events in the event stack have completed. 

Parameters:  
hid_t es_id IN: Identifier of the event stack. 

size_t *start_idx IN: Index of the first event to retrieve information about. 

size_t count IN: Number of events to retrieve information about. 

const char 
*ev_trace_str_arr[] 

OUT: Array containing tracing strings documenting API call and 
parameters of events 

H5ES_status_t 
ev_status_arr[] 

OUT: Array containing status of events 

H5E_stack_id 
ev_err_stack_id_arr[] 

OUT: Array containing error stack IDs of events.  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

History:  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   70	   	   	   	   	   06/30/2014	  

Quarter 5: Designed and documented but not yet implemented. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   71	   	   	   	   	   06/30/2014	  

4.5.8 H5EStest 

Name: H5EStest 

Signature:  
herr_t H5EStest( hid_t es_id, size_t event_idx, H5ES_status_t *status )   

Purpose:  
Test to determine the status of a particular event in an event stack. 
 

Description:  
H5EStest reports the completion status of the event specified by event_idx in the event stack specified by 
es_id.  The H5EStest call returns immediately. 

event_idx is the index of the event to be tested.  The most recent event pushed onto the event stack is always 
at index 0. 

status is set to indicate the status of the event.  Possible values for status and their meanings are: 

H5ES_STATUS_IN_PROGRESS Event is still active. 

H5ES_STATUS_SUCCEED Event completed successfully. 

H5ES_STATUS_FAIL Event completed unsuccessfully. 

H5ES_STATUS_CANCEL Event was cancelled. 

Parameters:  
hid_t es_id IN: Identifier of the event stack. 

size_t event_idx IN: Index of the event to be tested. 

H5ES_status_t *status OUT: Status of the event. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

History:  
Quarter 5: Designed and documented but not yet implemented. 
Quarter 6: Implemented. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   72	   	   	   	   	   06/30/2014	  

4.5.9 H5EStest_all  

Name: H5EStest_all 

Signature:  
herr_t H5EStest_all( hid_t es_id,  H5ES_status_t *status )   

Purpose:  
Test to determine the status of all events in an event stack. 
 

Description:  
H5EStest_all reports an overall completion status for all events in the event stack specified by es_id.  The 
H5EStest_all call returns immediately. 

status is set to indicate the overall status of the events in the event stack.  Possible values for status and 
their meanings are: 

H5ES_STATUS_IN_PROGRESS At least one event is still active. 

H5ES_STATUS_SUCCEED Some or all events completed, and all completed events 
succeeded. 

H5ES_STATUS_FAIL Some or all events completed, and one or more completed event 
failed. 

H5ES_STATUS_CANCEL All events were cancelled. 

Parameters:  
hid_t es_id IN: Identifier of the event stack. 

H5ES_status_t *status OUT: Overall status of the events in the event stack. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

History:  
Quarter 5: Designed and documented but not yet implemented. 
Quarter 6: Implemented. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   73	   	   	   	   	   06/30/2014	  

4.5.10 H5ESwait 

Name: H5ESwait 

Signature:  
herr_t H5ESwait( hid_t es_id, size_t event_idx, H5ES_status_t *status )   

Purpose:  
Wait for a particular event in an event stack to complete or be cancelled. 
 

Description:  
H5ESwait waits for the completion or cancellation of the event specified by event_idx in the event stack 
specified by es_id and reports the event’s completion status.  The H5ESwait call does not return until the 
event being waited on completes or is cancelled. 

event_idx is the index of the event to be waited on  The most recent event pushed on to the event stack is at 
index 0. 

status is set to indicate the completion status of the event.  Possible values for status and their meanings 
are: 

H5ES_STATUS_SUCCEED Event completed successfully. 

H5ES_STATUS_FAIL Event completed unsuccessfully. 

H5ES_STATUS_CANCEL Event was cancelled. 

Parameters:  
hid_t es_id IN: Identifier of the event stack. 

size_t event_idx IN: Index of the event to be tested. 

H5ES_status_t *status OUT: Status of the event. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

History:  
Quarter 5: Designed and documented but not yet implemented. 
Quarter 6: Implemented. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   74	   	   	   	   	   06/30/2014	  

4.5.11 H5ESwait_all 

Name: H5ESwait_all 

Signature:  
herr_t H5ESwait_all( hid_t es_id,  H5ES_status_t *status )   

Purpose:  
Wait for all events in an event stack to complete or be cancelled. 
 

Description:  
H5ESwait_all waits for the completion or cancellation of all events in the event stack specified by es_id 
and reports an overall completion status.  The H5ESwait_all call does not return until all events in the event stack 
complete or are cancelled. 

status is set to indicate the overall completion status of the events in the event stack.  Possible values for 
status and their meanings are: 

H5ES_STATUS_SUCCEED Some or all events completed, and all completed events 
succeeded. 

H5ES_STATUS_FAIL Some or all events completed, and one or more completed event 
failed. 

H5ES_STATUS_CANCEL All events were cancelled. 

Parameters:  
hid_t es_id IN: Identifier of the event stack. 

H5ES_status_t *status OUT: Overall completion status of the events in the event stack. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

History:  
Quarter 5: Designed and documented but not yet implemented. 
Quarter 6: Implemented 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   75	   	   	   	   	   06/30/2014	  

4.6 H5F:	  File	  (Container)	  APIs	  

These routines are used to operate on HDF5 File (Container) Objects.  

The routines ending in _ff have different signatures than the standard HDF5 library routines. 

Man pages for routines whose user interface is unchanged from the standard HDF5 
implementation can be found at: http://www.hdfgroup.org/HDF5/doc/RM/RM_H5F.html. 

 

Routine Implemented Notes 

H5Fclose_ff Quarter 4  

H5Fcreate_ff Quarter 3  

H5Fopen_ff Quarter 3  

H5Fget_access_plist Quarter 3 
Local operation, no need to do 
asynchronously.  
See standard HDF5 man page 

H5Fget_create_plist Quarter 3 
Local operation, no need to do 
asynchronously. 
See standard HDF5 man page 

H5Fget_intent Quarter 3 
Local operation, no need to do 
asynchronously. 
See standard HDF5 man page 

H5Fget_name Quarter 3 
Local operation, no need to do 
asynchronously. 
See standard HDF5 man page 

H5Fget_filesize  Not implemented in Prototype 

H5Fget_info  Not implemented in Prototype 

H5Fflush  Doesn’t make sense for FF storage; will not 
implement (decided in Q5) 

H5Fget_atomicity  Doesn’t make sense for FF storage; will not 
implement 

H5Fget_file_image  Doesn’t make sense for FF storage; will not 
implement 

H5Fget_free_space  Doesn’t make sense for FF storage; will not 
implement 

H5Fget_mdc_config  Doesn’t make sense for FF storage; will not 
implement 

H5Fget_mdc_hit_rate  Doesn’t make sense for FF storage; will not 
implement 

H5Fget_mdc_size  Doesn’t make sense for FF storage; will not 
implement 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   76	   	   	   	   	   06/30/2014	  

H5Fget_vfd_handle  Doesn’t make sense for FF storage; will not 
implement 

H5Fis_hdf5  Not implemented in prototype. 

H5Fmount  Doesn’t make sense for FF storage; will not 
implement 

H5Freopen  Doesn’t make sense for FF storage; will not 
implement 

H5Freset_mdc_hit_rate_stats  Doesn’t make sense for FF storage; will not 
implement 

H5Fset_mpi_atomicity  Doesn’t make sense for FF storage; will not 
implement 

H5Fset_mdc_config  Doesn’t make sense for FF storage; will not 
implement 

H5Funmount  Doesn’t make sense for FF storage; will not 
implement 

H5Fget_obj_count  Not implemented in prototype 

H5Fget_obj_ids  Not implemented in prototype 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   77	   	   	   	   	   06/30/2014	  

4.6.1 H5Fclose_ff 

Name: H5Fclose_ff  

Signature:  
hid_t H5Fclose_ff( hid_t file_id,  hbool_t persist_flag, hid_t es_id  )  

Purpose:  
Terminate access to an HDF5 file (container), possibly asynchronously. 

Description:  
H5Fclose_ff terminates access to an HDF5 file on the Exascale FastForward storage system by 
terminating access to the container through file_id.   

Applications are responsible for finishing transactions (H5TRfinish) before H5Fclose_ff is called. 
Applications should close all open objects in a container before calling H5Fclose_ff.   

H5Fclose_ff will consume a transaction ID (the highest writable transaction) to write additional file 
metadata before closing the container.  By default, H5Fclose_ff will call persist (H5RCpersist) on 
that last transaction. The user can opt not persist the final transaction created by H5Fclose_ff by setting 
persist_flag to FALSE (0).  The container will still be readable and correct, but there will be some 
performance loss if the additionl file metadata is not persisted. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

Parameters:  
hid_t file_id     IN: Identifier of container to terminate access to. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4.   
Quarter 5: Changed from event queue to event stack.  Added text clarifying that call doesn’t flush data to 
storage. 
Quarter 7: Added persist flag to indicate whether the transaction consumed by H5Fclose should be 
persisted or not. Default is to persist. 

Man Page Status:  
No known issues. 

 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   78	   	   	   	   	   06/30/2014	  

4.6.2 H5Fcreate_ff 

Name: H5Fcreate_ff  
 
Signature:  

hid_t H5Fcreate_ff( const char *name, unsigned flags, hid_t fcpl_id, hid_t fapl_id,  
hid_t es_id  )  

Purpose:  
Create an HDF5 file (container), possibly asynchronously. 

Description:  
H5Fcreate_ff is the primary function for creating HDF5 files on the Exascale FastForward storage system. It 
creates a new HDF5 file (IOD container / DAOS container) with the specified name and property lists, and 
indicates whether an existing container of same name should be overwritten.  

The name parameter specifies the name of the new container.  

The flags parameter indicates whether an existing container is to be overwritten. It should be set to either 
H5F_ACC_TRUNC to overwrite an existing container or H5F_ACC_EXCL, instructing the function to fail if the 
container already exists.  

New containers are always created in read-write mode, so the read-write and read-only flags, H5F_ACC_RDWR 
and H5F_ACC_RDONLY, respectively, are not relevant in this function. Further note that a specification of 
H5F_ACC_RDONLY will be ignored; the file will be created in read-write mode, regardless.  

More complex behaviors of file creation and access are controlled through the file creation and file access 
property lists, fcpl_id and fapl_id, respectively. The value of H5P_DEFAULT for any property list value 
indicates that the library should use the default values for that appropriate property list.  

Note: The H5Pset_vol_iod() routine must be invoked on the fapl_id, or the IOD VOL plugin will not 
be used. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The return value is a file identifier for the newly-created container; this file identifier should be closed by calling 
H5Fclose_ff when it is no longer needed.  

Calling H5Fcreate_ff with an already opened file will fail with an error.  

Parameters:  
const char *name     IN: Name of the file to create. 

uintn flags IN: File access flags. Allowable values are:  
H5F_ACC_TRUNC  
Truncate file, if it already exists, erasing all data previously stored in the 
file.  
H5F_ACC_EXCL  
Fail if file already exists.  

•  H5F_ACC_TRUNC and H5F_ACC_EXCL are mutually exclusive; use exactly 
one.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   79	   	   	   	   	   06/30/2014	  

hid_t fcpl_id IN: File creation property list identifier, used when modifying default file meta-
data. Use H5P_DEFAULT to specify default file creation properties. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for 
synchronous execution. 

Returns:  
Returns a file identifier if successful; otherwise returns a negative value.  When executed asynchronously, 
a future ID for the new file is returned initially. Upon completion of the asynchronous operation, the future 
ID will be transparently modified to be a “normal” file identifier. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 3.  
Quarter 4: Updated to reflect switch from parameter H5_request_t request_ptr to hid_t eq_id. 
Quarter 5: Changed from event queue to event stack.  

Man Page Status:  
No known issues. 

 
 
   



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   80	   	   	   	   	   06/30/2014	  

4.6.3 H5Fopen_ff  

Name: H5Fopen_ff   
 
Signature:  

hid_t H5Fopen_ff( const char *name, unsigned flags, hid_t fapl_id, hid_t rcntxt_id,   
hid_t es_id  )  

Purpose:  
Open an existing HDF5 file (container), possibly asynchronously.  

Description:  
H5Fopen_ff is the primary function for accessing existing HDF5 files (IOD containers / DAOS containers). 
This function opens the named file in the specified access mode and with the specified access property list.  

Note that H5Fopen does not create a container if it does not already exist; see H5Fcreate_ff. 

The name parameter specifies the name of the container to be opened.  

The flags parameter specifies whether the container will be opened in read-write or read-only mode, 
H5F_ACC_RDWR or H5F_ACC_RDONLY, respectively. More complex behaviors of file access are controlled 
through the file-access property list.  

The fapl_id parameter specifies the file access property list. Use of H5P_DEFAULT specifies that default I/O 
access properties will be used. 

Note: the H5Pset_vol_iod() routine must be invoked on the fapl_id, or the IOD VOL plugin will not be 
used. 

The rcntxt_id parameter allows the user to pass a pointer to an hid_t datatype signaling that the function 
should acquire a read handle for the last (highest) container version for the successfully opened container. 
In addition to acquiring the read handle, a read context is created and the identifier for that context is returned in 
*rcntxt_id. The read context identifier will not be available until after the H5Fopen_ff call completes 
successfully.  H5RCrelease must be called to release the read handle and close the context when it is no longer 
needed.  

If the rcntxt_id parameter is set to NULL, no read handle is acquired and no read context is created. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter 

The return value is a file identifier for the newly-opened container; this file identifier should be closed by calling 
H5Fclose_ff when it is no longer needed.  

Multiple opens:  
A container can be opened with a new H5Fopen_ff call without closing an already-open identifier 
established in a previous H5Fopen_ff or H5Fcreate_ff call. Each H5Fopen_ff call will return a 
unique identifier and the container can be accessed through any of these identifiers as long as the identifier 
remains valid.    A container can only have one open identifier with write privledges at any given time. 

Parameters:  
const char *name     IN: Name of the file to be opened. 

unsigned flags IN: File access flags. Allowable values are:  
H5F_ACC_RDWR          Allow read and write access to file.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   81	   	   	   	   	   06/30/2014	  

H5F_ACC_RDONLY  Allow read-only access to file.  
H5F_ACC_RDWR and H5F_ACC_RDONLY are mutually exclusive; use exactly 
one. 

hid_t fapl_id IN: Identifier for the file access properties list. If parallel file access is desired, 
this is a collective call according to the communicator stored in the fapl_id. 
Use H5P_DEFAULT for default file access properties. 

hid_t *rcntxt_id  IN/OUT: Pointer to read context for the last (highest) container version for the 
successfully opened container. Pass in NULL if no read context is desired. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor 
the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a file identifier if successful; otherwise returns a negative value.  When executed asynchronously, 
a future ID for the file is returned initially;  upon completion of the asynchronous operation, the future ID 
will be transparently modified to be a “normal” file identifier. 

 
Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event queue.  
 

History:  
Added in Quarter 3.  
Quarter 4: Updated to reflect switch from parameter H5_request_t request_ptr to hid_t eq_id. 
Quarter 5: Changed from event queue to event stack. Added rcntxt_id parameter. 

Man Page Status:  
No known issues. 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   82	   	   	   	   	   06/30/2014	  

4.7 H5G:	  Group	  APIs	  

These routines are used to operate on HDF5 Group Objects.  

The routines ending in _ff have different signatures than the standard HDF5 library routines. 

Man pages for routines whose user interface is unchanged from the standard HDF5 
implementation can be found at: http://www.hdfgroup.org/HDF5/doc/RM/RM_H5G.html. 

 

Routine Implemented Notes 

H5Gclose_ff Quarter 4  

H5Gcreate_ff Quarter 3  

H5Gevict_ff Quarter 7  

H5Gopen_ff Quarter 3  

H5Gprefetch_ff Quarter 7  

H5Gget_create_plist Quarter 3 Local operation, no need to do asynchronously.  
See standard HDF5 man page. 

H5Gget_info_ff  Not implemented in prototype. 

H5Gget_info_by_name_ff  Not implemented in prototype. 

H5Gcreate_anon  Not implemented in prototype. 

H5Gget_info_by_idx  Not implemented in prototype. 
 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   83	   	   	   	   	   06/30/2014	  

4.7.1 H5Gclose_ff 

Name: H5Gclose_ff   

Signature:  
hid_t H5Gclose_ff( hid_t group_id, hid_t es_id  )  

Purpose:  
Close the specified group, possibly asynchronously. 
 

Description:  
H5Gclose_ff releases resources used by a group that was opened by H5Gcreate_ff or H5Gopen_ff. 
After closing a group, the group_id cannot be used again.  

Failure to release a group with this call will result in resource leaks.  

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t group_id  IN: Group identifier to release.  

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  
 

History:  
Added in Quarter 4. 
Quarter 5: Changed from event queue to event stack 

Man Page Status:  
No known issues. 

 

 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   84	   	   	   	   	   06/30/2014	  

4.7.2 H5Gcreate_ff 

Name: H5Gcreate_ff   

Signature:  
hid_t H5Gcreate_ff( hid_t loc_id, const char *name, hid_t lcpl_id, hid_t gcpl_id,  
hid_t gapl_id, hid_t trans_id, hid_t es_id  )  

Purpose:  
Create a new group and links it into the file, possibly asynchronously. 
 

Description:  
H5Gcreate_ff creates a new group in a file. After a group has been created, links to datasets and to other 
groups can be added.  

The loc_id and name parameters specify where the group is located. loc_id may be a file identifier or a 
group identifier. name is the link to the group; name may be either an absolute path in the file (the links from the 
root group to the new group) or a relative path from loc_id (the link(s) from the group specified by loc_id to 
the new group). See the “Accessing objects by location and name” topic for more information.  Both loc_id 
and name must be in scope for the transaction identified by trans_id. 

lcpl_id, gcpl_id, and gapl_id are property list identifiers. These property lists govern how the link to the 
group is created, how the group is created, and how the group can be accessed in the future, respectively. 
H5P_DEFAULT can be passed in if the default properties are appropriate for these property lists. Currently, there 
are no APIs for the group access property list; use H5P_DEFAULT. See “H5P: Property List Interface” for the 
functions that can be used with each property list. H5P_DEFAULT must be used for all three of these parameters 
in the current EFF implementation. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The return value is the group identifier for the new group. Call H5Gclose with the group identifier to close the 
group and release resources when access is no longer required. 

Parameters:  
hid_t loc_id  IN: File or group identifier that is in scope for the transaction 

const char *name      IN: Absolute or relative name of the link to the new group that is in scope for the 
transaction 

hid_t lcpl_id  IN: Link creation property list identifier 
Must be H5P_DEFAULT in the current EFF implementation. 

hid_t gcpl_id  IN: Group creation property list identifier  
Must be H5P_DEFAULT in the current EFF implementation. 

hid_t gapl_id  IN: Group access property list identifier  
(No group access properties have been implemented at this time; use H5P_DEFAULT.)  

uint64_t trans IN: Value used to indicate transaction this operation is a part of. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   85	   	   	   	   	   06/30/2014	  

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a group identifier if successful; otherwise returns a negative value.  When executed asynchronously, a 
future ID for the new group is returned initially. Upon completion of the asynchronous operation, the 
future ID will be transparently modified to be a “normal” group identifier. 

 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 3. 
Quarter 4: Updated to reflect switch from parameter H5_request_t request_ptr to hid_t eq_id. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement. 

Man Page Status:  
No known issues. 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   86	   	   	   	   	   06/30/2014	  

4.7.3 H5Gevict_ff  

Name: H5G 

Signature:  
herr_t H5Gevict_ff( hid_t grp_id, uint64_t container_version, hid_t dxpl_id,  
hid_t es_id )  

Purpose:  
Evict group from the burst buffer, possibly asynchronously. 

Description:  
H5Gevict_ff evicts data associated with a group from the burst buffer.   

The data to be evicted may be resident in the burst buffer under two different scenarios 

In the first scenario, the data is resident in the burst buffer as the result of updates to the group made via the EFF 
transaction model.  For example, through calls to H5Gcreate_ff or H5Dcreate_ff, where the new group is created 
or a new dataset is created in the group.  These calls add updates to a transaction that are atomically applied to the 
group when the transaction is committed, and we refer to this data as transaction update data.   

When evicting transaction update data, the container version being evicted should first be persisted to permanent 
storage (DAOS), with the H5RCpersist command. The group’s transaction update data for the specified 
container version, as well as the group’s transaction update data for all lower-numbered container versions that 
has not yet been evicted from the burst buffer, will be evicted as the result of this call.  If evicting the data would 
result in container versions with open read contexts becoming inaccessible, the evict will fail. 

In the second scenario, the data is resident in the burst buffer as the result of a call to H5Gprefetch_ff.  This call 
replicates data from persistent storage (DAOS) to the burst buffer, and we refer to this data as replica data.  When 
replica data is evicted, only data in the burst buffer as a result of the exact replica specified is evicted – transaction 
update data and other replicas for the group remain in the burst buffer. 

The grp_id parameter specifies the group whose data is to be evicted. 

The version of the group to be evicted is specified by the container_version property.   	  

The replica property in the transfer property list,  dxpl_id, is used to specify that a group replica is to be 
evicted. H5Pset_dxpl_replica() sets the replica property.  If this is set, then replia data will be evicted, 
otherwise transaction update data will be evicted. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Limitations / Future Considerations:  
When evicting a replica, the container_version argument is redundant, as the replica identifier fully 
specifies the data to be evicted.   Consider revisiting and possibly revising the API prior to production release.  
Possibly have separate evict commands for eviction of transaction update data and of replicas. 

For other potential extensions that are beyond the scope of the EFF prototype project, refer to the document Burst 
Buffer Space Management – Prototype to Production. 

Parameters:  
hid_t grp_id IN: Identifier of the group being evicted. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   87	   	   	   	   	   06/30/2014	  

uint64_t  container_version IN: Container version specifying what version of the group to evict. 

hid_t gapl_id     IN: Identifier of an access property list.  If the access property list contains 
an evict replica property (set via H5Pset_evict_replica()), then 
the replica_id specified by that property will be evicted. 

hid_t es_id IN: The es_id parameter indicates the event stack the event object 
for this call should be pushed onto when the function is executed 
asynchronously. The function may be executed synchronously by 
passing in H5_EVENT_STACK_NULL for the es_id parameter.  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. 

 
History:  

Added in Quarter 7. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   88	   	   	   	   	   06/30/2014	  

4.7.4 H5Gopen_ff 

Name: H5Gopen_ff   
 
Signature:  

hid_t H5Gopen_ff( hid_t loc_id, const char * name, hid_t gapl_id,  
hid_t rcntxt_id, hid_t es_id  )  
 

Purpose:  
Open an existing group with a group access property list, possibly asynchronously.  
 

Description:  
H5Gopen_ff opens an existing group, name, at the location specified by loc_id.  

loc_id may be a file identifier or a group identifier. name may be either an absolute path in the file or a relative 
path from loc_id to the group.  Both loc_id and name must be in scope for the read context identified by 
rcntxt_id. 

gapl_id is a group access property list identifier.  No group access property lists have been implemented at 
this time; use H5P_DEFAULT. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

H5Gopen_ff returns a group identifier for the group that was opened. This group identifier should be released 
by calling H5Gclose when it is no longer needed.  

Parameters:  
hid_t loc_id  IN: Location identifier 

May be any HDF5 group identifier or file identifier that is in scope for the read context.  

const char *name      IN: Name of the group to open  
The group name (path to the group) can be specified relative to loc_id or absolute 
from the file’s root group, and must be in scope for the read context. 

hid_t gapl_id  IN: Group access property list identifier  
(No group access properties have been implemented at this time; use 
H5P_DEFAULT.)  

hid_t rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor 
the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution 

Returns:  
Returns a group identifier if successful; otherwise returns a negative value.  When executed 
asynchronously, a future ID for the group is returned initially. Upon completion of the asynchronous 
operation, the future ID will be transparently modified to be a “normal” group identifier. 
 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   89	   	   	   	   	   06/30/2014	  

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 3. 
Quarter 4: Updated to reflect switch from parameter H5_request_t request_ptr to hid_t eq_id. 
Quarter 5: Changed from transaction to read context id and from event queue to event stack. Added scope 
requirement. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   90	   	   	   	   	   06/30/2014	  

4.7.5 H5Gprefetch_ff 

Name: H5Gprefetch_FF   

Signature:  
herr_t H5Gprefetch_ff( hid_t grp_id, hid_t rcntxt_id, hid_t *replica_id, hid_t dxpl_id,  
hid_t es_id )  

Purpose:  
Prefetch a group from persistent storage to burst buffer storage, possibly asynchronously. 

Description:  
H5Gprefetch_ff prefetches a group, specified by its identifier grp_id, from persistent storage (DAOS) into 
burst buffer storage.    

rcntxt_id indicates the read context for this operation. 

replica_id, the replica identifier, is set to indicate where the pre-fetched data can be found in the burst 
buffer, and is passed to subsequent H5Gevict_ff calls. 

dxpl_id, a data transfer property list identifier, is not currently used and should be set to H5P_DEFAULT. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The replica_id is not valid until the operation has completed, if it is executing asynchronously. 

Limitations / Future Considerations:  
For the EFF prototype project, only the primary IOD KV object associated with the HDF5 group will be 
prefetched; auxiliary IOD objects remain on persistent storage (DAOS).  For more information, and other 
potential extensions, refer to the document Burst Buffer Space Management – Prototype to Production. 

This function was implemented for completeness, but since no access routines accept the group’s replica_id 
in this phase of the project, it has no practical value other than to demonstrate the ability to prefetch and evict 
groups. 

Parameters:  
hid_t grp_id IN: Identifier of the group being prefetched. 

grp_id must be in scope for the read context. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t * replica_id IN: Identifier of the replicated data in the burst buffer. 

hid_t gapl_id     IN: Identifier of an access property list for this I/O operation.  Should be 
H5P_DEFAULT. 

hid_t es_id IN: The es_id parameter indicates the event stack the event object for this call 
should be pushed onto when the function is executed asynchronously. The 
function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   91	   	   	   	   	   06/30/2014	  

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. 

 
History:  

Added in Quarter 7. 

Man Page Status:  
No known issues. 

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   92	   	   	   	   	   06/30/2014	  

4.8 H5L:	  Link	  APIs	  

These routines are used to create and manipulate Links in an HDF5 group, and are designed to 
be used in conjunction with the Object APIs (H5O). 

The routines ending in _ff have different signatures than the standard HDF5 library routines. 

Man pages for routines whose user interface is unchanged from the standard HDF5 
implementation can be found at: http://www.hdfgroup.org/HDF5/doc/RM/RM_H5L.html. 

 

Routine Implemented Notes 

H5Lcopy_ff Quarter 4  

H5Lcreate_hard_ff Quarter 4  

H5Lcreate_soft_ff Quarter 4  

H5Ldelete_ff Quarter 4  

H5Lexists_ff Quarter 4  

H5Lget_info_ff Quarter 6 Man page added in Q8 

H5Lget_val_ff Quarter 6 Man page to be added in Q8 

H5Lmove_ff Quarter 4  

H5Literate_ff  Not implemented in prototype. 

H5Literate_by_name_ff  Not implemented in prototype. 

H5Lvisit_ff  Not implemented in prototype. 

H5Lvisit_by_name_ff  Not implemented in prototype. 

H5Lcreate_external  Not implemented in prototype. 

H5Lcreate_ud  Not implemented in prototype. 

H5Ldelete_by_idx  Not implemented in prototype. 

H5Lget_info_by_idx  Not implemented in prototype. 

H5Lget_name_by_idx  Not implemented in prototype. 

H5Lget_val_by_idx  Not implemented in prototype. 

H5Lis_registered  Not implemented in prototype. 

H5Lregister  Not implemented in prototype. 

H5Lunregister  Not implemented in prototype. 
 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   93	   	   	   	   	   06/30/2014	  

4.8.1 H5Lcopy_ff 

Name: H5Lcopy_ff   

Signature:  
herr_t H5Lcopy_FF( hid_t src_loc_id, const char *src_name, hid_t dest_loc_id,  
const char *dest_name, hid_t lcpl_id, hid_t lapl_id,hid_t trans_id, hid_t es_id )  

Purpose:  
Copies a link from one location to another, possibly asynchronously. 

Description:  
H5Lcopy_ff copies the link specified by src_name from the file or group specified by src_loc_id to the 
file or group specified by dest_loc_id. The new copy of the link is created with the name dest_name.    
 
src_loc_id and dest_loc_id must reference locations in the same file in the EFF stack.  
src_loc_id, src_name, dest_loc_id, and dest_name must all be in scope for the transaction 
identified by trans_id.   

If dest_loc_id is a file identifier, dest_name will be interpreted relative to that file’s root group.  

The new link is created with the creation and access property lists specified by lcpl_id and lapl_id. The 
interpretation of lcpl_id is limited in the manner described in the next paragraph.  

H5Lcopy_ff retains the creation time and the target of the original link. However, since the link may be 
renamed, the character encoding is that specified in lcpl_id rather than that of the original link. Other link 
creation properties are ignored.  

If the link is a soft link, also known as a symbolic link, its target is interpreted relative to the location of the copy.  

Several properties are available to govern the behavior of H5Lcopy. These properties are set in the link creation 
and access property lists, lcpl_id and lapl_id, respectively.  In the EFF stack, neither the link creation 
property list nor the link access property list have any effect.  Both should be set to H5P_DEFAULT. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

H5Lcopy_ff does not affect the object that the link points to.  

Parameters:  
hid_t src_loc_id  IN: Location identifier of the source link  

May be any file or group identifier that is in scope for the transaction 

const char *src_name  IN: Name of the link to be copied  
The name of the link can be specified relative to src_loc_id, absolute from 
the file’s root group, or '.' (a dot), and must be in scope for the transaction. 

hid_t dest_loc_id  IN: Location identifier specifying the destination of the copy 
May be any file or group identifier that is in scope for the transaction.  

const char *dest_name      IN: Name to be assigned to the new copy 
The name of the new copy can be specified relative to dest_loc_id or 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   94	   	   	   	   	   06/30/2014	  

absolute from the file’s root group, and must be in scope for the transaction.  

hid_t lcpl_id  IN: Link creation property list identifier 
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t lapl_id  IN: Link access property list identifier  
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for 
synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement and noted source and destination must be in same file.  Noted lcpl and lapl have no effect in 
EFF. 

Man Page Status:  
No known issues. 

 

 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   95	   	   	   	   	   06/30/2014	  

4.8.2 H5Lcreate_hard_ff 

Name: H5Lcreate_hard_ff  

Signature:  
herr_t H5Lcreate_hard_ff( hid_t obj_loc_id, const char *obj_name, hid_t link_loc_id, const char *link_name, 
hid_t lcpl_id, hid_t lapl_id,hid_t trans_id, hid_t es_id  )  

Purpose:  
Creates a hard link to an object, possibly asynchronously.  

Description:  
H5Lcreate_hard_ff creates a new hard link to a pre-existing object in an HDF5 file. The new link may be 
one of many that point to that object.  

The target object must already exist in the scope for the transaction indicated by trans_id. 

obj_loc_id and obj_name specify the location and name, respectively, of the target object, i.e., the object 
that the new hard link points to.  Both obj_loc_id and obj_name must be in scope for the transaction 
identified by trans_id. 

link_loc_id and link_name specify the location and name, respectively, of the new hard link. Both 
link_loc_id and link_name must be in scope for the transaction identified by trans_id. 

obj_name and link_name are interpreted relative to obj_loc_id and link_loc_id, respectively.  

If obj_loc_id and link_loc_id are the same location, the HDF5 macro H5L_SAME_LOC can be used for 
either parameter (but not both).  

lcpl_id and lapl_id are the link creation and access property lists associated with the new link. In the EFF 
stack, neither the link creation property list nor the link access property list have any effect.  Both should be set to 
H5P_DEFAULT. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Hard and soft links are for use only if the target object is in the current file. If the desired target object is in a 
different file from the new link, an external link may be created with H5Lcreate_external.  External links 
are not currently supported in the EFF stack. 

The HDF5 library keeps a count of all hard links pointing to an object; if the hard link count reaches zero (0), the 
object will be deleted from the file. Creating new hard links to an object will prevent it from being deleted if other 
links are removed. The library maintains no similar count for soft links and they can dangle.  

Parameters:  
hid_t obj_loc_id IN: The file or group identifier for the target object. 

The identifier must be in scope for the transaction. 

const char *obj_name     IN: Name of the target object, which must already exist. 
The object name (path to the object) can be specified relative to obj_loc_id 
or absolute from the file’s root group and must be in scope for the transaction. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   96	   	   	   	   	   06/30/2014	  

hid_t link_loc_id IN: The file or group identifier for the new link. 
The identifier must be in scope for the transaction. 

const char * link_name IN: The name of the new link. 
The link name can be specified relative to link_loc_id or absolute from 
the file’s root group and must be in scope for the transaction. 

hid_t lcpl_id IN: Link creation property list identifier. 
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t lapl_id IN: Link access property list identifier. 
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t trans_id IN:  Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for 
synchronous execution. 
. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement. Noted that lcpl and lapl are unused in EFF stack. 

Man Page Status:  
No known issues. 

 

 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   97	   	   	   	   	   06/30/2014	  

4.8.3 H5Lcreate_soft_ff 

Name: H5Lcreate_soft_ff  

Signature:  
herr_t H5Lcreate_soft_ff( const char *target_path, hid_t link_loc_id,  
const char *link_name, hid_t lcpl_id,  hid_t lapl_id, hid_t trans_id, hid_t es_id )  

Purpose:  
Creates a soft link to an object, possibly asynchronously. 

Description:  
H5Lcreate_soft_ff creates a new soft link to an object in an HDF5 file. The new link may be one of many 
that point to that object.  

target_path specifies the path to the target object, i.e., the object that the new soft link points to. 
target_path can be anything and is interpreted at lookup time. This path may be absolute in the file or 
relative to link_loc_id.  

link_loc_id and link_name specify the location and name, respectively, of the new soft link. 
link_name is interpreted relative to link_loc_id .  Both link_loc_id and link_name must be in 
scope for the transaction identified by trans_id. 

lcpl_id and lapl_id are the link creation and access property lists associated with the new link. In the EFF 
stack, neither the link creation property list nor the link access property list have any effect.  Both should be set to 
H5P_DEFAULT. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

H5Lcreate_soft_ff is for use only if the target object is in the current file. If the desired target object is in a 
different file from the new link, use H5Lcreate_external to create an external link. External links are not 
currently supported in the EFF stack. 

For instance, if target_path is ./foo, link_loc_id specifies ./x/y/bar, and the name of the new 
link is new_link, then a subsequent request for ./x/y/bar/new_link will return same the object as would 
be found at ./foo.  

Soft links and external links are also known as symbolic links as they use a name to point to an object; hard links 
employ an object’s address in the file.  

Unlike hard links, a soft link in an HDF5 file is allowed to dangle, meaning that the target object need not exist at 
the time that the link is created.  

The HDF5 library does not keep a count of soft links as it does of hard links.  

Parameters:  
const char *target_path   IN: Path to the target object, which is not required to exist. 

hid_t link_loc_id IN: The file or group identifier for the new link. 
The identifier must be in scope for the transaction. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   98	   	   	   	   	   06/30/2014	  

const char *link_name  IN: The name of the new link. 
The link name can be specified relative to link_loc_id or absolute from the 
file’s root group and must be in scope for the transaction. 

hid_t lcpl_id IN: Link creation property list identifier. 
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t lapl_id IN: Link access property list identifier. 
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor 
the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement. Noted that lcpl and lapl are unused in EFF stack and that external links are unsupported. 

Man Page Status:  
No known issues. 

 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   99	   	   	   	   	   06/30/2014	  

4.8.4 H5Ldelete_ff 

Name: H5Ldelete_ff   

Signature:  
herr_t H5Ldelete_ff( hid_t loc_id, const char *name, hid_t lapl_id,  hid_t trans_id,  
hid_t es_id )  

Purpose:  
Removes a link from a group.  

Description:  
H5Ldelete_ff removes the link specified by name from the location loc_id.  Both name and loc_id 
must be in scope for the transaction indicated by trans_id. 

lapl_id specifies the link access property list. The link access property list currently has no effect in the EFF 
stack and should be set to H5P_DEFAULT. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

If the link being removed is a hard link, H5Ldelete_ff also decrements the link count for the object to which 
name points. Unless there is a duplicate hard link in that group, this action removes the object to which name 
points from the group that previously contained it.  

A reference count keeps track of how many hard links refer to an object; when the reference count reaches zero, 
the object can be removed from the file. Objects that are open are not removed until all identifiers to the object are 
closed.  

Warning:  
Exercise caution in the use of H5Ldelete_ff; if the link being removed is on the only path leading to an HDF5 
object, that object may become permanently inaccessible in the file.  

Parameters:  
hid_t loc_id IN: Identifier of the file or group containing the link object. 

Must be in scope for the transaction. 

const char *name     IN: Name of the link to delete. 
Must be in scope for the transaction. 

hid_t lapl_id IN: Link access property list identifier. 
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor 
the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   100	   	   	   	   	   06/30/2014	  

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement. Noted that lapl is not used in EFF. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   101	   	   	   	   	   06/30/2014	  

4.8.5 H5Lexists_ff 

Name: H5Lexists_ff   

Signature:  
herr_t H5Lexists_ff( hid_t loc_id, const char *name, hid_t lapl_id, hbool_t *exists,  
hid_t rcntxt_id, hid_t es_id  )  

Purpose:  
Determine whether a link with the specified name exists in a group.  

Description:  
H5Lexists_ff allows an application to determine whether the link name exists in the group or file specified 
with loc_id. The link may be of any type; only the presence of a link with that name is checked.  Both name 
and loc_id must be in scope for the read context indicated by rcntxt_id. 

The results of the existence test are put in exists. Note that this value will not be set until after the function 
completes, which may be later than when the call returns for asynchronous execution.  Traditionally the existence 
results were indicated by the function call’s return value, but with the support for asynchronous execution that is 
no longer possible and the FastForward version included the new exists parameter. 

The link access property list, lapl_id, may provide information regarding the properties of links. The link 
access property list currently has no effect in the EFF stack and should be set to H5P_DEFAULT. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Note that H5Lexists_ff verifies only that the target link exists. If name includes either a relative path 
or an absolute path to the target link, intermediate steps along the path must be verified before the 
existence of the target link can be safely checked. If the path is not verified and an intermediate element of 
the path does not exist, H5Lexists_ff will fail. The example in the next paragraph illustrates one step-
by-step method for verifying the existence of a link with a relative or absolute path.  

Example: Use the following steps to verify the existence of the link datasetD in the group 
group1/group2/softlink_to_group3/, where group1 is a member of the group specified by 
loc_id:  

• First use H5Lexists_ff to verify that group1 exists.  
• If group1 exists, use H5Lexists_ff again, this time with name set to group1/group2, to 

verify that group2 exists.  
• If group2 exists, use H5Lexists_ff with name set to 

group1/group2/softlink_to_group3 to verify that softlink_to_group3 exists.  
• If softlink_to_group3 exists, you can now safely use H5Lexists_ff with name set to 

group1/group2/softlink_to_group3/datasetD to verify that the target link, 
datasetD, exists.  

If the link to be verified is specified with an absolute path, the same approach should be used, but starting with the 
first link in the file’s root group. For instance, if datasetD were in 
/group1/group2/softlink_to_group3, the first call to H5Lexists_ff would have name set to 
/group1.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   102	   	   	   	   	   06/30/2014	  

Note that this is an outline and does not include all necessary details. Depending on circumstances, for example, 
you may need to verify that an intermediate link points to a group and that a soft link points to an existing target.  

Parameters:  
hid_t loc_id  IN: Identifier of the file or group to query.  

const char *name      IN: The name of the link to check.  

hid_t lapl_id  IN: Link access property list identifier.  
Currently not used in EFF; specify H5P_DEFAULT. 

hbool_t *exists OUT: Pointer to returned results indicating existence of link.  When successful, will be a 
positive value to indicate the link exists and 0 (zero) if the link does not exist.  The value 
pointed to will not be modified if the existence test failed for some reason. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. When the asynchronous execution 
completes successfully, exists will contain the existence test results. 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to read context id and from event queue to event stack. Added scope 
requirement. Noted that link access property list is not used. 

Man Page Status:  
No known issues. 

 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   103	   	   	   	   	   06/30/2014	  

4.8.6 H5Lget_info_ff 

Name: H5Lget_info_ff   

Signature:  
herr_t H5Lget_info_ff( hid_t loc_id,  const char *name, H5L_ff_info_t *link_info,  
hid_t lapl_id, hid_t rcntxt_id,  hid_t es_id )  

Purpose:  
Retrieve the metadata for a link.  

Description:  
H5Lget_info_ff retrieves the metadata for the specified link and puts it into the struct H5L_ff_info_t.  

An H5L_ff_info_t struct is defined (in H5FFpublic.h) as follows : 
typedef struct H5L_ff_info_t{ 
    H5L_type_t     type; 
    H5T_cset_t     cset; 
    union { 
        haddr_ff_t  address; 
        size_t      val_size; 
    } u; 
} H5L_ff_info_t; 

lapl_id indicates the link access property list for this operation. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when 
the function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t loc_id     IN: Location identifier of the link  

May be any file or group identifier that is in scope for the read context. 

const char *name     IN: Name of the link 
The name of the link can be specified relative to loc_id, absolute from the 
file’s root group, or '.' (a dot), and must be in scope for the read context. 

H5L_ff_info_t *link_info OUT: Buffer in which to return link information. 

hid_t lapl_id IN: Link access property list. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for 
synchronous execution 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. When the asynchronous 
execution completes successfully, link_info will contain all the metadata values for that link. 

History:  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   104	   	   	   	   	   06/30/2014	  

Implemented in Q6; Man page added in Q8. 
 
Man Page Status:  

No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   105	   	   	   	   	   06/30/2014	  

4.8.7 H5Lget_val_ff 

Name: H5Lget_val_ff   

Signature:  
herr_t H5Lget_val_ff( hid_t loc_id,  const char *name, void *buf, size_t size, 
hid_t lapl_id, hid_t rcntxt_id,  hid_t es_id )  

Purpose:  
Retrieve the link value for the named link.  

Description:  
H5Lget_val_ff returns the link value of a link specified by the combination of loc_id and name.  
For symbolic links, the link value is the path to which the link points, including the null terminator.   For 
user-defined links, it is the link buffer.   

At most size bytes are copied into the buf result buffer. 

lapl_id indicates the link access property list for this operation. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when 
the function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.   

When asynchronous execution is used, wait for the completion of the operation before reading the results 
from buf. 

Parameters:  
hid_t loc_id     IN: Location identifier of the link  

May be any file or group identifier that is in scope for the read context. 

const char *name     IN: Name of the link 
The name of the link can be specified relative to loc_id, absolute from the 
file’s root group, or '.' (a dot), and must be in scope for the read context. 

void *buf OUT: Buffer in which to return link value 

size_t size IN: Maximum number of bytes copies into the result buffer. 

hid_t lapl_id IN: Link access property list. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for 
synchronous execution 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  Also updates *buf if 
successful. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. When the asynchronous 
execution completes successfully, *buf will contain the value for that link. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   106	   	   	   	   	   06/30/2014	  

History:  
Implemented in Q6; Man page added in Q8. 

 
Man Page Status:  

No known issues. 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   107	   	   	   	   	   06/30/2014	  

4.8.8 H5Lmove_ff 

Name: H5Lmove_ff  

Signature:  
herr_t H5Lmove_ff( hid_t src_loc_id, const char *src_name, hid_t dest_loc_id,  
const char *dest_name, hid_t lcpl_id, hid_t lapl_id, hid_t trans_id, hid_t es_id )  

Purpose:  
Moves a link within an HDF5 file, possibly asynchronously.  

Description:  
H5Lmove_tt moves a link within an HDF5 file. The original link, src_name, is removed from 
src_loc_id and the new link, dest_name, is inserted at dest_loc_id. This change is accomplished as 
an atomic operation.  

src_loc_id and src_name identify the original link. src_loc_id is either a file or group identifier; 
src_name is the path to the link and is interpreted relative to src_loc_id.  dest_loc_id and 
dest_name identify the new link. dest_loc_id is either a file or group identifier; dest_name is the path 
to the link and is interpreted relative to dest_loc_id. 

src_loc_id and dest_loc_id must reference locations in the same file in the EFF stack.  
src_loc_id, src_name, dest_loc_id, and dest_name must all be in scope for the transaction 
identified by trans_id. 

Note that H5Lmove_tt does not modify the value of the link; the new link points to the same object as the 
original link pointed to. Furthermore, if the object pointed to by the original link was already open with a valid 
object identifier, that identifier will remain valid after the call to H5Lmove_tt.  

lcpl_id and lapl_id are the link creation and link access property lists, respectively, associated with the 
new link, dest_name.   Neither of these property lists currently have any effect in the EFF stack and  

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Warning:  
Exercise care in moving links, as it is possible to render data in a file inaccessible with H5Lmove. If the link 
being moved is on the only path leading to an HDF5 object, that object may become permanently inaccessible in 
the file.  

Parameters:  
hid_t src_loc_id IN: Original file or group identifier. 

const char *src_name     IN: Original link name. 

hid_t dest_loc_id IN: Destination file or group identifier. 

const char *dest_name IN: New link name. 

hid_t lcpl_id IN: Link creation property list identifier to be associated with the new link. 
Currently not used in EFF; specify H5P_DEFAULT. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   108	   	   	   	   	   06/30/2014	  

hid_t lapl_id IN: Link access property list identifier to be associated with the new link. 
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for 
synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement and noted source and destination must be in same file.  Updated text in property list 
description to match what EFF stack supports. 

Man Page Status:  
No known issues. 

 
 

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   109	   	   	   	   	   06/30/2014	  

4.9 H5M:	  Map	  APIs	  

These routines are used to read or write HDF5 Map objects, which were added to support ACG 
use cases. Map objects, which offer a key-value store data structure, should also have wide 
applicability to other application. 

Map objects in HDF5 are similar to a typical “map” data structure in computer science, and are 
implemented in the EFF stack using IOD Key-Value objects.   

HDF5 maps set/get a value in the object, according to the key provided, with a 1-1 mapping of 
keys to values.  All keys for a given map object must be of the same HDF5 datatype.  All values 
for a given map object must be of the same HDF5 datatype. 

HDF5 maps are leaf objects in the group hierarchy within a container.  Attributes can be 
attached to map objects. 

Map APIs were designed for the EFF stack and also for the traditional HDF5 Binary HDF5 file 
format storage.  EFF-specific versions have the “_ff” suffix and include one or more of (1) a read 
context id, (2) a transaction id, and/or (3) an event stack id.   The Map APIs for the traditional 
HDF5 format do not have the _ff suffix or the parameters listed, and have not been 
implemented or explicitly included in this section.   

These routines did not exist prior to the Exascale FastForward project. 

 

Routine Implemented Notes 

H5Mclose_ff Quarter 5  

H5Mcreate_ff Quarter 5  

H5Mdelete_ff Quarter 5  

H5Mevict_ff Quarter 7  

H5Mexists_ff Quarter 5  

H5Mget_ff Quarter 5  

H5Mget_count_ff Quarter 5  

H5Mget_types_ff Quarter 5  

H5Miterate_ff  Not implemented in prototype. 

H5Mopen_ff Quarter 5  

H5Mprefetch_ff Quarter 7  

H5Mset_ff Quarter 5  
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   110	   	   	   	   	   06/30/2014	  

4.9.1 H5Mclose_ff 

Name: H5Mclose_ff   

Signature:  
herr_t H5Mclose_ff( hid_t map_id, hid_t es_id  )  

Purpose:  
Close the specified map object, possibly asynchronously. 

Description:  
H5Mclose_ff ends access to the map object specified by map_id and releases resources used by it. Further 
use of the map identifier is illegal in calls to the map API. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.   

Parameters:  
hid_t map_id  IN: Identifier of the map object to close access to.  

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 

 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   111	   	   	   	   	   06/30/2014	  

4.9.2 H5Mcreate_ff 

Name: H5Mcreate_ff   

Signature:  
hid_t  H5Mcreate_ff ( hid_t loc_id,  const char *name,  hid_t keytype_id,  hid_t valtype_id,  
hid_t lcpl_id,  hid_t mcpl_id,  hid_t mapl_id, hid_t trans_id, hid_t es_id )  

Purpose:  
Create a new map object and link it into the file, possibly asynchronously. 

Description:  
H5Mcreate_ff creates a new map object named name at the location specified by loc_id.  

loc_id may be a file identifier or a group identifier. name may be either an absolute path in the file or a relative 
path from loc_id naming the map object.  Both loc_id and name must be in scope for the transaction 
identified by trans_id. 

keytype_id specifies the datatype for all keys in the map object and valtype_id specifies the datatype for 
all values in the object.   

If keytype_id or valtype_id are either fixed-length or variable-length strings, it is important to set the 
string length when defining the datatype. String datatypes are derived from H5T_C_S1, which defaults to 1 
character in size. See H5Tset_size and “Creating variable-length string datatypes.”  

The EFF stack currently does not support variable-length datatypes for keys. 

The link creation property list, lcpl_id, governs creation of the link(s) by which the new map object is 
accessed and the creation of any intermediate groups that may be missing. In the EFF stack, automatic creation of 
missing intermediate groups (controlled by H5Pset_create_intermediate_group) is not supported and 
none of the properties in the link creation property list currently have any effect.   

The map creation property list, mcpl_id, and map access property list, mapl_id, modify the new map object’s 
behavior.    

H5P_DEFAULT must be used for all three of the property list parameters in the current EFF implementation.  

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

To conserve and release resources, the map object id returned from this routine must be closed with H5Mclose 
when access is no longer required.  

Parameters:  
hid_t loc_id  IN: Location identifier  

May be any HDF5 group identifier or file identifier that is in scope for the transaction 

const char *name      IN: name  
The map object name (path to the map object) can be specified relative to loc_id or 
absolute from the file’s root group, and must be in scope for the transaction. 

hid_t keytype_id  IN: Datatype identifier for the map keys 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   112	   	   	   	   	   06/30/2014	  

hid_t valtype_id  IN: Datatype identifier for the map values 

hid_t lcpl_id  IN: Link creation property list  
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t mcpl_id  IN: Map creation property list  
Currently not used; specify H5P_DEFAULT. 

hid_t mapl_id  IN: Map access property list  
Currently not used; specify H5P_DEFAULT. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 
 

Returns:  
Returns a map object identifier if successful; otherwise returns a negative value. When executed 
asynchronously, a future ID for the new map object is returned initially.  Upon completion of the 
asynchronous operation, the future ID will be transparently modified to be a “normal” map object 
identifier. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 5. 
 

Man Page Status:  
No known issues. 
 

	  
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   113	   	   	   	   	   06/30/2014	  

4.9.3 H5Mdelete_ff 

Name: H5Mdelete_ff   

Signature:  
herr_t H5Mdelete_ff( hid_t map_id, hid_t key_mem_type_id, const void *key,  hid_t trans_id,  
hid_t es_id )  

Purpose:  
Delete a key/value pair from a map object.  

Description:  
H5Mdelete_ff removes a key/value pair from the map object given by map_id.  map_id must be in scope 
for the transaction indicated by trans_id. 

The key parameter points to the key of the map entry (the key/value pair) that will be deleted, and 
key_mem_type_id specifies the datatype of the key parameter.  

If key_mem_type_id is not the same as the datatype of the keys in the map object, the key parameter will 
automatically undergo datatype conversion in order to locate the correct key in the map object. 

If the key is not in the map file, a negative value will be returned if the routine is called synchronously (es_id is 
H5_EVENT_STACK_NULL).  If the routine is called asynchronously, the completion status of the asynchronous 
operation will be H5ES_STATUS_FAIL. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t map_id IN: Identifier of the map object. 

Must be in scope for the transaction. 

hid_t key_mem_type_id IN: Datatype of the key parameter. 

const void *key IN: Pointer to key of the map key/value pair that will be deleted. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a 
part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be 
used to monitor the status of the event associated with this function 
call when executed asynchronously. Use 
H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 

History:  

Added in Quarter 5. 

Man Page Status:  
No known issues. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   114	   	   	   	   	   06/30/2014	  

 
4.9.4 H5Mevict_ff 

Name: H5Mevict_ff 

Signature:  
herr_t H5Mevict_ff( hid_t map_id, uint64_t container_version, hid_t dxpl_id,  
hid_t es_id )  

Purpose:  
Evict map object from the burst buffer, possibly asynchronously. 

Description:  
H5Mevict_ff evicts data associated with a map object from the burst buffer.   

The data to be evicted may be resident in the burst buffer under two different scenarios 

In the first scenario, the data is resident in the burst buffer as the result of updates to the map object made via the 
EFF transaction model.  For example, through calls to H5Mcreate_ff or H5Mset_ff.  These calls add updates to a 
transaction that are atomically applied to the map object when the transaction is committed, and we refer to this 
data as transaction update data.   

When evicting transaction update data, the container version being evicted should first be persisted to permanent 
storage (DAOS), with the H5RCpersist command. The map object’s transaction update data for the 
specified container version, as well as the map object’s transaction update data for all lower-numbered container 
versions that has not yet been evicted from the burst buffer, will be evicted as the result of this call.  If evicting the 
data would result in container versions with open read contexts becoming inaccessible, the evict will fail. 

In the second scenario, the data is resident in the burst buffer as the result of a call to H5Mprefetch_ff.  This call 
replicates data from persistent storage (DAOS) to the burst buffer, and we refer to this data as replica data.  When 
replica data is evicted, only data in the burst buffer as a result of the exact replica specified is evicted – transaction 
update data and other replicas for the dataset remain in the burst buffer. 

The map_id parameter specifies the map object whose data is to be evicted. 

The version of the map object to be evicted is specified by the container_version property.   	  

The replica property in the transfer property list,  dxpl_id, is used to specify that a map replica is to be evicted. 
H5Pset_dxpl_replica() sets the replica property.  If this is set, then replia data will be evicted, otherwise 
transaction update data will be evicted. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Limitations / Future Considerations:  
When evicting a replica, the container_version argument is redundant, as the replica identifier fully 
specifies the data to be evicted.   Consider revisiting and possibly revising the API prior to production release.  
Possibly have separate evict commands for eviction of transaction update data and of replicas. 

For other potential extensions that are beyond the scope of the EFF prototype project, refer to the document Burst 
Buffer Space Management – Prototype to Production. 

Parameters:  
hid_t map_id IN: Identifier of the map object being evicted. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   115	   	   	   	   	   06/30/2014	  

uint64_t  container_version IN: Container version specifying what version of the map object to evict. 

hid_t mapl_id     IN: Identifier of an access property list.  If the access property list contains 
an evict replica property (set via H5Pset_evict_replica()), then 
the replica_id specified by that property will be evicted. 

hid_t es_id IN: The es_id parameter indicates the event stack the event object 
for this call should be pushed onto when the function is executed 
asynchronously. The function may be executed synchronously by 
passing in H5_EVENT_STACK_NULL for the es_id parameter.  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. 

 
History:  

Added in Quarter 7. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   116	   	   	   	   	   06/30/2014	  

4.9.5 H5Mexists_ff 

Name: H5Mexists_ff   

Signature:  
herr_t H5Mexists_ff( hid_t map_id, hid_t key_mem_type_id, const void *key, hbool_t *exists,  
hid_t rcntxt_id,  hid_t es_id )  

Purpose:  
Determine whether a key exists in a map object, possibly asynchronously. 
 

Description:  
H5Mexists_ff determines whether the key, key, exists in the map object specified by map_id.  map_id 
must be in scope for the read context identified by rcntxt_id.  

The key parameter points to the key whose existence is being checked, and key_mem_type_id specifies 
the datatype of the key parameter.  

If key_mem_type_id is not the same as the datatype of the keys in the map object, the key parameter will 
automatically undergo datatype conversion in order to locate the correct key in the map object. 

The results of the existence test are put in exists. Note that this value will not be set until after the function 
completes, which may be later than when the call returns for asynchronous execution.   

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t map_id IN: Identifier of the map object. 

Must be in scope for the read context. 

hid_t key_mem_type_id IN: Datatype of the key parameter. 

const void *key IN: Pointer to key whose existence in the map object is being checked. 

hbool_t *exists OUT: Pointer to returned results indicating existence of key.  When successful, will 
be a positive value to indicate the key exists in the map object and 0 (zero) if the 
key does not exist.  The value pointed to will not be modified if the existence test 
fails with an error. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   117	   	   	   	   	   06/30/2014	  

operation must be checked separately through the event stack.  When the asynchronous execution 
completes successfully, exists will contain the existence test results. 
 

History:  
Added in Quarter 5. 

 
Man Page Status:  

No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   118	   	   	   	   	   06/30/2014	  

4.9.6 H5Mget_ff 

Name: H5Mget_ff   

Signature:  
herr_t H5Mget_ff( hid_t map_id, hid_t key_mem_type_id,  const void *key,  
hid_t val_mem_type_id, void *value, hid_t dxpl_id, hid_t rcntxt_id,  hid_t es_id )  

Purpose:  
Retrieve the value for a given key from a map object, possibly asynchronously. 
 

Description:  
H5Mget_ff retrieves the value for the key, key, from the map object specified by map_id.  map_id must be 
in scope for the read context identified by rcntxt_id.  

The key parameter points to the memory buffer holding the key whose value is being retrieved; 
key_mem_type_id specifies the datatype of the key parameter.  

The value parameter points to the memory buffer where the value should be stored; val_mem_type_id 
specifies the datatype of the value parameter.  

If key_mem_type_id is not the same as the datatype of the keys in the map object, the key parameter will 
automatically undergo datatype conversion in order to locate the correct key in the map object. If 
val_mem_type_id is not the same as the datatype of the values in the map object, the value retrieved will 
automatically undergo datatype conversion when placed in the value buffer. 

The data transfer property list, dxpl_id, may modify the operation’s behaviour.  When the user sets a property 
(via a call to H5Pset_dxpl_checksum_ptr) to pass a checksum pointer to the library, the checksum for 
value (not key) is placed at the pointer location when the operation completes.  To get from a replica that was 
previously brought into the burst buffer by a call to H5Mprefetch_ff,  use the read replica property in the data 
transfer property list.  The call H5Pset_dxpl_replica() sets the read replica property.   

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when 
the function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t map_id IN: Identifier of the map object. 

Must be in scope for the read context. 

hid_t key_mem_type_id IN: Datatype of the key parameter. 

const void *key IN: Pointer to key whose value is being retrieved. 

hid_t val_mem_type_id IN: Datatype of the value parameter. 

void *value OUT: Pointer to buffer for the retrieved value. 

hid_t dxpl_id IN: Data transfer property list. If specified, the read replica property directs the get 
to access pre-fetched data. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   119	   	   	   	   	   06/30/2014	  

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 5. 
Quarter 7: Added information about gets from prefetched replicas. 

 
Man Page Status:  

No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   120	   	   	   	   	   06/30/2014	  

4.9.7 H5Mget_count_ff 

Name: H5Mget_count_ff   

Signature:  
herr_t H5Mget_count_ff( hid_t map_id, hsize_t *count,  hid_t rcntxt_id,  hid_t es_id )  

Purpose:  
Retrieve the number of key/value pairs in a map object, possibly asynchronously. 
 

Description:  
H5Mget_count_ff retrieves the number of key/value pairs in the map object specified by map_id.  map_id 
must be in scope for the read context identified by rcntxt_id.  

The number of pairs is returned in count. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t map_id IN: Identifier of the map object. 

Must be in scope for the read context. 

hsize_t *count OUT: The number of key/value pairs in the map object. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 5. 

 
Man Page Status:  

No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   121	   	   	   	   	   06/30/2014	  

4.9.8 H5Mget_types_ff 

Name: H5Mget_types_ff   

Signature:  
herr_t H5Mget_types_ff( hid_t map_id, hid_t *key_type_id,  hid_t *val_type_id,  
hid_t rcntxt_id,  hid_t es_id )  

Purpose:  
Retrieve the datatypes for the keys and values of a map object, possibly asynchronously. 
 

Description:  
H5Mget_types_ff retrieves the datatypes for the keys and values of the map object specified by map_id.  
map_id must be in scope for the read context identified by rcntxt_id.  

The datatype of the keys is returned in key_type_id and the datatype of the values is returned in  
val_type_id.  

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t map_id IN: Identifier of the map object. 

Must be in scope for the read context. 

hid_t *key_type_id OUT: Datatype of the keys in the map object. 

hid_t *val_type_id OUT: Datatype of the values in the map object. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 5. 

 
Man Page Status:  

No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   122	   	   	   	   	   06/30/2014	  

4.9.9 H5Miterate_ff 

Name: H5Miterate_ff  

Signature:  
herr_t H5Miterate_ff( hid_t map_id, hid_t key_mem_type_id,  hid_t val_mem_type_id,  
H5M_iterate_func_t callback_func, void *func_data, hid_t rcntxt_id ) 

Purpose:  
Iterate over the key/value pairs in a map object, possibly asynchronously. 
 

Description:  
H5Miterate_ff iterates over the key/values pairs in the specified map object and invokes a user-defined 
callback routine for each pair in the map. 

The map object to be iterated over is specified by map_id.  map_id must be in scope for the read context 
identified by rcntxt_id.  

key_mem_type_id and val_mem_type_id specify the datatypes for the keys and values that will be 
presented to the callback routine. 

The user-defined callback function, specified by callback_func, is invoked for each pair in the map and 
passed the key, value, and user-provided func_data.   Note that func_data can include a transaction id or 
read context, allowing the user’s callback function to do updates to or reads from an HDF5 container as part of its 
operation. 

The prototype for H5M_iterate_func_t is: 

typedef herr_t (*H5M_iterate_func_t)(const void *key, const void *value, 
void *func_data); 

The iteration callback routine should obey the same rules as other HDF5 iteration callbacks: return 
H5_ITER_ERROR for an error condition (which will stop iteration), H5_ITER_CONT for success (with 
continued iteration) and H5_ITER_STOP for success (and stop iteration). 

rcntxt_id indicates the read context for this operation. 

There is no asynchronous execution option for this function because the user callback function cannot be invoked 
asynchronously. 

Parameters:  
hid_t map_id IN: Identifier of the map object. 

Must be in scope for the read context. 

hid_t key_mem_type_id IN: Datatype for the key that is presented to the callback routine. 

hid_t val_mem_type_id IN: Datatype for the value that is presented to the callback 
routine. 

H5M_iterate_func_t callback_func IN: User's function to pass each attribute to 

void *func_data IN/OUT: User's data to pass through to callback function 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

Returns:  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   123	   	   	   	   	   06/30/2014	  

Returns a non-negative value if successful; otherwise returns a negative value. 
 

History:  
Quarter 5: Man page added but not yet implemented. 

Man Page Status:  
No known issues. 
Future consideration:  Should this have a dxpl so that values can be checksummed? 
Future consideration:  Should you be able to specify a replica id so you can read from prefetched data? 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   124	   	   	   	   	   06/30/2014	  

4.9.10 H5Mopen_ff 

Name: H5Mopen_ff   

Signature:  
hid_t H5Mopen_ff( hid_t loc_id,  const char *name,  hid_t mapl_id, hid_t rcntxt_id,  
hid_t es_id)  

Purpose:  
Open an existing map object possibly asynchronously. 

Description:  
H5Mopen_ff opens the existing map object specified by loc_id and name.  

loc_id may be a file identifier or a group identifier. name may be either an absolute path in the file or a relative 
path from loc_id naming the map object.  Both loc_id and name must be in scope for the read context 
identified by rcntxt_id. 

The map access property list, mapl_id, provides information regarding access to the map object. The map 
access property list currently has no effect and should be set to H5P_DEFAULT. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.   

To conserve and release resources, the map object should be closed with H5Mclose_ff when access is no 
longer required.  

Parameters:  
hid_t loc_id  IN: Location identifier  

May be any HDF5 group identifier or file identifier that is in scope for the read context. 

const char *name      IN: Map object name 
The map object name (path to the map object) can be specified relative to loc_id or 
absolute from the file’s root group, and must be in scope for the read context.  

hid_t mapl_id  IN: Map object access property list  
Currently not used; specify H5P_DEFAULT. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t eq_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a map object identifier if successful; otherwise returns a negative value. When executed 
asynchronously, a future ID for the map object is returned initially.  Upon completion of the asynchronous 
operation, the future ID will be transparently modified to be a “normal” map object identifier. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   125	   	   	   	   	   06/30/2014	  

History:  
Added in Quarter 5. 
 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   126	   	   	   	   	   06/30/2014	  

4.9.11 H5Mprefetch_ff 

Name: H5Mprefetch_FF   

Signature:  
herr_t H5Mprefetch_ff( hid_t map_id, hid_t rcntxt_id, hid_t *replica_id, hid_t dxpl_id,  
hid_t es_id )  

Purpose:  
Prefetch all or part of a map object from persistent storage to burst buffer storage, possibly asynchronously. 

Description:  
H5Mprefetch_ff prefetches all or part of a map object, specified by its identifier map_id, from persistent 
storage (DAOS) into burst buffer storage.    

rcntxt_id indicates the read context for this operation. 

replica_id, the replica identifier, is set to indicate where the pre-fetched key-value data can be found in the 
burst buffer, and is passed to subsequent H5Mget_ff and H5Mevict_ff calls. 

dxpl_id, a data transfer property list identifier, is used to specify partial maps (key range selection) and control 
layout of the fetched data on the burst buffers. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The replica_id is not valid until the operation has completed, if it is executing asynchronously. 

Limitations / Future Considerations:  
For the EFF prototype project, only the primay IOD KV object associated with the HDF5 map will be prefetched; 
auxiliary IOD objects (including the Blob objects that hold variable-length data) remain on persistent storage 
(DAOS).  For more information, and other potential extensions, refer to the document Burst Buffer Space 
Management – Prototype to Production. 

In the EFF prototypeproject, only the H5Mget_ff routine accepts the replica_id and can read from prefetched map 
objects.   Other routines, such as H5Mexists_ff, should also be able to access the prefetched data in a production 
release.  

In Quarter 7, only complete maps and the default layout are supported. 

Parameters:  
hid_t map_id IN: Identifier of the map being prefetched. 

map_id must be in scope for the read context. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t * replica_id IN: Identifier of the replicated data in the burst buffer. 

hid_t mapl_id     IN: Identifier of an access property list for this I/O operation. 

hid_t es_id IN: The es_id parameter indicates the event stack the event object for this call 
should be pushed onto when the function is executed asynchronously. The 
function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Returns:  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   127	   	   	   	   	   06/30/2014	  

Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 7. 

Man Page Status:  
Will need updates in Quarter 8 when additional features are implemented. 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   128	   	   	   	   	   06/30/2014	  

4.9.12 H5Mset_ff 

Name: H5Mset_ff   

Signature:  
herr_t H5Mset_ff( hid_t map_id, hid_t key_mem_type_id,  const void *key,  
hid_t val_mem_type_id,  const void *value, hid_t dxpl_id, hid_t trans_id,  hid_t es_id )  

Purpose:  
Set the value for a given key in a map object, possibly asynchronously. 
 

Description:  
H5Mset_ff sets the value for a key in a map object.  If the key did not exist in the map object previously, this 
function creates a new key/value pair in the map.  If the key already existed in the map object, this function 
overwites the previous value in the existing key/value pair. 

The map object is specified by map_id, which must be in scope for the transaction identified by trans_id.  

The key parameter points to the memory buffer holding the key whose value is being set; 
key_mem_type_id specifies the datatype of the key parameter.  

The value parameter points to the memory buffer of the value that will be stored; val_mem_type_id 
specifies the datatype of the value parameter.  

If key_mem_type_id is not the same as the datatype of the keys in the map object, the key parameter will 
automatically undergo datatype conversion in order to locate the correct key in the map object. If 
val_mem_type_id is not the same as the datatype of the values in the map object, the value parameter 
will automatically undergo datatype conversion when stored in the map object. 

The data transfer property list, dxpl_id, may modify the operation’s behaviour.  When the user sets a 
property (via a call to H5Pset_dxpl_checksum) to pass a checksum, the checksum given should be for 
value (not key).   

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when 
the function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t map_id IN: Identifier of the map object. 

Must be in scope for the transaction. 

hid_t key_mem_type_id IN: Datatype of the key parameter. 

const void *key IN: Pointer to key whose value is being set. 

hid_t val_mem_type_id IN: Datatype of the value parameter. 

const void *value IN: Pointer to buffer holding the new value. 

hid_t dxpl_id IN: Data transfer property list. 

hid_t  trans_id IN: Transaction identifier indicating the transaction this operation is part of. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   129	   	   	   	   	   06/30/2014	  

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 5. 

 
Man Page Status:  

No known issues. 

 
 

 

 
 

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   130	   	   	   	   	   06/30/2014	  

4.10 H5O:	  Object	  APIs	  
These routines are used to operate on HDF5 Objects, and are designed to be used in 
conjunction with the Link APIs (H5L). 

The routines ending in _ff have different signatures than the standard HDF5 library routines. 

Man pages for routines whose user interface is unchanged from the standard HDF5 
implementation can be found at: http://www.hdfgroup.org/HDF5/doc/RM/RM_H5O.html. 

 

Routine Implemented Notes 

H5Oclose_ff Quarter 4  

H5Oexists_by_name_ff Quarter 4  

H5Oget_comment_ff Quarter 4  

H5Oget_comment_by_name_ff Quarter 4  

H5Oget_info_ff Quarter 6  

H5Oget_info_by_name_ff Quarter 6  

H5Oget_token Quarter 6  

H5Olink_ff Quarter 4  

H5Oopen_ff Quarter 5 Q5: Changed from standard HDF5 H5Oopen, 
which was implemented in Q4. 

H5Oopen_by_token Quarter 6  

H5Oset_comment_ff Quarter 4  

H5Oset_comment_by_name_ff Quarter 4  

H5Ovisit_ff  Not implemented in prototype. 

H5Ovisit_by_name_ff  Not implemented in prototype. 

H5Oincr_ref_count  Not implemented in prototype. 

H5Odecr_ref_count  Not implemented in prototype. 

H5Ocopy_ff  

Q5: Wjill not implement for prototype. Early 
version done in Q4, but very limited 
functionality or value without support for 
object copies from lower layers in the stack. 
Cross-container copies with transactions 
raise additional issues so removed. 

H5Oopen_by_addr  Doesn’t make sense for FF storage. Will not 
implement 

H5Oget_info_by_idx  Not implemented in prototype. 

H5Oopen_by_idx  Not implemented in prototype. 
 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   131	   	   	   	   	   06/30/2014	  

4.10.1 H5Oclose_ff 

Name: H5Oclose_ff  

Signature:  
herr_t H5Oclose_ff( hid_t object_id, hid_t es_id )  

Purpose:  
Close an object in an HDF5 file, possibly asynchronously.  

Description:  
H5Oclose_ff closes the group, dataset, map, or named datatype specified by object_id.  

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

This function is the companion to H5Oopen_ff, and has the same effect as calling H5Gclose_ff, 
H5Dclose_ff, H5Fclose_ff, or H5Tclose_ff.  

H5Oclose_ff is not used to close a dataspace, attribute, property list, or file.  

Parameters:  
hid_t object_id      IN: Object identifier  

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor 
the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4.   
Quarter 5: Changed from from event queue to event stack.  Added map object. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   132	   	   	   	   	   06/30/2014	  

4.10.2 H5Oexists_by_name_ff 

Name: H5Oexists_by_name_ff  

Signature:  
herr_t H5Oexists_by_name_ff( hid_t loc_id, const char * name, hbool_t *exists,  
hid_t lapl_id, hid_t rcntxt_id,  hid_t es_id  )   

Purpose:  
Determine whether a link resolves to an actual object, possibly asynchronously.  

Description:  
H5Oexists_by_name_ff allows an application to determine whether the link name in the group or file 
specified by loc_id resolves to an HDF5 object or if the link dangles. The link may be of any type, but hard 
links will always resolve to objects and do not need to be verified. The EFF stack currently does not support 
external or user-defined links. loc_id and name must both be in scope for the read context identified by 
rcntxt_id. 

The results of the existence test are put in exists. Note that this value will not be set until after the function 
completes, which may be later than when the call returns for asynchronous execution.  Traditionally the existence 
results were indicated by the function call’s return value, but with the support for asynchronous execution that is 
no longer possible and the FastForward version included the new exists parameter. 

rcntxt_id indicates the read context for this operation. 

The link access property list, lapl_id, may provide information regarding the properties of links. The link 
access property list currently has no effect in the EFF stack and should be set to H5P_DEFAULT. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when 
the function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Note that H5Oexists_by_name_ff only verifies that the target object exists. If name includes either a 
relative path or an absolute path to the target link, intermediate steps along the path must be verified before 
the existence of the target link can be safely checked. If the path is not verified and an intermediate 
element of the path does not exist, H5Oexists_by_name_ff will fail. The example in the next 
paragraph illustrates one step-by-step method for verifying the existence of a link with a relative or 
absolute path.  

Example: Use the following steps to verify the existence of the link datasetD in the group 
group1/group2/softlink_to_group3/, where group1 is a member of the group specified by 
loc_id:  

• First use H5Lexists_ff to verify that a link named group1 exists.  
• If group1 exists, use H5Oexists_by_name_ff to verify that the link group1 resolves to 

an object.  
• If group1 exists, use H5Lexists_ff again, this time with name set to group1/group2, to 

verify that the link group2 exists in group1.  
• If the group2 link exists, use H5Oexists_by_name_ff to verify that group1/group2 

resolves to an object.  
• If group2 exists, use H5Lexists_ff again, this time with name set to 

group1/group2/softlink_to_group3, to verify that the link softlink_to_group3 
exists in group2.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   133	   	   	   	   	   06/30/2014	  

• If the softlink_to_group3 link exists, use H5Oexists_by_name_ff to verify that 
group1/group2/softlink_to_group3 resolves to an object.  

• If softlink_to_group3 exists, you can now safely use H5Lexists_ff with name set to 
group1/group2/softlink_to_group3/datasetD to verify that the target link, 
datasetD, exists.  

• And finally, if the link datasetD exists, use H5Oexists_by_name_ff to verify that 
group1/group2/softlink_to_group3/datasetD resolves to an object.  

If the link to be verified is specified with an absolute path, the same approach should be used, but starting 
with the first link in the file’s root group. For instance, if datasetD were in 
/group1/group2/softlink_to_group3, the first call to H5Lexists_ff would have name set 
to /group1.  

Note that this is an outline and does not include all necessary details. Depending on circumstances, for 
example, an application may need to verify the type of an object also.  

Parameters:  
hid_t loc_id  IN: Identifier of the file or group to query.  

Must be in scope for the read context. 

const char *name  IN: The name of the link to check.  
Must be in scope for the read context. 

hbool_t *exists IN: Pointer to returned results indicating existence of link.  When successful, will 
be a positive value to indicate the link exists and 0 (zero) if the link does not exist.  
The value pointed to will not be modified if the existence test failed for some 
reason. 

hid_t lapl_id  IN: Link access property list identifier.  
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. When the asynchronous execution 
completes successfully, exists will contain the existence test results. 

History:  
Added in Quarter 4. 
Quarter 5: Changed from transaction to read context id and from event queue to event stack. Added scope 
requirement and note that property list currently not used in EFF. 

Future Considerations:  
Order of parameters exists and lapl_id was reversed in initial design.  Man page reflects 
implementation. May want to swap back prior to production release, or modify in 
H5Aexists_by_name_ff for consistency. 

Man Page Status:  
No known issues. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   134	   	   	   	   	   06/30/2014	  

 
 
4.10.3 H5Oget_comment_ff 

Name: H5Oget_comment_ff   

Signature:  
herr_t H5Oget_comment_ff( hid_t object_id, char *comment, size_t bufsize,  
ssize_t *comment_size,  hid_t rcntxt_id, hid_t es_id  )  

Purpose:  
Retrieve comment for specified object, possibly asynchronously.  

Description:  
H5Oget_comment_ff retrieves the comment for the specified object and puts it into the buffer 
comment.  

The object with the comment is specified by the identifier object_id.  object_id must be in scope 
for the read context specified by rcntxt_id. 

The size in bytes of the buffer comment, including the NULL terminator, is specified in bufsize. If 
bufsize is unknown, a preliminary H5Oget_comment_ff call with the pointer comment set to 
NULL will report the size of the comment without the NULL terminator.  

If bufsize is set to a smaller value than described above, only bufsize bytes of the comment, without 
a NULL terminator, are returned in comment.  

If an object does not have a comment, the empty string is returned in comment.  

Upon success, the number of characters in the comment, not including the NULL terminator, or zero (0) if the 
comment has no comment, is put in comment_size. The value returned in comment_size may be larger 
than bufsize. On failure, comment_size will contain a negative value. Note that this value will not be set 
until after the function completes, which may be later than when the call returns for asynchronous execution.  
Traditionally the comment size was indicated by the function call’s return value, but with the support for 
asynchronous execution that is no longer possible and the FastForward version included the new 
comment_size parameter. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when 
the function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t object_id     IN: Identifier for the object whose comment is to be retrieved. 

Must be in scope for the read context. 

char *comment OUT: The comment. 

size_t bufsize IN: Anticipated required size of the comment buffer. 

ssize_t *comment_size OUT: Pointer to returned results indicating comment size.  When successful, will 
contain the number of characters in the comment, not including the NULL 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   135	   	   	   	   	   06/30/2014	  

terminator, or zero (0) if the comment has no comment. On failure, will contain a 
negative value. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   
 
Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. When the asynchronous 
execution completes successfully, comment_size will contain the number of characters in the comment, 
not including the NULL terminator, or zero (0) if the comment has no comment.  On failure, comment_size will 
be a negative number. 

History:  
Added in Quarter 4.   
Quarter 5: Changed from transaction to read context id and from event queue to event stack. Added scope 
requirement. 

Man Page Status:  
No known issues. 

 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   136	   	   	   	   	   06/30/2014	  

4.10.4 H5Oget_comment_by_name_ff 

Name: H5Oget_comment_by_name_ff   

Signature:  
herr_t H5Oget_comment_by_name_ff( hid_t loc_id, const char *name, char *comment,  
size_t bufsize, hid_t lapl_id, ssize_t *comment_size,  hid_t rcntxt_id,  hid_t es_id  )  

Purpose:  
Retrieve comment for specified object, possibly asynchronously.  

Description:  
H5Oget_comment_by_name_ff H5Oget_comment_ff retrieves the comment for the specified object 
and puts it into the buffer comment.  

The object with the comment is specified by loc_id and name.  loc_id can specify any object in the file. 
name can be one of the following:  
  — The name of the object relative to loc_id  
  — An absolute name of the object, starting from /, the file’s root group  
  — A dot (.), if loc_id fully specifies the object  
Both loc_id and name must be in scope for the read context specified by rcntxt_id. 

The size in bytes of the buffer comment, including the NULL terminator, is specified in bufsize. If 
bufsize is unknown, a preliminary H5Oget_comment_by_name_ff call with the pointer comment 
set to NULL will report the size of the comment without the NULL terminator.  

If bufsize is set to a smaller value than described above, only bufsize bytes of the comment, without 
a NULL terminator, are returned in comment.  

If an object does not have a comment, the empty string is returned in comment.  

Upon success, the number of characters in the comment, not including the NULL terminator, or zero (0) if the 
comment has no comment, is put in comment_size. The value returned in comment_size may be larger 
than bufsize. On failure, comment_size will contain a negative value. Note that this value will not be set 
until after the function completes, which may be later than when the call returns for asynchronous execution.  
Traditionally the comment size was indicated by the function call’s return value, but with the support for 
asynchronous execution that is no longer possible and the FastForward version included the new 
comment_size parameter. 

The link access property list, lapl_id, may provide information regarding the properties of links. The link 
access property list currently has no effect in the EFF stack and should be set to H5P_DEFAULT. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when 
the function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t loc_id IN: Location identifier 

May be any HDF5 object identifier (group, dataset, map, or named datatype) or file 
identifier that is in scope for the read context 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   137	   	   	   	   	   06/30/2014	  

const char *name     IN: Object name 
The object name (path to the object) can be specified relative to loc_id, absolute 
from the file’s root group, or '.' (a dot), and must be in scope for the read context. 

char *comment OUT: The comment. 

size_t bufsize IN: Anticipated required size of the comment buffer. 

hid_t lapl_id IN: Link access property list identifier. 
Currently not used in EFF; specify H5P_DEFAULT. 

ssize_t *comment_size OUT: Pointer to returned results indicating comment size.  When successful, will 
contain the number of characters in the comment, not including the NULL 
terminator, or zero (0) if the comment has no comment. On failure, will contain a 
negative value. 

hid_t rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 
 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   
 
Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. When the asynchronous 
execution completes successfully, comment_size will contain the number of characters in the comment, 
not including the NULL terminator, or zero (0) if the comment has no comment.  On failure, comment_size will 
be a negative number. 

 
History:  

Added in Quarter 4.   
Quarter 5: Changed from transaction to read context id and from event queue to event stack. Added scope 
requirement and note about link access property list under EFF. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   138	   	   	   	   	   06/30/2014	  

4.10.5 H5Oget_info_ff 

Name: H5Oget_info_ff   

Signature:  
herr_t H5Oget_info_ff( hid_t object_id, H5O_ff_info_t *object_info, hid_t rcntxt_id, 
hid_t es_id )  

Purpose:  
Retrieve the metadata for an object specified by an identifier, possibly asynchronously.  

Description:  
H5Oget_info_ff retrieves the metadata for the specified object and puts it into the struct 
H5O_ff_info_t.  

An H5O_ff_info_t struct is defined (in H5FFpublic.h) as follows : 

typedef struct H5O_ff_info_t { 
    haddr_ff_t          addr;       /* Object address in file               */ 
    H5O_type_t          type;       /* Basic object type                    */ 
    unsigned            rc;         /* Reference count of object            */ 
    hsize_t             num_attrs;  /* # of attributes attached to object   */ 
} H5O_ff_info_t; 
 

The object with the info is specified by the identifier object_id.  object_id must be in scope for 
the read context specified by rcntxt_id.  

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when 
the function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t object_id     IN: Identifier for the object whose metadata is to be retrieved. 

Must be in scope for the read context. 

H5O_ff_info_t 
*object_info 

OUT: Buffer in which to return object information. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   
 
Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. When the asynchronous 
execution completes successfully, object_info will contain all the metadata values for that object. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   139	   	   	   	   	   06/30/2014	  

History:  
Implemented in Q6; Man page added in Q8. 

 
Man Page Status:  

No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   140	   	   	   	   	   06/30/2014	  

4.10.6 H5Oget_info_by_name_ff 

Name: H5Oget_info_by_name_ff   

Signature:  
herr_t H5Oget_info_by_name_ff( hid_t loc_id, const char *object_name, H5O_ff_info_t 
*object_info, hid_t lapl_id, hid_t rcntxt_id, hid_t es_id )  

Purpose:  
Retrieve the metadata for an object specified by a location and a pathname, possibly asynchronously.  

Description:  
H5Oget_info_by_name_ff retrieves the metadata for the object specified by the loc_id and 
object_name and puts it into the struct H5O_ff_info_t.  

An H5O_ff_info_t struct is defined (in H5FFpublic.h) as follows : 

typedef struct H5O_ff_info_t { 
    haddr_ff_t          addr;       /* Object address in file               */ 
    H5O_type_t          type;       /* Basic object type                    */ 
    unsigned            rc;         /* Reference count of object            */ 
    hsize_t             num_attrs;  /* # of attributes attached to object   */ 
} H5O_ff_info_t; 
 

The link access property list, lapl_id, is not currently used; it should be passed in as H5P_DEFAULT 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when 
the function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t loc_id     IN: File or group identifier specifying location of group in which object is 

located. Must be in scope for the read context. 

const char *name IN: Name of object, relative to loc_id. 

H5O_ff_info_t 
*object_info 

OUT: Buffer in which to return object information. 

hid_t lapl_id 

hid_t rcntxt_id 

IN: Link access property list. (Not currently used; pass as H5P_DEFAULT.) 

IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   
 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   141	   	   	   	   	   06/30/2014	  

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. When the asynchronous 
execution completes successfully, object_info will contain all the metadata values for that object. 

History:  
 Implemented in Q6; Man page added in Q8. 
 
Man Page Status:  
No known issues. 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   142	   	   	   	   	   06/30/2014	  

4.10.7 H5Oget_token 

Name: H5Oget_token 
 
Signature:  

herr_t H5Oget_token ( hid_t obj_id, void *token , size_t *token_size )  

Purpose:  
Retrieve an object token buffer containing all necessary information to open the object from any rank. 

Description:  
H5Oget_token retrieves the object token containing all the object metadata needed to open the object from 
any rank in the application, even in the same transaction that the object was created in.  

The token must be a user allocated buffer with at least a size of the object token. When the function is called with 
a NULL token buffer, the size of the token buffer is returned in token_size.   

The actions performed by this function are all local to the compute node so an asynchronous execution option is 
not provided. 

Parameters:  
hid_t obj_id  IN: Object identifier indicating the object that the token needs to be retrieved for. 

void *token  OUT: The pointer to buffer where the object token is retrieved. 

size_t token_size OUT: The token size in bytes. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  

History:  
 Implemented in Q6; Man page added in Q8. 
 
Man Page Status:  

No known issues. 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   143	   	   	   	   	   06/30/2014	  

4.10.8 H5Olink_ff 

Name: H5Olink_ff   

Signature:  
herr_t H5Olink_ff( hid_t object_id, hid_t new_loc_id, const char *new_link_name,  
hid_t lcpl, hid_t lapl,  hid_t trans_id,  hid_t es_id  )  

Purpose:  
Create a hard link to an object in an HDF5 file, possibly asynchronously.  

Description:  
H5Olink_ff creates a new hard link to an object in an HDF5 file.  

new_loc_id and new_link_name specify the location and name of the new link, while object_id 
identifies the object that the link points to.  new_loc_id and object_id must both be in scope for the 
transaction identified by trans_id. 

H5Olink_ff is designed for two purposes:  

     •  To create the first hard link to an object that has just been created with one of the H5*create_anon 
functions or with H5Tcommit_anon.  (The prototype EFF stack does not support the _anon functions.) 

     •  To add additional structure to an existing file so that, for example, an object can be shared among multiple 
groups.  

lcpl and lapl are the link creation and access property lists associated with the new link.  Neither of these 
property lists currently have any effect in the EFF stack and both shouldbe set to H5P_DEFAULT. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

Parameters:  
hid_t object_id IN: Object to be linked. 

May be any HDF5 object identifier (group, dataset, map, or named 
datatype) that is in scope for the transaction. 

hid_t new_loc_id IN: File or group identifier specifying location at which object is to 
be linked.  Must be in scope for the transaction. 

const char *new_link_name     IN: Name of link to be created, relative to new_loc_id. 

hid_t lcpl_id IN: Link creation property list identifier. 
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t lapl_id IN: Link access property list identifier. 
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a 
part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be 
used to monitor the status of the event associated with this function 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   144	   	   	   	   	   06/30/2014	  

call when executed asynchronously. Use 
H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous operation 
must be checked separately through the event stack 

History:  
Added in Quarter 4.   
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement.  Noted what is not supported in  EFF stack and removed example that demonstrated 
functionality that isn’t available in EFF. 

Man Page Status:  
No known issues. 

 

 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   145	   	   	   	   	   06/30/2014	  

4.10.9 H5Oopen_ff 

Name: H5Oopen_ff   

Signature:  
hid_t H5Oopen_ff( hid_t loc_id,  const char *name,  hid_t lapl_id, hid_t rcntxt_id )  

Purpose:  
Open an existing object. 

Description:  
H5Oopen_ff opens the existing HDF5 object specified by loc_id and name.  

loc_id is a location identifier and may be any HDF5 object identifier (group, dataset, map, or named datatype) 
or file identifier. 

name is the path to the object relative to loc_id.  If loc_id fully specifies the object that is to be opened, name 
should be '.' (a dot).   

Both loc_id and name must be in scope for the read context identified by rcntxt_id. 

The link access property list, lapl_id, currently has no effect in the EFF stack and should be set to 
H5P_DEFAULT. 

rcntxt_id indicates the read context for this operation. 

There is no asynchronous execution option for this function because the object type must be known before the 
object id (even a future object id) can be returned.  Since the object type is not known until the operation 
completes, executing the operation asynchronously is not possible. 

To conserve and release resources, the object should be closed with H5Oclose_ff when access is no longer 
required.  

Parameters:  
hid_t loc_id  IN: Location identifier  

May be any HDF5 object identifier (group, dataset, map, or named datatype) or file 
identifier that is in scope for the read context. 

const char *name      IN: Object name 
The object name (path to the map object) can be specified relative to loc_id or absolute 
from the file’s root group, and must be in scope for the read context.  

hid_t lapl_id  IN: Link object access property list  
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t rcntxt_id IN: Read context identifier indicating the read context for this operation. 

Returns:  
Returns an object identifier if successful; otherwise returns a negative value.  
 

History:  
Quarter 4: Extended H5Open to support EFF stack. 
Quarter 5: New signature, H5Oopen_ff, to include the read context.  Man page created. 
 

Man Page Status:  
No known issues.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   146	   	   	   	   	   06/30/2014	  

4.10.10 H5Oopen_by_token 

Name: H5Oopen_by_token   

Signature:  
 hid_t H5Oopen_by_token(const void *token, hid_t trans_id, hid_t es_id) 
 
Purpose:  

Open an existing object using a token buffer retrieved by H5Oget_token. 

Description:  
H5Oopen_by_token opens the existing HDF5 object described by the token buffer token.  

token is a buffer obtained by using the function H5Oget_token. It contains all required data to open the 
object and add updates to it. 

trans_id indicates the transaction this operation is part of.   

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

H5Oopen_by_token allows the user to open an object in the same transaction it was created in. This would 
allow users to create the object independently from one rank, retrieve the token for that object, and send the token 
to other ranks that can open the object using H5Oopen_by_token and add updates to that object without 
having to start another transaction based on the read context of the transaction that the object was created in.  

To conserve and release resources, the object should be closed with H5Oclose_ff when access is no longer 
required.  

Parameters:  
const void *token  IN: object token  

pointer to a token buffer retrieved by H5Oopen_by_token. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor 
the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns an object identifier if successful; otherwise returns a negative value.  
 

History:  
 Implemented in Q6; Man page added in Q8. 

 
Man Page Status:  

No known issues. 

 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   147	   	   	   	   	   06/30/2014	  

4.10.11 H5Oset_comment_ff 

Name: H5Oset_comment_ff   

Signature:  
herr_t H5Oset_comment_ff( hid_t object_id, const char *comment, hid_t trans_id,  hid_t es_id)  

Purpose:  
Set comment for specified object, possibly asynchronously.  

Deprecated Function:  
This function is deprecated in favor of object attributes.  

Description:  
H5Oset_comment_ff sets the comment for the specified object to the contents of comment. Any previously 
existing comment is overwritten.  Comments should be relatively short, null-terminated, ASCII strings.  

The target object is specified by an identifier, object_id, which must be in scope for the transaction indicated 
by trans_id. 

If comment is the empty string or a null pointer, any existing comment message is removed from the object.  

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Comments can be attached to any object that has an object header. Datasets, groups, maps, and named datatypes 
have object headers. Symbolic links do not have object headers.  In the EFF stack, comments cannot be attached 
to attributes.  

Parameters:  
hid_t object_id     IN: Identifier of the target object. 

const char *comment     IN: The new comment. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t eq_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4.   
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Noted that you 
can’t add comments to attributes in EFF. 

Man Page Status:  
No known issues.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   148	   	   	   	   	   06/30/2014	  

4.10.12 H5Oset_comment_by_name_ff 

Name: H5Oset_comment_by_name_ff   

Signature:  
herr_t H5Oset_comment_by_name_ff( hid_t loc_id, const char *name, const char *comment,  
hid_t lapl_id, uint64_t trans,  hid_t eq_id )  

Purpose:  
Set comment for specified object, possibly asynchronously.  

Deprecated Function:  
This function is deprecated in favor of object attributes.  

Description:  
H5Oset_comment_by_name_ff sets the comment for the specified object to the contents of comment. 
Any previously existing comment is overwritten.  Comments should be relatively short, null-terminated, ASCII 
strings.  

The target object is specified by loc_id and name.  loc_id can specify any object in the file. name can be 
one of the following:  
  — The name of the object relative to loc_id  
  — An absolute name of the object, starting from /, the file’s root group  
  — A dot (.), if loc_id fully specifies the object  
Both loc_id and name must be in scope for the read context specified by rcntxt_id. 

If comment is the empty string or a null pointer, any existing comment message is removed from the 
object.  

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Comments can be attached to any object that has an object header. Datasets, groups, maps, and named 
datatypes have object headers. Symbolic links do not have object headers.  

Comments can be attached to any object that has an object header. Datasets, groups, maps, and named datatypes 
have object headers. Symbolic links do not have object headers.  In the EFF stack, comments cannot be attached 
to attributes.  In the EFF stack, comments cannot be attached to attributes.  

lapl_id contains a link access property list identifier. A link access property list can come into play 
when traversing links to access an object.  The link access property list currently has no effect in the EFF 
stack and should be set to H5P_DEFAULT. 

Parameters:  
hid_t loc_id IN: Identifier of a file, group, dataset, map, or named datatype. Must be in 

scope for the transaction. 

const char *name IN: Name of the object whose comment is to be set or reset, specified as a 
path relative to loc_id.  name can be '.' (a dot) if loc_id fully specifies 
the object for which the comment is to be set.  Must be in scope for the 
transaction. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   149	   	   	   	   	   06/30/2014	  

const char *comment     IN: The new comment. 

hid_t lapl_id IN: Link access property list identifier. 
Currently not used in EFF; specify H5P_DEFAULT. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 
 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4.   
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement and noted that link access property lists not supported in EFF.  Noted that you can’t add 
comments to attributes in EFF. 

Man Page Status:  
No known issues. 

 
 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   150	   	   	   	   	   06/30/2014	  

4.11 H5P:	  Property	  APIs	  	  
These routines allow applications to set values in HDF5 Property Lists. The routines appear in 
the table below grouped by the property list they apply to; the reference manual pages are 
organized alphabetically. 

With the exception of H5Pset_fapl_iod, H5Pset_prefetch_selection, and H5Pset_prefetch_range, 
each of the routines has a H5Pget_* variant that can be used to get the value of the property. If 
the type of the last parameter in the set call is type, then the type of the last parameter in the 
get call is *type.  

For example: 
      herr_t H5Pset_dxpl_replica(hid_t dxpl_id, hrpl_t replica_id);  
and  
      herr_t H5Pget_dxpl_replica(hid_t dxpl_id, hrpl_t *replica_id); 

The H5Pget_ variants for the H5Pset_ routines do not appear in this section of the reference 
manual, but they are available in the library. 

The H5Pget_get_[xapl | xxpl]_transaction and H5Pget_[xapl | xxpl]_read_context routines are 
included, as they do not have H5Xset_ counterparts. 

These routines did not exist prior to the Exascale FastForward project. 

 

Routine Implemented Notes 

Data Creation   

H5Pset_dcpl_dim_layout Quarter 8  

H5Pset_dcpl_stripe_count Quarter 8  

H5Pset_dcpl_stripe_size Quarter 8  

Data Transfer    

H5Pset_dxpl_checksum Quarter 4  

H5Pset_dxpl_checksum_ptr Quarter 4  

H5Pset_dxpl_inject_corruption Quarter 4  

H5Pset_prefetch_layout Quarter 8  

H5Pset_prefetch_range Quarter 8  

H5Pset_prefetch_selection Quarter 8  

H5Pset_rawdata_integrity_scope Quarter 5  

H5Pset_dxpl_replica Quarter 7  

Index Access   

H5Pget_xapl_transaction Quarter 8  

H5Pget_xapl_read_context Quarter 8  

Index Transfer   



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   151	   	   	   	   	   06/30/2014	  

H5Pget_xxpl_transaction Quarter 8  

H5Pget_xxpl_read_context Quarter 8  

Object Creation   

H5Pset_ocpl_enable_checksum Quarter 7  

View Creation   

H5Pset_view_elmt_scope Quarter 8  

File Access    

H5Pset_fapl_iod Quarter 3  

H5Pset_metadata_integrity_scope Quarter 5  

Read Context Acquire   

H5Pset_rcapl_version_request Quarter 5  

Transaction Start    

H5Pset_trspl_num_peers Quarter 5  
 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   152	   	   	   	   	   06/30/2014	  

 
4.11.1 H5Pset_dcpl_dim_layout 

Name: H5Pset_dcpl_dim_layout 

Signature:  
herr_t H5Pset_dcpl_dim_layout ( hid_t dcpl_id, H5FF_dset_dim_layout_t dims_layout)  

Purpose:  
Set the physical dimension layout property of a dataset on a dataset creation property list. 

Description:  
H5Pset_dcpl_dim_layout sets a property in the dcpl_id dataset creation property list to indicate 
the physical dimension order of how the dataset to be layout on disk. The property layout can be set to 
H5D_ROW_MAJOR or H5D_COL_MAJOR.   
 

Parameters:  
hid_ t dcpl_id  IN: property list identifier 

H5FF_dset_dim_layout_t 
dims_layout 

IN: Layout dimension order. 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   153	   	   	   	   	   06/30/2014	  

 

4.11.2 H5Pset_dcpl_stripe_count 

Name: H5Pset_dcpl_stripe_count 

Signature:  
herr_t H5Pset_dcpl_stripe_count ( hid_t dcpl_id, size_t stripe_count)  

Purpose:  
Set the number of storage targets for the physical location of a dataset in the dataset creation property list. 

Description:  
H5Pset_dcpl_stripe_count sets a property in the dcpl_id dataset creation property list to 
indicate the number of storage targets the dataset will be stripped on. The default count of 0 indicates that 
all storage targets can be used. 
 

Parameters:  
hid_ t dcpl_id  IN: property list identifier 

size_t stripe_count IN: Number of storage targets. 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   154	   	   	   	   	   06/30/2014	  

 

4.11.3 H5Pset_dcpl_stripe_size 

Name: H5Pset_dcpl_stripe_size 

Signature:  
herr_t H5Pset_dcpl_stripe_size ( hid_t dcpl_id, size_t stripe_size)  

Purpose:  
Set the stripe size in terms of dataset elements for the physical location of a dataset in the dataset creation 
property list. 

Description:  
H5Pset_dcpl_stripe_size sets a property in the dcpl_id dataset creation property list to 
indicate the number of dataset elements to stripe the dataset on across the storage targets. 
 

Parameters:  
hid_ t dcpl_id  IN: property list identifier 

size_t stripe_size IN: stripe size. 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

 

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   155	   	   	   	   	   06/30/2014	  

4.11.4 H5Pset_dxpl_checksum 

Name: H5Pset_dxpl_checksum  

Signature:  
herr_t H5Pset_dxpl_checksum( hid_t dxpl_id,  uint32_t value )  

Purpose:  
Specify a user-supplied checksum for a write data transfer. 

Description:  
H5Pset_dxpl_checksum sets a property in the dxpl_id data transfer property list specifying 
value as a user-supplied checksum for data written with a call to H5Dwrite_ff or H5Mset using 
dxpl_id.   
 
When this is set, the HDF5 IOD VOL client will create a checksum for the data and verify that checksum 
matches the value supplied by the user before sending the data on to the HDF5 VOL IOD server.   
 
Regardless of whether the user supplies a checksum value, the HDF5 IOD VOL client will create a 
checksum that is compared with the value generated on the HDF5 IOD VOL server.  
 
The user must call H5checksum to obtain the value used in the call to H5Pset_dxpl_checksum.  
This ensures that all levels of the stack are using compatible checksum algorithms. 
 
See Design and Implementation of FastForward Features in HDF5 for information on the interaction between 
transformation operations, such as datatype conversion, and end-to-end integrity support with checksums. 

Parameters:  
hid_t dxpl_id IN: Data transfer property list identifier 

uint32_t value     IN: User-supplied checksum obtained via call to H5checksum 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 4. 
Quarter 5: Added H5Mset to routines that are affected by the dxpl setting.  Added reference for interaction 
between transformations and checksums. 

Man Page Status:  
No known issues. 

 

	  
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   156	   	   	   	   	   06/30/2014	  

4.11.5 H5Pset_dxpl_checksum_ptr 

Name: H5Pset_dxpl_checksum_ptr  

Signature:  
herr_t H5Pset_dxpl_checksum_ptr( hid_t dxpl_id,  uint32_t *value )  

Purpose:  
Specify a memory location to receive the checksum from a read data transfer. 

Description:  
H5Pset_dxpl_checksum_ptr sets a property in the dxpl_id data transfer property list specifying 
value as a memory location to receive a checksum for data read with a call to H5Dread_ff or H5Mget 
using dxpl_id.   
 
When this is set, the HDF5 IOD VOL client will put the checksum for the data into the memory location 
(*value) supplied by the user, allowing the user to compare the client’s checksum to a value it generates 
using the H5checksum routine.   
 
Regardless of whether the user supplies a memory location for the checksum, the HDF5 IOD VOL client 
will create a checksum and compare it with the value generated on the HDF5 IOD VOL server before the 
operation completes. 
 
The user must call H5checksum to obtain the value for its comparison with the received value.  
This ensures that all levels of the stack are using compatible checksum algorithms. 
 
See Design and Implementation of FastForward Features in HDF5 for information on the interaction between 
transformation operations, such as datatype conversion, and end-to-end integrity support with checksums. 

Parameters:  
hid_t dxpl_id IN: Data transfer property list identifier 

uint32_t *value     OUT: User-supplied memory location to receive checksum value  

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  
 

History:  
Added in Quarter 4. 
Quarter 5: Added H5Mget to routines that are affected by the dxpl setting. Added reference for interaction 
between transformations and checksums. 

Man Page Status:  
No known issues. 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   157	   	   	   	   	   06/30/2014	  

4.11.6 H5Pset_dxpl_inject_corruption 

Name: H5Pset_dxpl_inject_corruption  

Signature:  
herr_t H5Pset_dxpl_inject_corruption( hid_t dxpl_id,  hbool_t flag )  

Purpose:  
Specify that data should be corrupted prior to transfer so that data integrity pipeline can be tested. This 
routine is for testing purposes only and should not be used in a real application. 

Description:  
H5Pset_dxpl_inject_corruption sets a property in the dxpl_id data transfer property list 
that can tell the HDF5 IOD VOL client (for writes) and HDF5 IOD VOL server (for reads) to corrupt the 
data being transferred with H5Dwrite_ff or H5Dread_ff using dxpl_id.  Corruption will occur 
when when flag is TRUE. 

 
Parameters:  

hid_t dxpl_id IN: Data transfer property list identifier 

hbool_t  flag IN: Boolean (TRUE/FALSE), indicating if corruption should 
be injected.  TRUE means inject corruption.  

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  
 

History:  
Added in Quarter 4. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   158	   	   	   	   	   06/30/2014	  

4.11.7 H5Pset_dxpl_replica 

Name: H5Pset_dxpl_replica  

Signature:  
herr_t H5Pset_dxpl_replica( hid_t dxpl_id,  hrpl_t replica_id )  

Purpose:  
Specify a property that identifies the object replica to be used. 

Description:  
H5Pset_dxpl_replica sets the replica property in the dxpl_id  transfer property list, specifying 
an object replica identifier.    
 
When this property is set, evict or read operations on the object will evict or read the specified replica 
rather than the transaction update data for the object. 

 
Replica IDs are returned by the H5Dprefetch_ff, H5Gprefetch_ff, H5Mprefetch_ff, and 
H5Tprefetch_ff routines. 

Replica properties are recognized by H5Devict_ff, H5Mevict_ff, H5Gevict_ff,  H5Tevict_ff, 
H5Dread_ff and H5Mget_ff routines. 

Limitations / Future Considerations:  
For other potential extensions that are beyond the scope of the EFF prototype project, refer to the document Burst 
Buffer Space Management – Prototype to Production. 

Parameters:  
hid_t dxpl_id IN: data transfer property list identifier 

hrpl_t replica_id     IN: Identifier for an object replica that was previously prefeched into the Burst 
Buffer via a call to H5?prefetch_ff, where ? may be “D”, “M”, “G”, or 
“T”, depending on the object type that was prefetched. 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 7 as H5Pset_read_replica. 
Quarter 8: Change name to H5Pset_dxpl_replica. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   159	   	   	   	   	   06/30/2014	  

4.11.8 H5Pset_fapl_iod 

Name: H5Pset_fapl_iod  

Signature:  
herr_t H5Pset_fapl_iod( hid_t fapl_id,  MPI_Comm comm,  MPI_Info info )  

Purpose:  
Specify that the IOD VOL plugin should be used to access the HDF5 container. 

Description:  
H5Pset_fapl_iod sets a property in the fapl_id file access property list specifying that the IOD 
VOL plugin should be use to perform I/O.   The IOD VOL plugin is used to interact with the Exascale Fast 
Forward I/O stack, where HDF5 files are stored as IOD and DAOS containers and objects rather than in 
the native binary HDF5 File Format or another storage/access mechanism.  
 
Calling this routine is mandatory to use the HDF5 FastForward (H5*_ff) APIs described in this document. 
 
H5Pset_fapl_iod also stores the user-supplied MPI parameters comm, for communicator, and info, 
for information, in the file access property list fapl_id. That property list can then be used to create 
and/or open a file. The communicator and info parameters are used to set up communication channels for 
collective operations on the HDF5 container. 

comm is the MPI communicator to be used for accessing the file. This function makes a duplicate of the 
communicator, so modifications to comm after this function call returns have no effect on the file access 
property list.  

info is the MPI Info object use to pass MPI info parameters to the MPI library. This function makes a 
duplicate copy of the Info object, so modifications to the Info object after this function call returns will 
have no effect on the file access property list.   

If the file access property list already contains previously-set communicator and Info values, those values 
will be replaced and the old communicator and Info object will be freed.  

Parameters:  
hid_t fapl_id IN: File access property list identifier 

MPI_Comm comm  IN: MPI communicator 

MPI_Info info IN: MPI info object 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  
 

History:  
Added in Quarter 3. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   160	   	   	   	   	   06/30/2014	  

4.11.9 H5Pset_metadata_integrity_scope 

Name: H5Pset_metadata_integrity_scope  

Signature:  
herr_t H5Pset_metadata_integrity_scope( hid_t fapl_id,  uint32_t scope )  

Purpose:  
Specify the scope of checksum generation and verification for metadata transfer. 

Description:  
H5Pset_metadata_integrity_scope sets a property in the fapl_id file access property list 
specifying the scope of checksum generation and verification for metadata transfer in the Exascale Fast Forward 
stack.  The specified scope will be used in all metadata transfer operations for containers opened with fapl_id.  
Note that different scopes may be specified for different containers, or for different opens of the same container. 

The scope is a bitflag parameter that specifies which stages of the metadata transfer process will have 
checksums generated and verified.  The possible values are: 

H5_CHECKSUM_NONE No checksums are computed or verified at any part of the 
stack. 

H5_CHECKSUM_TRANSFER Metadata is verified after transfer through mercury (the 
function shipper). 

H5_CHECKSUM_IOD Checksums are computed for the metadata, given to IOD 
when written, and verified when read. 

H5_CHECKSUM_MEMORY Metadata is verified when moved into memory. 

H5_CHECKSUM_ALL Metadata is checksummed and verified at all levels. 

Multiple individual selections can be combined using the OR operator.  For example:  
   status = H5_CHECKSUM_IOD || H5_CHECKSUM_MEMORY 

 
Parameters:  

hid_t fapl_id IN: File access property list identifier 

uint32_t scope  IN: Bitfield specifying the scope of checksums for raw data transfers 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 5. 

Man Page Status:  
To do: Update with description of what is considered metadata. Improve descriptions of scope options, 
maybe adding an ASCII picture of data flow. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   161	   	   	   	   	   06/30/2014	  

4.11.10 H5Pset_ocpl_enable_checksum 

Name: H5Pset_ocpl_enable_checksum  

Signature:  
herr_t H5Pset_ocpl_enable_checksum( hid_t ocpl_id,  hbool_t flag )  

Purpose:  
Indicates whether lower layer in stack should enable checksums for an object. 

Description:  
H5Pset_ocpl_enable_checksum sets a Boolean flag on the object creation property list to indicate 
whether the VOL plugin (IOD for the Exascale Fast Forward project) should enable checksums on the object that 
is being created. 

The flag is a boolean parameter that specifies whether checksums are to be enabled.  The possible values are: 

0 Checksums are not enabled. 

1 Checksums are enabled. 

The default for the Exascale Fast Forward project for objects crated without this creation propert list is to enable 
checksums at the IOD level.  

 
Parameters:  

ocpl_t fapl_id IN: Object creation property list identifier 

hbool_t flag  IN: Boolean flag specifying if checksums should be enabled by lower 
layer 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Implemented in Quarter 7;  Man page added in Quarter 8. 

Man Page Status:  
 No known issues. 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   162	   	   	   	   	   06/30/2014	  

4.11.11 H5Pset_prefetch_layout  

Name: H5Pset_ prefetch_layout 

Signature:  
herr_t H5Pset_prefetch_layout ( hid_t dxpl_id, H5FF_layout_t layout)  

Purpose:  
Set the prefetch layout property on the data transfer property list. 

Description:  
H5Pset_prefetch_layout sets a property in the dxpl_id to prefetch an object with a particular 
layout indicated by layout. The layout property value could be either  H5_DEFAULT_LAYOUT, 
H5_LOCAL_NODE, or H5_CONTROLLED_LAYOUT. H5_DEFAULT_LAYOUT uses the default 
properties of the underlying library.   H5_LOCAL_NODE prefetches the entire object to the node that the 
prefetch is executed on instead of striping over several nodes. H5_CONTROLLED_LAYOUT is not 
supported for now. 
 

Parameters:  
hid_t dxpl_id IN: data transfer property list identifier 

H5FF_layout_t layout IN: layout type 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   163	   	   	   	   	   06/30/2014	  

4.11.12 H5Pset_prefetch_range  

Name: H5Pset_ prefetch_range 

Signature:  
herr_t H5Pset_prefetch_range ( hid_t dxpl_id, hid_t keymem_type, const void *low_key, const void 
*high_key)  

Purpose:  
Set the prefetch range property on the data transfer property list. 

Description:  
H5Pset_prefetch_range sets a property in the dxpl_id to prefetch a particular range of a Map 
object starting with low_key and ending with high_key. The default property is to prefetch the entire Map. 
 

Parameters:  
hid_t dxpl_id IN: data transfer property list identifier 

hid_t keymem_type IN: datatype of the passed in keys 

const void * low_key IN: The starting range of the keys/values to prefetch 

const void *high_key IN: The ending range of the keys/values to prefetch 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   164	   	   	   	   	   06/30/2014	  

4.11.13 H5Pset_prefetch_selection  

Name: H5Pset_ prefetch_selection 

Signature:  
herr_t H5Pset_prefetch_selection ( hid_t dxpl_id, hid_t dataspace)  

Purpose:  
Set the prefetch selection for a dataset to be prefetched on the data transfer property list. 

Description:  
H5Pset_prefetch_selection sets a property in the dxpl_id to prefetch a portion of the dataset 
described by the selection in dataspace. The default property is to prefetch the entire selection.  
 

Parameters:  
hid_t dxpl_id IN: data transfer property list identifier 

hid_t dataspace IN: dataspace with a selection on it. 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   165	   	   	   	   	   06/30/2014	  

4.11.14 H5Pset_rawdata_integrity_scope 

Name: H5Pset_rawdata_integrity_scope  

Signature:  
herr_t H5Pset_rawdata_integrity_scope( hid_t dxpl_id,  uint32_t scope )  

Purpose:  
Specify the scope of checksum generation and verification for raw data transfer.  

Description:  
H5Pset_rawdata_integrity_scope sets a property in the dxpl_id data transfer property list 
specifying the scope of checksum generation and verification for raw data transfer in the Exascale Fast Forward 
stack.  The specified scope will be used in all data transfer operations that are called with dxpl_id. In 
particular,  H5Dwrite_ff, H5Mset, H5Dread_ff, and H5Mget. Note that different scopes may be 
specified for each data transfer operations. 

The scope is a bitflag parameter that specifies which stages of the raw data transfer process will have 
checksums generated and verified.  The possible values are: 

H5_CHECKSUM_NONE No checksums are computed or verified at any part of the 
stack. 

H5_CHECKSUM_TRANSFER Raw data is verified after transfer through mercury (the 
function shipper). 

H5_CHECKSUM_IOD Checksums are computed for raw data, given to IOD when 
written, and verified when read. 

H5_CHECKSUM_MEMORY Raw data is verified when moved into memory. 

H5_CHECKSUM_ALL Raw data is checksummed and verified at all levels. 

Multiple individual selections can be combined using the OR operator.  For example:  
   status = H5_CHECKSUM_IOD || H5_CHECKSUM_MEMORY 

Parameters:  
hid_t dxpl_id IN: Data transfer property list identifier 

uint32_t scope  IN: Bitfield specifying the scope of checksums for raw data transfers 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 5. 

Man Page Status:  
To do: Update with list of functions that are affected by the property’s setting. Improve descriptions of 
scope options, maybe adding an ASCII picture of data flow. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   166	   	   	   	   	   06/30/2014	  

4.11.15 H5Pset_rcapl_version_request 

Name: H5Pset_rcapl_version_request  

Signature:  
herr_t H5Pset_rcapl_version_request( hid_t rcapl_id,  H5RC_request_t acquire_req)  

Purpose:  
Specify a version request modifier in a read context acquire property list. 

Description:  
H5Pset_rcapl_version_request sets a property in the rcapl_id read context acquire property 
list specifying acquire_req as a container version request modifier for a read handle acquired with a 
call to H5RCacquire using rcapl_id.   
 
When this is set, the container version specified in the call to H5RCacquire will be interpreted based on 
the value of the property.   The possible values and interpretations are: 
 

H5RC_EXACT Acquire a read handle for the exact container version specified. (Default) 

H5RC_PREV Acquire a read handle for the container version specified, or the highest 
previous version if the specified version is not available. 

H5RC_NEXT Acquire a read handle for the container version specified, or the lowest next 
version if the specified version is not available.  With this setting, and 
*container_version set to 0, the handle will be acquired for the first 
(lowest) readable version of the container. 

H5RC_LAST Acquire a read handle for the last (highest) container version possible.  With 
this setting, the input value pointed to by container_version is ignored. 

H5Pcreate(H5P_RC_ACQUIRE) will create a read context acquire property list whose identifier can 
be passed to this function. 

Parameters:  
hid_t rcapl_id IN: Read context acquire property list identifier 

H5RC_request_t acquire_req  IN: Modifier for container version specified in 
H5RCacquire 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   167	   	   	   	   	   06/30/2014	  

4.11.16 H5Pset_ trspl_num_peers 

Name: H5Pset_trspl_num_peers  

Signature:  
herr_t H5Pset_trspl_num_peers( hid_t trspl_id,  unsigned num_peers)  

Purpose:  
Set the leader count property in a transaction start property list. 

Description:  
H5Pset_trspl_version_request sets a property in the trspl_id transaction start property list 
to num_peers. The property is the number of leaders who will call H5TRstart for a given 
transaction using trspl_id.   
 
H5Pcreate(H5P_TR_START) will create a transaction start property list whose identifier can be 
passed to this function. 
 

Parameters:  
hid_t trspl_id IN: Transaction start property list identifier 

unsigned num_peers IN: Number of leader processes that will call H5TRstart for a 
given transaction. 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   168	   	   	   	   	   06/30/2014	  

4.11.17 H5Pset_view_elmt_scope 

Name: H5Pset_view_elmt_scope  

Signature:  
herr_t H5Pset_view_elmt_scope( hid_t vcpl_id,  hid_t dataspace_id)  

Purpose:  
Set a selection that constrains dataset element query results for view creation. 

Description:  
H5Pset_view_elmt_scope sets a property in the vcpl_id view creation property list to 
dataspace_id. The property is the selection that limits the data elements queries to just the selection 
region specified in the dataspace.  
 
For example, if the selection in dataspace_id is a 2x3 region of elements, calling this routine and then 
passing the modified vcpl_id property list to the H5Vcreate routine will constrain the elements of the 
dataset(s) examined during the execution of the view’s query to just that 2x3 region. 
 
NOTE: Other properties that constrain query behavior, such as restricting the names of link and attributes 
or map keys examined could be added in the future. 
 
H5Pcreate(H5P_VIEW_CREATE) will create a view creation property list whose identifier can be 
passed to this function. 
 

Parameters:  
hid_t vcpl_id IN: View creation property list identifier 

hid_t dataspace_id IN: Dataspace containing selection that constrains the elements 
queried when creating a view. 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   169	   	   	   	   	   06/30/2014	  

4.11.18 H5Pget_ xapl_read_context 

Name: H5Pget_xapl_read_context  

Signature:  
herr_t H5Pget_xapl_read_context( hid_t xapl_id,  hid_t *rcxt_id)  

Purpose:  
Get the current read context property from an index access property list. 

Description:  
H5Pget_xapl_read_context gets the read context property from a xapl_id index access property 
list and stores it in *rcxt_id. The property is the current read context, when an index plugin callback 
is invoked from within the library.  This property is set internally to the HDF5 library and is a read-only 
value for the index plugin. 
 
The read context ID retrieved via this call must be closed with H5RCclose. 
 
H5Pcreate(H5P_INDEX_ACCESS) will create a index access property list whose identifier can be 
passed to this function. 
 

Parameters:  
hid_t xapl_id IN: Index access property list identifier 

hid_t * rcxt_id OUT: An ID for the current read context. 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   170	   	   	   	   	   06/30/2014	  

4.11.19 H5Pget_ xapl_transaction 

Name: H5Pget_xapl_transaction  

Signature:  
herr_t H5Pget_xapl_transaction( hid_t xapl_id,  hid_t *trans_id)  

Purpose:  
Get the current transaction property from an index access property list. 

Description:  
H5Pget_xapl_transaction gets the transaction property from a xapl_id index access property 
list and stores it in *trans_id. The property is the current transaction, when an index plugin callback 
is invoked from within the library.  This property is set internally to the HDF5 library and is a read-only 
value for the index plugin. 
 
The transaction ID retrieved via this call must be closed with H5TRclose. 
 
H5Pcreate(H5P_INDEX_ACCESS) will create a index access property list whose identifier can be 
passed to this function. 
 

Parameters:  
hid_t xapl_id IN: Index access property list identifier 

hid_t * trans_id OUT: An ID for the current transaction. 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   171	   	   	   	   	   06/30/2014	  

4.11.20 H5Pget_ xxpl_read_context 

Name: H5Pget_xxpl_read_context  

Signature:  
herr_t H5Pget_xxpl_read_context( hid_t xxpl_id,  hid_t *rcxt_id)  

Purpose:  
Get the current read context property from an index transfer property list. 

Description:  
H5Pget_xxpl_read_context gets the read context property from a xxpl_id index transfer 
property list and stores it in *rcxt_id. The property is the current read context, when an index plugin 
callback is invoked from within the library.  This property is set internally to the HDF5 library and is a 
read-only value for the index plugin. 
 
The read context ID retrieved via this call must be closed with H5RCclose. 
 
H5Pcreate(H5P_INDEX_TRANSFER) will create a index transfer property list whose identifier can 
be passed to this function. 
 

Parameters:  
hid_t xxpl_id IN: Index transfer property list identifier 

hid_t * rcxt_id OUT: An ID for the current read context. 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   172	   	   	   	   	   06/30/2014	  

4.11.21 H5Pget_ xxpl_transaction 

Name: H5Pget_xxpl_transaction  

Signature:  
herr_t H5Pget_xxpl_transaction( hid_t xxpl_id,  hid_t *trans_id)  

Purpose:  
Get the current transaction property from an index transfer property list. 

Description:  
H5Pget_xxpl_transaction gets the transaction property from a xxpl_id index transfer property 
list and stores it in *trans_id. The property is the current transaction, when an index plugin callback 
is invoked from within the library.  This property is set internally to the HDF5 library and is a read-only 
value for the index plugin. 
 
The transaction ID retrieved via this call must be closed with H5TRclose. 
 
H5Pcreate(H5P_INDEX_TRANSFER) will create a index transfer property list whose identifier can 
be passed to this function. 
 

Parameters:  
hid_t xxpl_id IN: Index transfer property list identifier 

hid_t * trans_id OUT: An ID for the current transaction. 

Returns:  
Returns a non-negative value if successful. Otherwise returns a negative value.  

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   173	   	   	   	   	   06/30/2014	  

4.12 H5Q:	  Query	  APIs	  	  
These routines are used to specify a query for generating views on HDF5 containers, or for 
analysis shipping operations on HDF5 Files (containers) in the Exascale Fast Forward stack. 

Query objects specify constraints on HDF5 objects that restrict generating a view or an analysis 
shipping operation to certain objects or portions of objects in an HDF5 File.   

The actions performed by all these functions are local to the compute node so asynchronous 
execution options are not provided. 

These routines did not exist prior to the Exascale FastForward project. 

 

Routine Implemented Notes 

H5Qcreate Quarter 6  

H5Qcombine Quarter 6  

H5Qget_type Quarter 8  

H5Qget_components Quarter 8  

H5Qget_combine_op Quarter 8  

H5Qget_match_op Quarter 8  

H5Qencode Quarter 8  

H5Qdecode Quarter 8  

H5Qclose Quarter 6  
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   174	   	   	   	   	   06/30/2014	  

4.12.1 H5Qclose 

Name: H5Qclose 
 
Signature:  

herr_t H5Qclose ( hid_t query_id )  

Purpose:  
Release the resources for a query object. 

Description:  
H5Qclose closes the query specified by query_id and releases resources used by it. Further use of the 
query identifier is illegal in HDF5 API calls. 

Parameters:  
hid_t query_id IN: Identifier of the query to close. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

 
History:  

Added in Quarter 6. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   175	   	   	   	   	   06/30/2014	  

4.12.2 H5Qcombine 

Name: H5Qcombine 
 
Signature:  

hid_t H5Qcombine ( hid_t query_id_1, H5Q_combine_op_t combine_op, hid_t query_id_2)  

Purpose:  
Create a new query object by combining two existing query objects. 

Description:  
H5Qcombine creates a new query object by combining the conditions specified for two existing query objects.  
Query objects created with this routine can be used for view creation (with H5Vcreate_ff), analysis shipping 
operations (with H5ASexecute) or combined again into more complicated queries (with H5Qcombine). 

The query_id_1 and query_id_2 parameters indicate the two query objects to be combined with the 
combine_op parameter. 

The combine_op parameter indicates how the two query objects are combined.  The possible values and 
meanings are: 

H5Q_COMBINE_AND Both of the conditions specified in the query_id_1 and query_id_2 
parameters must be fulfilled for the resulting query. 

H5Q_COMBINE_OR Either, or both, of the conditions specified in the query_id_1 and 
query_id_2 parameters must be fulfilled for the resulting query. 

For example, to create a query that specifies matching on dataset elements that are greater than 53.4 and 
less than 93.6, the following example code could be used: 

float f1 = 53.4; 

hid_t query_id_1 = H5Qcreate(H5Q_TYPE_DATA_ELEM,  

H5Q_MATCH_GREATER_THAN, H5T_NATIVE_FLOAT, &f1); 

float f2 = 93.6; 

hid_t query_id_2 = H5Qcreate(H5Q_TYPE_DATA_ELEM,  

H5Q_MATCH_LESS_THAN, H5T_NATIVE_FLOAT, &f2); 

hid_t query_id_3 = H5Qcombine(query_id_1, H5Q_COMBINE_AND, query_id_2);  

The following table describes the result types for atomic queries and combining queries of different types: 

Query Result Type 

H5Q_TYPE_DATA_ELEM Dataset Element 

H5Q_TYPE_ATTR_VALUE Attribute 

H5Q_TYPE_ATTR_NAME Object 

H5Q_TYPE_LINK_NAME Object 

<Dataset Element> AND <Dataset Element> Dataset Element 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   176	   	   	   	   	   06/30/2014	  

<Dataset Element> AND <Attribute> <none> 

<Dataset Element> AND <Object> Dataset Element 

<Attribute> AND <Attribute> Attribute 

<Attribute>AND <Object> Attribute 

<Object> AND <Object> Object 

<Dataset Element> OR <Dataset Element> Dataset Element 

<Dataset Element> OR <Attribute> Combination 

<Dataset Element> OR <Object> Combination 

<Dataset Element> OR <Combination> Combination 

<Attribute> OR <Attribute> Attribute 

<Attribute> OR <Object> Combination 

<Attribute> OR <Combination> Combination 

<Object> OR <Object> Object 

<Object> OR <Combination> Combination 

<Combination> OR <Combination> Combination 

<Combination> AND <Dataset Element> <none> 

<Combination> AND <Attribute> <none> 

<Combination> AND <Object> <none> 

<Combination> AND <Combination> <none> 

 

Query results of <none> type are rejected when H5Qcombine is called, causing it to return failure. 

NOTE: Query results of <none> type may be implemented with another result type in the future, once experience 
with the query framework is acquired and a meaningful grammar for those results are defined. 

Parameters:  
hid_t query_id_1 IN: Specifies one of the queries to be combined. 

H5Q_combine_op_t combine_op IN: Specifies the how the two queries are to be combined. 

hid_t query_id_2 IN: Specifies one of the queries to be combined. 

Returns:  
Returns a query identifier if successful; otherwise returns a negative value.  Query identifiers returned from this 
routine must be released with the H5Qclose routine. 

 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   177	   	   	   	   	   06/30/2014	  

History:  
Added in Quarter 6. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   178	   	   	   	   	   06/30/2014	  

4.12.3 H5Qcreate 

Name: H5Qcreate 
 
Signature:  

hid_t H5Qcreate ( H5Q_type_t query_type, H5Q_match_op_t match_op, … )  

Purpose:  
Create a new query object, specifying a type of object to apply the query to and the condition for matching. 

Description:  
H5Qcreate creates a new query object, and specifies the type of object in the HDF5 file that the query applies 
to, along with the condition of matching and the match value.  Query objects created with this routine can be used 
for creating views (with H5Vcreate_ff), analysis shipping operations (with H5ASexecute) or combined 
into more complicated queries (with H5Qcombine). 

The query_type parameter indicates the type of HDF5 object that the query will apply to.  This parameter will 
determine the interpretation of the varargs parameters.  The possible values and meanings are: 

H5Q_TYPE_DATA_ELEM Query will be applied to dataset elements. 

H5Q_TYPE_ATTR_VALUE Query will be applied to attribute values. 

H5Q_TYPE_ATTR_NAME Query will be applied to attribute names.   

H5Q_TYPE_LINK_NAME Query will be applied to link names.  

The match_op parameter indicates the conditions for query matching.  The possible values and meanings are: 

H5Q_MATCH_EQUAL Match values for the HDF5 object that are equal to the value 
specified for the query. 

H5Q_MATCH_NOT_EQUAL Match values for the HDF5 object that are not equal to the value 
specified for the query. 

H5Q_MATCH_LESS_THAN Match values for the HDF5 object that are less than the value 
specified for the query. 

H5Q_MATCH_GREATER_THAN Match values for the HDF5 object that are greater than the value 
specified for the query. 

The values for the varargs parameters (…) are interpreted according to the query_type parameter.  The possible 
types and meanings for each value of query_type are: 

H5Q_TYPE_DATA_ELEM hid_t value_datatype_id, 
const void * value 

value_datatype_id specifies the 
datatype of the query value and value is 
a pointer to the query value itself. 

H5Q_TYPE_ATTR_VALUE hid_t value_datatype_id, 
const void * value 

value_datatype_id specifies the 
datatype of the query value and value is 
a pointer to the query value itself. 

H5Q_TYPE_ATTR_NAME const char * attr_name attr_name is a pointer to the query 
value. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   179	   	   	   	   	   06/30/2014	  

H5Q_TYPE_LINK_NAME const char * link_name link_name is a pointer to the query 
value. 

 

For example, to create a query that specifies matching on dataset elements that are greater than 53.4, the 
following example code could be used: 

float f = 53.4; 
hid_t query_id = H5Qcreate(H5Q_TYPE_DATA_ELEM, H5Q_MATCH_GREATER_THAN, 

H5T_NATIVE_FLOAT, &f); 

The following query shows how to select objects with link names equal to “Pressure”: 

hid_t q2 = H5Qcreate(H5Q_TYPE_LINK_NAME, H5Q_MATCH_EQUAL, “Pressure”); 

Many more query types are possible, including types that select on keys or values of a map object, types 
that match objects based on their metadata (such as datasets with an integer datatype or with three 
dimensions) or types that restrict the query to a region of a dataset, but the types above represent a starting 
point and more can always be added over time.  The same could be said for the match conditions, with 
additions of regular expressions for attribute or link names, etc. possible in the future. 

Query objects created by this routine must be closed by H5Qclose. 

Parameters:  
H5Q_type_t query_type IN: Specifies the type of HDF5 object that the query will apply to.  This 

parameter will determine interpretation of the varargs parameters. 

H5Q_match_op_t match_op IN: Specifies the conditions for matching a query value. 

... IN: The varargs parameters are interpreted according to the query type. 

Returns:  
Returns a query identifier if successful; otherwise returns a negative value.  Query identifiers returned from this 
routine must be released with the H5Qclose routine. 

 
History:  

Added in Quarter 6. 
Quarter 8: Added support for attribute values and names, and link names. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   180	   	   	   	   	   06/30/2014	  

4.12.4 H5Qdecode 

Name: H5Qdecode 
 
Signature:  

hid_t H5Qdecode ( const void *buf )  

Purpose:  
Deserialize a buffer containing a serialized query and return a new query handle. 

Description:  
H5Qdecode deserializes the buffer, buf, and return a new query handle. The handle must later be closed 
using H5Qclose. 

Parameters:  
const void *buf IN: Buffer to be deserialized. 

Returns:  
Returns a non-negative query id if successful; otherwise returns a negative value. 

 
History:  

Added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   181	   	   	   	   	   06/30/2014	  

4.12.5 H5Qencode 

Name: H5Qencode 
 
Signature:  

herr_t H5Qencode ( hid_t query_id, void  *buf, size_t *nalloc )  

Purpose:  
Serialize a query into a buffer. 

Description:  
H5Qencode serializes a query, given by query_id, into a used-provided buffer, buf, and sets the 
*nalloc parameter to the number bytes used to encode the query.  If buf is NULL, then the query is not 
encoded, but the number of bytes required to encode the query is still set.  The query is unaffected by the 
serialization operation. 

Parameters:  
hid_t query_id IN: Identifier for query that is to be serialized. 

void *buf OUT: Buffer where serialized query is written. 

size_t *nalloc OUT: Number of bytes required to serialize the query. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   182	   	   	   	   	   06/30/2014	  

4.12.6 H5Qget_combine_op 

Name: H5Qget_combine_op 
 
Signature:  

herr_t H5Qget_combine_op( hid_t query_id, H5Q_combine_op_t *op_type )  

Purpose:  
Get the operator type for a query 

Description:  
H5Qget_combine_op retrieves the operator type for a query, given by query_id, setting the *op_type 
value with the type.  Possible values returned are: 

o H5Q_COMBINE_AND 

o H5Q_COMBINE_OR 

o H5Q_SINGLETON 

H5Q_COMBINE_AND and H5Q_COMBINE_OR are only returned for query objects produced with 
H5Qcombine and H5Q_SINGLETON is returned for query objects produced with H5Qcreate. 

Parameters:  
hid_t query_id IN: Specifies the query to probe 

H5Q_combine_op_t *op_type OUT: The operator type for the query 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

 
History:  

Added in Quarter 8. 

Man Page Status:  
No known issues. 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   183	   	   	   	   	   06/30/2014	  

4.12.7 H5Qget_components 

Name: H5Qget_components 

Signature:  
herr_t H5Qget_components( hid_t query_id, hid_t *sub_query1_id,  
hid_t *sub_query2_id )  

Purpose:  
Get the component queries of a combined query 

Description:  
H5Qget_components retrieves the component queries from a compound query object, given by query_id.  
The component queries are returned in *sub_query1_id, and *sub_query2_id, both of which must be 
closed with H5Qclose.  It is an error to apply H5Qget_components to a singleton query (one which was 
created with H5Qcreate). 

Note that the component queries may be compound or singleton, depending on how the initial query was 
constructed. 

Parameters:  
hid_t query_id IN: Specifies the query to probe  

hid_t *sub_query1_id OUT: Query ID for one of the components of the probed query 

hid_t *sub_query2_id OUT: Query ID for the other component of the probed query 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   184	   	   	   	   	   06/30/2014	  

4.12.8 H5Qget_match_op 

Name: H5Qget_match_op 

Signature:  
herr_t H5Qget_match_op( hid_t query_id,  H5Q_match_op_t *match_op )  

Purpose:  
Retrieve the match operation for a singleton query 

Description:  
H5Qget_match_op retrieves the match operation for a query, given by query_id, into the *match_op 
parameter.  The match operation was originally given to the H5Qcreate call, in its match_op parameter.  See 
H5Qcreate for a table listing the complete set of values that may be returned for *match_op.  It is an error to 
perform this call on a compound query object (one which was created with H5Qcombine). 
 

Parameters:  
hid_t query_type IN: Specifies the singleton query to probe 

H5Q_match_op_t *match_op OUT: The match operation for the singleton query 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   185	   	   	   	   	   06/30/2014	  

4.12.9 H5Qget_type 

Name: H5Qget_type 

Signature:  
herr_t H5Qget_type( hid_t query_id,  H5Q_type_t *query_type )  

Purpose:  
Retrieve the type of a query 

Description:  
H5Qget_type retrieves the type for a query, given by query_id, originally provided to H5Qcreate in its 
query_type parameter, or set after a call to H5Qcombine, putting the query’s type into *query_type.   
See H5Qcreate for a table listing the complete set of values that may be returned for the query type. 

Parameters:  
hid_t query_id IN: Specifies the query to probe 

H5Q_type_t *query_type OUT: The query type for the probed query 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

 

 

 

 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   186	   	   	   	   	   06/30/2014	  

 
4.13 H5RC:	  Read	  Context	  APIs	  	  
These routines are used to establish the read context for operations on HDF5 Files (containers) 
in the Exascale Fast Forward stack. 

In the Exascale Fast Forward stack it is possible that multiple versions of a container may be 
readable at any given time, where a container version results when a transaction is committed, 
and earlier versions may be ‘flattened’ by later versions as the data is reorganized for optimized 
access.  

The application must indicate what container version it wants to read from, not simply what 
container.   A read context is used to open a handle on a particular version, guaranteeing that 
the version will remain available until the context is closed.  A read context ID is passed to HDF5 
operations to indicate what version of the container should be read from. All reads made using 
the same read context will see a consistent version of the container data.   Multiple read 
contexts can be open on a single container at any given time. 

These routines did not exist prior to the Exascale FastForward project. 

 

Routine Implemented Notes 

H5RCacquire Quarter 5  

H5RCacquire_wait  Added in response to Q5 feedback; May be 
implemented in future quarter if time allows. 

H5RCclose Quarter 5  

H5RCcreate Quarter 5  

H5RCget_version Quarter 5  

H5RCpersist Quarter 5  

H5RCrelease Quarter 5  

H5RCsnapshot Quarter 5  
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   187	   	   	   	   	   06/30/2014	  

4.13.1 H5RCacquire 

Name: H5RCacquire 
 
Signature:  

hid_t H5RCacquire ( hid_t file_id, uint64_t *container_version, hid_t rcapl_id,  
hid_t es_id )  

Purpose:  
Acquire a read handle for a container at a given version and create a read context associated with the container 
and version. 

Description:  
H5RCacquire acquires a read handle on a container version and creates a read context associated with that 
container version.  The container version is guaranteed to remain readable and consistent until the context is 
closed and the handle released (with H5RCrelease). 

The file_id parameter indicates the container the read context will be associated with. 

The container_version parameter indicates the container version that the read handle will be acquired for 
and the read context associated with.   Parameters in the read context acquire property list control how the value 
pointed to by container_version will be interpreted by the function, since it is not always possible to 
acquire a particular container version.   Upon successful completion of the function, the value pointed to by the 
container_version parameter contains the actual version that the read handle was acquired for and the read 
context associated with. 

The version request property in the read context acquire property list, rcapl_id, controls how the function 
interprets the value pointed to by container_version. H5Pset_rcapl_version_request() sets 
the version request property, whose possible values and meanings are: 

H5RC_EXACT Acquire a read handle for the exact container version specified. (Default) 

H5RC_PREV Acquire a read handle for the container version specified, or the highest 
previous version if the specified version is not available. 

H5RC_NEXT Acquire a read handle for the container version specified, or the lowest next 
version if the specified version is not available.  With this setting, and 
*container_version set to 0, the handle will be acquired for the first 
(lowest) readable version of the container. 

H5RC_LAST Acquire a read handle for the last (highest) container version possible.  With 
this setting, the input value pointed to by container_version is ignored. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when 
the function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter, but the returned read context should not be used 
until the asynchronous function completes. 

This function must be called by one process in a parallel application to ensure that the container version 
remains readable.  That process can notify other processes in the application when the read handle is 
acquired, and the other processes can each call H5RCcreate after notification is received to create local 
read context identifiers for the container version.   

In the current prototype implementation, only one process can call H5RCacquire for a given container 
version.  Coordination amoung processes wanting to read the same container version must be done at the 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   188	   	   	   	   	   06/30/2014	  

application level and multiple processes cannot independently call H5RCacquire to indicate that they 
each are interested in reading from the container version. 

Parameters:  
hid_t file_id  IN: File identifier indicating the container that the read handle is being 

acquired for and read context associated with. 

uint64_t *container_version IN/OUT:  On input, pointer to value that, in conjunction with the read 
context acquire property list, specifies the container version to open the 
handle for. 

Upon successful completion of the function, the value pointed to by 
this parameter will contain the actual container_version that the read 
handle was acquired.  The value is unchanged if the function does not 
complete successfully. 

hid_t rcapl_id IN: Read context acquire property list.  Can contain the version request 
property, set with H5Pset_rcapl_version_request(), that 
controls how container_version is interpreted. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for 
synchronous execution. 

Returns:  
Returns a read context identifier if successful; otherwise returns a negative value. When executed 
asynchronously, a future ID for the new read context is returned initially.  Upon completion of the 
asynchronous operation, the future ID will be transparently modified to be a “normal” read context 
identifier.  Since the success of the read handle acquisition, and the actual container version acquired, is 
not known until completion, the application should not use the future ID for the read context in any other 
functions as a read context ID parameter. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

Limitations and Open Issues:  
As designed, H5RCacquire could be called by multiple processes independently.  Although this usage is not 
optimal from a performance perspective, it could be useful (and even necessary) in cases where multiple reading 
processes are not tightly coupled. In the prototype phase of the project, IOD does not support the multi-caller use 
case, so a single process must call H5RCacquire, notify other  processes who may want to read from the 
version at the same time, and have those processes call H5RCcreate. 

 
History:  

Added in Quarter 5. 
Quarter 8: Added section on Limitations and Open Issues and revised text in Description accordingly. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   189	   	   	   	   	   06/30/2014	  

4.13.2 H5RCclose 

Name: H5RCclose 
 
Signature:  

herr_t H5RCclose ( hid_t rcntxt_id )  

Purpose:  
Close a read context. 

Description:  
H5RCclose closes the read context specified by rcntxt_id and releases resources used by it. Further use of 
the read context identifier is illegal in HDF5 API calls.  H5RCclose does not release the read handle for the 
container version associated with the read context that is being closed. Typically the read context specified by 
rcntxt_id was obtained by a call to H5RCcreate, but in some circumstances H5RCacquire may have 
returned the read context. 

H5RCclose should be called before the handle for the container version is released via a call to 
H5RCrelease.  Typically the process that called H5RCacquire will call H5RCrelease, but in some 
circumstances, such as premature process termination, another process with a read context for the container 
version obtained via a call to H5RCcreate may make the call to H5RCrelease. Regardless of which 
process calls H5RCrelease, it closes the read context and releases the read handle on the associated container 
version. 

For a given rcntxt_id, either H5RCclose or H5RCrelease should be called, but not both.   

The actions performed by this function are all local to the compute node so an asynchronous execution option is 
not provided. 

Parameters:  
hid_t rcntxt_id  IN: Identifier of the read context to close. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   190	   	   	   	   	   06/30/2014	  

4.13.3 H5RCcreate 

Name: H5RCcreate 
 
Signature:  

hid_t H5RCcreate ( hid_t file_id, uint64_t container_version )  

Purpose:  
Create a read context associated with a container and version. 

Description:  
H5RCcreate creates a read context associated with a specified container and version after a read handle has 
already been acquired on the container version by another process in the application.  The created read context is 
passed to other HDF5 functions that perform reads on the container. 

The file_id parameter indicates the container the read context is associated with. 

The container_version parameter indicates the container version that the read context is associated with.   

Prior to this call, a read handle must be acquired on the container version by another process in the parallel 
application via a call to H5RCacquire. The container version is guaranteed to remain readable and consistent 
until the handle released (with H5RCrelease).   

To conserve and release resources, the read context created by this function should be closed, when access is no 
longer required, usually with H5RCclose.  The read context acquired by this function cannot be used after the 
handle for the container version has been released via a call to H5RCrelease.  Typically the process that 
called H5RCacquire will call H5RCrelease, but in some circumstances (such as premature process 
termination), another process with a read context for the container version may make the call to H5RCrelease, 
closing the read context and releasing the read handle. 

The actions performed by this function are all local to the compute node so an asynchronous execution option is 
not provided. 

Parameters:  
hid_t file_id  IN: File identifier indicating the container that the read context is associated 

with. 

uint64_t container_version IN: The container version that the read context is associated with.. 

Returns:  
Returns a read context identifier if successful; otherwise returns a negative value.  

 
History:  

Added in Quarter 5. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   191	   	   	   	   	   06/30/2014	  

4.13.4 H5RCget_version 

Name: H5RCget_version 
 
Signature:  

herr_t H5RCget_version ( hid_t rcntxt_id, uint64_t *container_version )  

Purpose:  
Retrieve the container version associated with a read context. 
 

Description:  
The rcntxt_id specifies the read context whose associated container version is to be retrieved. 

The value pointed to by the container_version parameter will be set to the container version that the read 
context is associated with. 

The actions performed by this function are all local to the compute node so an asynchronous execution option is 
not provided. 

Parameters:  
hid_t rcntxt_id  IN: Read context identifier whose associated container version 

is being retrieved. 

uint64_t *container_version OUT: Container version associated with the read context.  
Value is unchanged if operation is unsuccessful. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 

 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   192	   	   	   	   	   06/30/2014	  

4.13.5 H5RCpersist 

Name: H5RCpersist 
 
Signature:  

herr_t H5RCpersist ( hid_t rcntxt_id, hid_t es_id )  

Purpose:  
Copy data for a container from IOD to DAOS, bringing DAOS up to specified container version. 
 

Description:  
H5RCpersist requests that IOD update a container on DAOS to a specific version. 

The rcntxt_id indicates both the container that is to be updated and the version that is to be persisted.   The 
indicated container must be open for write. 

Updates to the container between the last persisted version and the version currently being persisted will be 
copied to DAOS as part of this persist request.    

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t rcntxt_id  IN: Read context identifier indicating the container (that is open for write) and the 

version that is to be persisted. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor 
the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 

 
History:  

Quarter 4: Documented as H5Fpersist but not yet implemented. 
Quarter 5: Renamed from H5Fpersist to H5RCpersist, using rcntxt_id instead of file_id and container_version.  
Implemented. 

Man Page Status:  
No known issues. 

 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   193	   	   	   	   	   06/30/2014	  

4.13.6 H5RCrelease 

Name: H5RCrelease 
 
Signature:  

herr_t H5RCrelease ( hid_t rcntxt_id, hid_t es_id )  

Purpose:  
Close a specified read context and release a read handle for the associated container version  

Description:  
H5RCrelease closes the read context specified by rcntxt_id and releases resources used by it.  It also 
releases the read handle for the container version associated with the read context. Further use of the read context 
identifier is illegal in HDF5 API calls. Typically the read context specified by rcntxt_id was obtained by a 
call to H5RCacquire, H5Fopen_ff, or H5TRfinish, but in some circumstances H5RCcreate 
may have returned the read context. 

H5RCrelease should be called after all other read contexts for the container version have been released via 
calls to H5RCclose.  Typically the process that called H5RCacquire, H5Fopen_FF, or H5TRfinish 
will call H5RCrelease, but in some circumstances, such as premature process termination, another process 
with a read context for the container version obtained via a call to H5RCcreate may make the call to 
H5RCrelease. Regardless of which process calls H5RCrelease, the read context is closed and the read 
handle on the associated container version is released. 

For a given rcntxt_id, either H5RCrelease or H5RCclose should be called, but not both.   

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

Parameters:  
hid_t rcntxt_id  IN: Identifier of the read context that will be closed; the read handle for the 

associated container version will also be released. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for 
synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   194	   	   	   	   	   06/30/2014	  

4.13.7 H5RCsnapshot 

Name: H5RCsnapshot  
 
Signature:  

herr_t H5RCsnapshot( hid_t rcntxt_id, const char* snapshot_name, hid_t es_id  )  

Purpose:  
Make a snapshot of a container on DAOS. 
 

Description:  
H5RCsnapshot requests that DAOS make a copy of the container and version specified by the read context, 
and give it the indicated container name.  The snapshot is a permanently visible copy of the container’s state at the 
given container version. 

The rcntxt_id indicates both the container and the container version that the new copy will duplicate. If the 
requested version is not readable on DAOS for the container, the snapshot request will fail. 

snapshot_name is the name given to the newly created snapshot.     

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t rcntxt_id  IN: Read context identifier indicating the container and the version that is to be persisted 

for with the snapshot should be taken. 

const char* 
snapshot_name  

IN: Name of the snapshot. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 

History:  
Quarter 4: Documented but not yet implemented.  
Quarter 5: Renamed from H5Fsnapshot to H5RCsnapshot, using rcntxt_id instead of file_id and 
container_version.  Implemented. 

Open Issues: 
The IOD API to support this functionality is missing in the prototype, so this feature cannot be accessed 
from the HDF5 API.  The ability to snapshot containers is implemented at the DAOS level. 

Man Page Status:  
No known issues. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   195	   	   	   	   	   06/30/2014	  

4.14 H5T:	  Datatype	  APIs	  
These routines are used to operate on HDF5 Datatype Objects. 

The routines ending in _ff have different signatures than the standard HDF5 library routines. 

Man pages for routines whose user interface is unchanged from the standard HDF5 
implementation can be found at: http://www.hdfgroup.org/HDF5/doc/RM/RM_H5T.html. 

 

Routine Implemented Notes 

H5Tclose_ff Quarter 4  

H5Tcommit_ff Quarter 4  

H5Tevict_ff Quarter 7  

H5Topen_ff Quarter 4 This is implemented synchronously for now. 

H5Tprefetch_ff Quarter 7  

H5Tget_create_plist Quarter 4 Local operation, no need to do asynchronously.  
See standard HDF5 man page. 

H5Tcommit_anon  Will not implement 
 
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   196	   	   	   	   	   06/30/2014	  

4.14.1 H5Tclose_ff 

Name: H5Tclose_ff   

Signature:  
hid_t H5Tclose_ff( hid_t dtype_id, hid_t es_id  )  

Purpose:  
Releases a datatype, possibly asynchronously. 
 

Description:  
H5Tclose_ff releases the datatype specified by dtype_id. Further access through the datatype identifier is 
illegal. Failure to release a datatype with this call will result in resource leaks.  

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

Parameters:  
hid_t dtype_id  IN: Identifier of the datatype to release.  

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 
 

History:  
Added in Quarter 4. 
Quarter 5: Changed from event queue to event stack.  

Man Page Status:  
No known issues. 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   197	   	   	   	   	   06/30/2014	  

4.14.2 H5Tcommit_ff 

Name: H5Tcommit_ff  

Signature:  
herr_t H5Tcommit_ff( hid_t loc_id, const char *name, hid_t dtype_id, hid_t lcpl_id,  
hid_t tcpl_id, hid_t tapl_id, hid_t trans_id, hid_t es_id )  

Purpose:  
Commit a transient datatype, linking it into the file and creating a new named datatype, possibly asynchronously.  

Description:  
H5Tcommit_ff saves a transient datatype as an immutable named datatype in a file. The datatype specified by 
dtype_id is committed to the file with the name name at the location specified by loc_id and with the 
datatype creation and access property lists tcpl_id and tapl_id, respectively.  

loc_id may be a file identifier, or a group identifier within that file. loc_id must be in scope for the 
transaction identified by trans_id. 
 
name may be either an absolute path in the file or a relative path from loc_id naming the newly-commited 
datatype.   name must be in scope for the transaction identified by trans_id. 

The link creation property list, lcpl_id, governs creation of the link(s) by which the new named 
datatype is accessed and the creation of any intermediate groups that may be missing.  The link creation 
property list currently has no effect in the EFF stack and should be set to H5P_DEFAULT. 

The datatype creation property list, tcpl_id, and dataset access property list, tapl_id, are currently 
not used and should be set to H5P_DEFAULT. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Once commited, this datatype may be used to define the datatype of any other dataset or attribute in the file.  

This function will not accept a datatype that cannot actually hold data. This currently includes compound 
datatypes with no fields and enumerated datatypes with no members.  

Parameters:  
hid_t loc_id  IN: Location identifier  

May be any HDF5 group identifier or file identifier file identifier that is in scope for the 
transaction.  

const char *name      IN: Name given to named datatype  
The name can be specified relative to loc_id, or absolute from the file’s root group, and 
must be in scope for the transaction. 

hid_t dtype_id  IN: Identifier of datatype to be committed and, upon function’s return, identifier for 
the named datatype  

hid_t lcpl_id  IN: Link creation property list  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   198	   	   	   	   	   06/30/2014	  

Currently not used in EFF; specify H5P_DEFAULT. 

hid_t tcpl_id  IN: Datatype creation property list  
Currently not used; specify H5P_DEFAULT. 

hid_t tapl_id  IN: Datatype access property list  
Currently not used; specify H5P_DEFAULT. 

hid_t trans_id IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 
 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack. 

 
History:  

Added in Quarter 4. 
Quarter 5: Changed from transaction to transaction id and from event queue to event stack. Added scope 
requirement and noted property lists that are not used. 

Man Page Status:  
No known issues. 

 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   199	   	   	   	   	   06/30/2014	  

4.14.3 H5Tevict_ff  

Name: H5Tevict_ff 

Signature:  
herr_t H5Tevict_ff( hid_t dtype_id, uint64_t container_version, hid_t dxpl_id,  
hid_t es_id )  

Purpose:  
Evict named datatype from the burst buffer, possibly asynchronously. 

Description:  
H5Tevict_ff evicts data associated with a named datatype from the burst buffer.   

The data to be evicted may be resident in the burst buffer under two different scenarios 

In the first scenario, the data is resident in the burst buffer as the result of updates to the datatype made via the 
EFF transaction model.  For example, through a call to H5Tcommit_ff.  This calls add updates to a transaction 
that are atomically applied when the transaction is committed, and we refer to this data as transaction update 
data.   

When evicting transaction update data, the container version being evicted should first be persisted to permanent 
storage (DAOS), with the H5RCpersist command. The named datatype’s transaction update data for the 
specified container version, as well as the named datatype’s transaction update data for all lower-numbered 
container versions that has not yet been evicted from the burst buffer, will be evicted as the result of this call.  If 
evicting the data would result in container versions with open read contexts becoming inaccessible, the evict will 
fail. 

In the second scenario, the data is resident in the burst buffer as the result of a call to H5Tprefetch_ff.  This call 
replicates data from persistent storage (DAOS) to the burst buffer, and we refer to this data as replica data.  When 
replica data is evicted, only data in the burst buffer as a result of the exact replica specified is evicted – transaction 
update data and other replicas for the named datatype remain in the burst buffer. 

The dtype_id parameter specifies the named datatype whose data is to be evicted. 

The version of the named datatype to be evicted is specified by the container_version property.   	  

The replica property in the transfer property list,  dxpl_id, is used to specify that a named datatype replica is to 
be evicted. H5Pset_dxpl_replica() sets the replica property.  If this is set, then replia data will be 
evicted, otherwise transaction update data will be evicted. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Limitations / Future Considerations:  
In Quarter 7, only the primary IOD Blob object associated with the named datatype is evicted.   Auxilary IOD 
objects will also be evicted in Quarter 8. 

When evicting a replica, the container_version argument is redundant, as the replica identifier fully 
specifies the data to be evicted.   Consider revisiting and possibly revising the API prior to production release.  
Possibly have separate evict commands for eviction of transaction update data and of replicas. 

For other potential extensions that are beyond the scope of the EFF prototype project, refer to the document Burst 
Buffer Space Management – Prototype to Production. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   200	   	   	   	   	   06/30/2014	  

Parameters:  
hid_t dtype_id IN: Identifier of the named datatype being evicted. 

uint64_t  container_version IN: Container version specifying what version of the named datatype to 
evict. 

hid_t tapl_id     IN: Identifier of an access property list.  If the access property list contains 
an evict replica property (set via H5Pset_evict_replica()), then 
the replica_id specified by that property will be evicted. 

hid_t es_id IN: The es_id parameter indicates the event stack the event object 
for this call should be pushed onto when the function is executed 
asynchronously. The function may be executed synchronously by 
passing in H5_EVENT_STACK_NULL for the es_id parameter.  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. 

 
History:  

Added in Quarter 7. 

Man Page Status:  
Will need updates in Quarter 8 when additional features are implemented. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   201	   	   	   	   	   06/30/2014	  

4.14.4 H5Topen_ff 

Name: H5Topen_ff  

Signature:  
hid_t H5Topen_ff( hid_t loc_id, const char * name, hid_t tapl_id, hid_t rcntxt_id,  
hid_t es_id )  

Purpose:  
Opens a named datatype, possibly asynchronously. 

Description:  
H5Topen_ff opens a named datatype at the location specified by loc_id and returns an identifier for the 
datatype.  loc_id is either a file or group identifier.  name is the path to the named datatype object relative to 
loc_id. Both loc_id and name must be in scope for for the read context identified by rcntxt_id. 

The identifier should eventually be closed by calling H5Tclose_ff to release resources.  

The named datatype is opened with the datatype access property list tapl_id. The datatype access 
property list currently has no effect and should be set to H5P_DEFAULT. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  NOTE:  Currently, only synchronous execution is 
supported.  We will continue to evaluate whether asynchronous execution makes sense for this function, as the 
user needs the information returned in order to proceed. 

Parameters:  
hid_t loc_id IN: A file or group identifier that is in scope for the read context. 

const char * name     IN: A datatype name, defined within the file or group identified by loc_id. 
Must be in scope for the read context. 

hid_t tapl_id IN: Datatype access property list identifier. 
Currently not used; specify H5P_DEFAULT. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor 
the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 
Currently will be treated as H5_EVENT_STACK_NULL regardless of what 
value is passed in. 

Returns:  
Returns a named datatype identifier if successful; otherwise returns a negative value.   

 
History:  

Added in Quarter 4. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   202	   	   	   	   	   06/30/2014	  

4.14.5 H5Tprefetch_ff 

Name: H5Tprefetch_FF   

Signature:  
herr_t H5Tprefetch_ff( hid_t dtype_id, hid_t rcntxt_id, hid_t *replica_id, hid_t dxpl_id,  
hid_t es_id )  

Purpose:  
Prefetch a named datatype from persistent storage to burst buffer storage, possibly asynchronously. 

Description:  
H5Tprefetch_ff prefetches a named datatype, specified by its identifier dtype_id, from persistent storage 
(DAOS) into burst buffer storage.    

rcntxt_id indicates the read context for this operation. 

replica_id, the replica identifier, is set to indicate where the pre-fetched data can be found in the burst 
buffer, and is passed to subsequent H5Tevict calls. 

dxpl_id, a data transfer property list identifier, is not currently used and should be set to H5P_DEFAULT. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

The replica_id is not valid until the operation has completed, if it is executing asynchronously. 

Limitations / Future Considerations:  
For the EFF prototype project, only the primay IOD Blob object associated with the HDF5 named datatype will 
be prefetched; auxiliary IOD objects remain on persistent storage (DAOS).  For more information, and other 
potential extensions, refer to the document Burst Buffer Space Management – Prototype to Production. 

This function was implemented for completeness, and to demonstrate that IOD Blob objects can be prefetched, 
but since no access routines accept the named datatype’s replica_id in this phase of the project, it has no 
practical value other than to demonstrate the ability to prefetch and evict HDF5 named datatypes and IOD Blobs. 

Parameters:  
hid_t dtype_id IN: Identifier of the named datatype being prefetched. 

grp_id must be in scope for the read context. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t * replica_id IN: Identifier of the replicated data in the burst buffer. 

hid_t tapl_id     IN: Identifier of an access property list for this I/O operation.  Should be 
H5P_DEFAULT. 

hid_t es_id IN: The es_id parameter indicates the event stack the event object for this call 
should be pushed onto when the function is executed asynchronously. The 
function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   203	   	   	   	   	   06/30/2014	  

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether 
the operation has been successfully scheduled for asynchronous execution.  The actual success or failure of the 
asynchronous operation must be checked separately through the event stack. 

 
History:  

Added in Quarter 7. 

Man Page Status:  
No known issues. 
 
 

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   204	   	   	   	   	   06/30/2014	  

4.15 H5TR:	  Transaction	  Operation	  APIs	  	  
These routines are used to create and manage HDF5 transactions in the Exascale Fast Forward 
stack. 

An HDF5 transaction consists of a set of updates that modify an HDF5 file (container). 
Transactions are applied atomically - either all of the transaction’s updates are applied and 
become readable (the transaction is committed) or none of them are applied (the transaction is 
discarded). Transactions are numbered and are committed in strict numerical sequence.  
Multiple transactions may be in progress concurrently, and multiple processes may participate in 
a single transaction. 

A transaction is associated with a particular container and transaction number. The transaction 
ID returned when a transaction is created is used to start the transaction, and is passed to HDF5 
functions that update the container.  This allows every update to be added to the correct 
transaction, and all of the updates for a transaction to be applied atomically when the 
transaction is committed.   

These routines did not exist prior to the Exascale FastForward project. 

 

Routine Implemented Notes 

H5TRabort Quarter 5  

H5TRclose Quarter 5  

H5TRcreate Quarter 5  

H5TRfinish Quarter 5  

H5TRget_trans_num Quarter 7  

H5TRget_version Quarter 7  

H5TRset_dependency Quarter 5  

H5TRskip Quarter 5  

H5TRstart Quarter 5  
 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   205	   	   	   	   	   06/30/2014	  

4.15.1 H5TRabort 

Name: H5TRabort 

Signature:  
herr_t H5TRabort( hid_t trans_id, hid_t es_id  )  

Purpose:  
Abort a transaction. 
 

Description:  
H5TRabort signals that all updates in the transaction identified by trans_id should be discarded.  

H5TRabort can be called by any process that has a transaction identifier for the transaction to be aborted. All 
past and future updates in the transaction identified by trans_id will be discarded.  The aborted transaction 
will never be committed to the container and the transaction number associated with the aborted transaction 
cannot be reused.  An aborted transaction is classified as discarded.  Discarded transactions do not block the 
commitment of higher-numbered transactions. 

If a higher-numbered transaction registered a dependency on the aborted transaction,  the dependent transaction 
will also be aborted.  The abort of the dependent transaction may occur at any time before it commits.   

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

Parameters:  
hid_t trans_id  IN: Transaction identifier for the transaction that is being aborted.  

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor 
the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 

 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   206	   	   	   	   	   06/30/2014	  

4.15.2 H5TRclose 

Name: H5TRclose 
 
Signature:  

herr_t H5TRclose ( hid_t trans_id )  

Purpose:  
Close the specified transaction. 

Description:  
H5TRclose closes the transaction specified by trans_id and releases resources used by it. Further use of 
the transaction identifier is illegal in HDF5 API calls.  This function does not finish the transaction and allow it to 
be committed – that is done by H5TRfinish.  

All processes that called H5TRcreate to create a transaction and get a transaction id must call H5TRclose 
to release the resources used by the transaction. For a transaction that is to be committed, the function 
H5TRfinish must be called L times, where L is the number of leader processes that called H5TRstart to start 
the transaction.   Typically the leader processes each call H5TRfinish, but in some circumstances – such as if a 
process dies – other processes may call H5TRfinish. Any process with a transaction id for a given 
transaction may abort the transaction with a call to H5TRabort.   On a given process for a given transaction, 
calls to H5TRfinish or H5TRabort should be made – and completed – before H5TRclose is called. 

The actions performed by this function are all local to the compute node so an asynchronous execution option is 
not provided. 

Parameters:  
hid_t trans_id  IN: Identifier of the transaction to close. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   207	   	   	   	   	   06/30/2014	  

4.15.3 H5TRcreate 

Name: H5TRcreate 
 
Signature:  

hid_t H5TRcreate ( hid_t file_id, hid_t rcntxt_id , uint64_t trans_num )  

Purpose:  
Create a transaction associated with a specified container, read context, and number. 

Description:  
H5TRcreate creates a transaction associated with a specified container, read context, and transaction number. 
Every process that will add updates to the transaction must call H5TRcreate and use the transaction identifier 
returned by H5TRcreate in subsequent calls related to the transaction.    

After a transaction has been created, one or more transaction leaders must start the transaction by calling 
H5TRstart, effectively notifying lower layers of the I/O stack that the transaction is in-progress.  After the 
leader processes start the transaction, it is their responsibility to notify the processes that called H5TRcreate 
but did not call H5TRstart (the delegate processes) that updates to the transaction may begin.    

The file_id parameter indicates the container the transaction is associated with, and must be open for write. 
Updates added to the transaction will be applied atomically to the container identified by file_id when the 
transaction is committed.   

The rcntxt_id parameter indicates read context for the transaction.   Any read operations that occur in 
conjunction with updates to the transaction will be made on the container version associated with this read 
context.   

The trans_num parameter indicates the number that is associated with the transaction. A single container can 
have multiple transactions in progress at any given time. Transactions are committed in strict numerical order, and 
it it the application’s responsibility to manage transaction numbers.  Transaction numbers uniquely identify a 
transaction and once a transaction is started or skipped the number can never be used again. 

Note that although reads will be made from the container version associated with the read context, the 
transaction’s updates will be atomically applied to the latest container version at the time the transaction is 
committed.   

The actions performed by this function are all local to the compute node so an asynchronous execution option is 
not provided. 

Parameters:  
hid_t file_id  IN: File identifier indicating the container that the transaction is associated with. 

hid_t rcntxt_id  IN: Read context identifier indicating the read context for the transaction. 

uint64_t trans_num IN: The transaction number for the transaction. 

Returns:  
Returns a transaction identifier if successful; otherwise returns a negative value.  

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   208	   	   	   	   	   06/30/2014	  

4.15.4 H5TRfinish 

Name: H5TRfinish 

Signature:  
herr_t H5TRfinish( hid_t trans_id, hid_t trfpl_id, hid_t *rcntxt_id, hid_t es_id  )  

Purpose:  
Finish a transaction that was started with H5TRstart. 
 

Description:  
H5TRfinish signals that no more updates will be added to the transaction identified by trans_id. If 
updates to the transaction have been made with asynchronous function calls, then all of the operations must 
complete before the last call to H5TRfinish is made for the transaction. 

For a given transaction, H5TRfinish must be called the same number of times that H5TRstart was called to 
start the transaction (assuming that the transaction was not aborted with H5TRabort). Typically, the leader 
processes that called  H5TRstart to start the transaction each call H5TRfinish; in some circumstances – 
such as when a process dies – other processes may call H5TRfinish.  

The transaction is considered finished when H5TRfinish has been called the required number of times. 

After the transaction is finished and all lower-numbered transactions are finished or discarded, the transaction is 
committed and all updates that are part of the transaction will be applied atomically to the container and become 
readable in a new container version with the same number as the committed transaction. 

The transaction finish property list, trfpl_id, is currently not used and should be set to H5P_DEFAULT. 

The rcntxt_id parameter allows the user to pass a pointer to an hid_t datatype signaling that the function 
should acquire a read handle and create a read context immediately after the transaction is committed. This 
ensures that a read handle on the container version resulting from the committed transaction can be acquired 
before a subsequent transaction commit occurs.    

In addition to acquiring the read handle, a read context is created and the identifier for that context is returned in 
*rcntxt_id. The read context identifier will not be available until after the H5TRfinish call completes 
successfully, but a future id is returned immediately and can be used in subsequent HDF5 calls.  H5RCrelease 
must be called to release the read handle and close the context when it is no longer needed.  

If the rcntxt_id parameter is set to NULL, no read handle is acquired and no read context is created. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

When executed asynchronously, the function does not complete until after the finished transaction has 
been committed.  If rcntxt_id is not NULL, acquisition of the read handle, creation of the read 
context, and updating of *rcntxt_id will also occur before the function completes. 

After H5TRfinish completes, the transaction should be closed by all processes that called H5TRcreate. 

Parameters:  
hid_t trans_id  IN: Transaction identifier for the transaction being finished.  

hid_t trfpl_id IN: Transaction finish property list.   



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   209	   	   	   	   	   06/30/2014	  

Currently not used; specify H5P_DEFAULT. 

hid_t *rcntxt_id  IN/OUT: Pointer to read context for container version resulting from successfully 
committed transaction.  Pass in NULL if no read context is desired. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  When executed asynchronously, a 
future ID for the read context is returned initially in *rcntxt_id;  upon completion of the asynchronous 
operation, the future ID will be transparently modified to be a “normal” read context identifier. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous operation 
must be checked separately through the event stack.  

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   210	   	   	   	   	   06/30/2014	  

4.15.5 H5TRget_trans_num 

Name: H5TRget_trans_num 
 
Signature:  

herr_t H5TRget_trans_num ( hid_t trans_id, uint64_t *trans_num )  

Purpose:  
Retrieve the transaction number associated with a transaction. 

Description:  
The trans_id specifies the transaction whose associated transaction number is to be retrieved. 

The value pointed to by the trans_num parameter will be set to the transaction number that the transaction is 
associated with. 

The actions performed by this function are all local to the compute node so an asynchronous execution option is 
not provided. 

Parameters:  
hid_t trans_id  IN: Identifier of the transaction whose associated transaction 

number is being retrieved. 

uint64_t *trans_num OUT: Transaction number associated with the transaction.  
Value is unchanged if operation is unsuccessful. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 7. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   211	   	   	   	   	   06/30/2014	  

4.15.6 H5TRget_version 

Name: H5TRget_version 
 
Signature:  

herr_t H5TRget_version ( hid_t trans_id, uint64_t *container_version )  

Purpose:  
Retrieve the container version associated with a transaction. 
 

Description:  
The trans_id specifies the transaction whose associated container version is to be retrieved.   

When a transaction is started via the H5TRcreate call, a read context is associated with the transaction.  The 
container version returned by this H5TRget_version call is the one associated with the transaction is the container 
version associated with that read context.  

The value pointed to by the container_version parameter will be set to the container version that 
transaction is associated with. 

The actions performed by this function are all local to the compute node so an asynchronous execution option is 
not provided. 

Parameters:  
hid_t trans_id  IN: Identifier of the transaction whose associated container version is 

being retrieved. 

uint64_t *container_version OUT: Container version associated with the transaction.  Value is 
unchanged if operation is unsuccessful. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 7. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   212	   	   	   	   	   06/30/2014	  

4.15.7 H5TRset_dependency 

Name: H5TRset_dependency 

Signature:  
herr_t H5TRset_dependency( hid_t trans_id, uint64_t trans_num, hid_t es_id  )  

Purpose:  
Register the dependency of a transaction on a lower-numbered transaction. 
 

Description:  
H5TRset_dependency registers a dependency of the transaction identified by trans_id on a lower-
numbered transaction whose transaction number is given by trans_num. The transaction with the 
dependency is referred to as dependent transaction (identified by trans_id) and the lower-numbered 
transaction it depends on is the prerequisite transaction (identified by trans_num). 

A dependency must be registered when a commit of the dependent transaction will leave the container in an 
inconsistent state unless the prerequisite transaction commits. 

If a prerequisite transaction is discarded (either aborted or skipped) the dependent transaction will be aborted. The 
abort of the dependent transaction may occur at any time before it commits.   

A given transaction may depend on multiple prerequisite transactions.  It is an error to register a dependency on a 
future (higher-numbered) transaction.   

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

Parameters:  
hid_t trans_id  IN: Transaction identifier for the transaction with the dependency – the dependent 

transaction. 

uint64_t trans_num IN: Transaction number of the lower-numbered transaction that must commit 
successfully  -- the prerequisite transaction. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor 
the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   213	   	   	   	   	   06/30/2014	  

4.15.8 H5TRskip 

Name: H5TRskip 

Signature:  
herr_t H5TRskip( hid_t file_id, uint64_t start_trans_num, uint64_t count, hid_t es_id )  

Purpose:  
Explicitly skip one or more transaction numbers for a container. 
 

Description:  
H5TRskip signals that the application will not be using the identified transaction numbers for the specified 
container.  Since transactions are numbered and are committed in strict numeric order, having unused transaction 
numbers that are not explicitly skipped will prevent higher-numbered transactions from committing.  

The file_id is the file identifier for a container that is open for write.   

start_trans_num is the first transaction number that should be skipped.  

count specifies how many transaction numbers should be skipped. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

H5TRskip should always be called by a single process for any given container and transaction number.   

H5TRskip should never be called with the same file_id and transaction_num parameters used in a 
call to H5TRcreate. The (uncreated) transactions with the skipped transaction numbers are classified as 
discarded.  Discarded transactions do not block the commitment of higher-numbered transactions. 

Parameters:  
hid_t file_id  IN: File identifier for container open for write.  

uint64_t start_trans_num IN: The first transaction number to skip. 

uint64_t count IN: How many transaction numbers to skip. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used 
to monitor the status of the event associated with this function call 
when executed asynchronously. Use H5_EVENT_STACK_NULL for 
synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   214	   	   	   	   	   06/30/2014	  

4.15.9 H5TRstart 

Name: H5TRstart  

Signature:  
herr_t H5TRstart( hid_t trans_id, hid_t trspl, hid_t es_id  )  

Purpose:  
Start a created transaction. 
 

Description:  
H5TRstart starts the previously created transaction identified by trans_id.  

After a transaction has been created with H5TRcreate, one or more transaction leaders must start the 
transaction by calling H5TRstart, effectively notifying lower layers of the I/O stack that the transaction is in-
progress.  The transaction is considered in-progress when the first H5TRstart for the transaction completes 
successfully. 

Updates of the container associated with the transaction may be added to the transaction after the transaction has 
been started.   The transaction leaders may issue updates at any time after H5TRstart had been called.   The 
transaction leader(s) must notify the delegates (processes that called H5TRcreate but did not call 
H5TRstart) when they can begin adding updates to the transaction.   Unlike the leaders, the delegates cannot 
add updates until after at least one of the asynchronous  H5TRstart operations for the transaction completes 
successfully. 

The trspl parameter identifies the transaction start property list for the call.   Currently the list can contain only 
the leader count property that specifies the total number of leader processes that will call H5TRstart for the 
transaction identified by trans_id. If there is a single transaction leader, trspl should be set to 
H5P_DEFAULT.   If there are multiple transaction leaders, then each must pass in a trasanction start property list 
specifying the same number of leaders. H5Pset_trspl_num_peers() is used to set the leader count 
property. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

For a given transaction, H5TRfinish must be called the same number of times that H5TRstart was called to 
start the transaction (assuming that the transaction was not aborted with H5TRabort). Typically, the leader 
processes that called  H5TRstart to start the transaction each call H5TRfinish; in some circumstances – 
such as when a process dies – other processes may call H5TRfinish. 

The transaction is considered finished when H5TRfinish has been called the required number of times. 

After the transaction is finished and all lower-numbered transactions are finished or discarded (by  H5TRabort 
or H5TRskip), the transaction is committed and all updates that are part of the transaction will be applied 
atomically to the container and become readable in a new container version with the same number as the 
committed transaction. 

Parameters:  
hid_t trans_id  IN: Transaction identifier indicating the transaction to start.  

hid_t trspl IN: Transaction start property list.  Should be set to H5P_DEFAULT if only one process 
will call H5TRstart for the transaction.  If multiple processes will make the call, the 
transaction start property list must container the leader count property, set with 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   215	   	   	   	   	   06/30/2014	  

H5Pset_trspl_num_peers().   

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to monitor the 
status of the event associated with this function call when executed asynchronously. 
Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 5. 

Man Page Status:  
No known issues. 

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   216	   	   	   	   	   06/30/2014	  

4.16 H5V:	  View	  Operation	  APIs	  	  
These routines are used to construct a view or portion of the HDF5 container matching a specific 
query. The view could potentially contain HDF5 objects (datasets, groups, maps, named 
datatypes), dataspace selections on HDF5 datasets, and attributes on the HDF5 objects 
depending on the query type that is passed to the view create. The H5V API also provides a set 
of routines to retrieve the view components from the view object. 

These routines did not exist prior to the Exascale FastForward project. 

 

Routine Implemented Notes 

H5Vcreate_ff Quarter 7  

H5Vget_location_ff Quarter 7  

H5Vget_query Quarter 7  

H5Vget_counts Quarter 8  

H5Vget_attrs_ff Quarter 8  

H5Vget_objs_ff Quarter 8  

H5Vget_elem_regions_ff Quarter 7  

H5Vclose Quarter 7  
 
 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   217	   	   	   	   	   06/30/2014	  

4.16.1 H5Vcreate_ff 

Name: H5Vcreate_ff 

Signature:  
hid_t H5Vcreate_ff( hid_t loc_id, hid_t query_id, hid_t vcpl_id, hid_t rcntxt_id,  
hid_t es_id )  

Purpose:  
Create a new view object from a query on a container. 
 

Description:  
H5Vcreate_ff creates a new view of the file of all object, attributes, and/or dataset regions that satisfy the 
query in query_id. The file is traversed starting from the location specified in loc_id. To retrieve 
information and the view contents of the created view, the H5Vget_* routines can be used with the hid_t 
returned from this call.  
 
The vcpl_id property list is used to pass in properties (described in the H5P* section) that influence the 
behavior of the view created.  vcpl_id can also be the constant H5P_DEFAULT, in which case the default 
view creation properties are used.  
 
rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

The location ID can be an HDF5 File ID (indicating that the entire container is used to construct the view), an 
HDF5 group ID (indicating that just the group and objects recursively linked to from it are used to construct the 
view), or an HDF5 dataset ID (indicating that just the dataset and its elements are used to construct the view).  For 
example, passing a file ID for the location ID in combination with a query on attribute names would result in a 
view object that contained attribute references on all the objects in the container that had an attribute of a given 
name.  Or, passing a group ID for the location ID and a query on dataset elements would result in a view 
containing dataset region references for all datasets in the group and its sub-groups that had elements that match 
the query parameters.  Some combinations of location and query IDs may result in creating an empty view object 
(such as passing a query on link names when using a dataset ID for a container ID, etc.).  

The following table lists the query types and combinations for H5Q_COMBINE_AND operations, and the results 
that are put into the view object for each: 

Query Result 
Type 

Result in View object 

H5Q_TYPE_DATA_ELEM Dataset 
Element 

Dataset element regions in any dataset that matches the data 
element query 

H5Q_TYPE_ATTR_VALUE Attribute Attributes on any object that matches the attribute value query 

H5Q_TYPE_ATTR_NAME Object Objects which have an attribute that matches the attribute name 
query 

H5Q_TYPE_LINK_NAME Object Objects which are reached through a link that matches the link 
name query 

H5Q_TYPE_DATA_ELEM Dataset Dataset element regions in datasets that match both of the data 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   218	   	   	   	   	   06/30/2014	  

&& 
H5Q_TYPE_DATA_ELEM 

Element element queries 

H5Q_TYPE_DATA_ELEM 
&& 
H5Q_TYPE_ATTR_VALUE 

<none> <nothing>  (Can’t query regions in datasets and attribute values 
simultaneously) 

H5Q_TYPE_DATA_ELEM 
&& 
H5Q_TYPE_ATTR_NAME 

Dataset 
Element 

Dataset element regions in datasets that also have an attribute that 
matches the attribute name query 

H5Q_TYPE_DATA_ELEM 
&& 
H5Q_TYPE_LINK_NAME 

Dataset 
Element 

Dataset element regions in datasets that are reached through a link 
that matches the link name query 

H5Q_TYPE_ATTR_VALUE 
&& 
H5Q_TYPE_ATTR_VALUE 

Attribute Attributes whose values match both of the attribute value queries 

H5Q_TYPE_ATTR_VALUE 
&& 
H5Q_TYPE_ATTR_NAME 

Attribute Attributes whose values match the attribute value query and are on 
objects that match the attribute name query 

H5Q_TYPE_ATTR_VALUE 
&& 
H5Q_TYPE_LINK_NAME 

Attribute Attributes whose values match the attribute value query and are on 
objects reached through links that match the link name query 

H5Q_TYPE_ATTR_NAME 
&& 
H5Q_TYPE_ATTR_NAME 

Object Objects which have an attribute that matches both of the attribute 
name queries 

H5Q_TYPE_ATTR_NAME 
&& 
H5Q_TYPE_LINK_NAME 

Object Objects which have an attribute that matches the attribute name 
query and are reached through links that match the link name 
query 

H5Q_TYPE_LINK_NAME 
&& 
H5Q_TYPE_LINK_NAME 

Object Objects which are reached through links that match both of the link 
name queries 

 

Further nesting of compound queries created with the H5Q_COMBINE_AND operator are allowed and refine 
the set of objects passed to the attribute value or dataset element queries. 

Views created from compound queries that use the H5Q_COMBINE_OR operator contain the results for both of 
the sub-queries provided to that query. 

View IDs returned from this routine must be released with H5Vclose.  

Parameters:  
hid_t loc_id  IN: Location identifier  

May be any HDF5 object identifier (group, dataset, map, or named datatype) or file 
identifier that is in scope for the read contxt. If loc_id is a file identifier, the file’s 
root group will be the basis for the query. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   219	   	   	   	   	   06/30/2014	  

hid_t query_id IN: Query identifier for the query that is used to create the view.   

hid_t vcpl_id IN: View creation property list.   

hid_t rcntxt_id  IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  When executed asynchronously, a 
future ID for the view object is returned; upon completion of the asynchronous operation, the future ID will be 
transparently modified to be a “normal” view identifier. 

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous operation 
must be checked separately through the event stack.  

History:  
Added in Quarter 7. Man page added in Quarter 8. 

Man Page Status:  
No known issues.  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   220	   	   	   	   	   06/30/2014	  

4.16.2 H5Vget_location_ff 

Name: H5Vget_location_ff 

Signature:  
herr_t H5Vget_location_ff( hid_t view_id, hid_t *loc_id, hid_t es_id  )  

Purpose:  
Get the location that was used to construct a view. 
 

Description:  
H5Vget_location_ff gets the HDF5 object used as the base location to construct the view indicated 
by view_id and returns it in *loc_id.  

The object identifier returned in *loc_id must be later be closed with H5Oclose (or the corresponding 
close operation) when it is no longer needed. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

When executed asynchronously, the value in *loc_id should not be used until after the asynchronous 
operation completes 

Parameters:  
hid_t view_id  IN: View identifier 

hid_t *loc_id  IN/OUT: The HDF5 object used as the base location when the view was 
constructed. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  In addition, *loc_id is set.  

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous operation 
must be checked separately through the event stack.   Value in *loc_id should not be used until after the 
operation has completed. 

History:  
Added in Quarter 7.  Man page added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   221	   	   	   	   	   06/30/2014	  

 

4.16.3 H5Vget_query 

Name: H5Vget_query 

Signature:  
herr_t H5Vget_query( hid_t view_id, hid_t *query_id  )  

Purpose:  
Get the query that was used to construct a view. 
 

Description:  
REVIEW FOR CORRECTNESS: 

H5Vget_query gets the query object used to construct the view indicated by view_id and returns a 
copy of it in *query_id.  

The object handle returned in *query_id must be later be closed with H5Qclose when it is no longer 
needed. 

Parameters:  
hid_t view_id  IN: View identifier 

hid_t *query_id  IN/OUT: The HDF5 query object used to construct the view. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  In addition, *fquery_id is set.  

History:  
Added in Quarter 7.  Man page added in Quarter 8. 

Man Page Status:  
No known issues. 

 

 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   222	   	   	   	   	   06/30/2014	  

4.16.4 H5Vget_counts 

Name: H5Vget_counts 

Signature:  
herr_t H5Vget_counts( hid_t view_id, hsize_t *attr_count, hsize_t *obj_count, 
hsize_t *elem_region_count )  

Purpose:  
Retrieve the number of objects contained in the HDF5 view object. 
 

Description:  
H5Vget_counts retrieves various aspects of a view object, given by view_id.  The number of attributes, 
objects and dataset element regions in the view is returned in the attr_count,  obj_count and 
elem_region_count parameters, respectively. 

Parameters:  
hid_t view_id  IN: View identifier for the view that is being queried 

hsize_t *attr_count OUT: Number of attributes contained in the view. 

hsize_t *obj_count OUT: Number of HDF5 objects (maps, groups, datasets, named 
datatypes) contained in the view. 

hsize_t *elem_region_count OUT: Number of Datasets & Dataset regions contained in the 
view object. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 8.   

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   223	   	   	   	   	   06/30/2014	  

4.16.5 H5Vget_attrs_ff 

Name: H5Vget_attrs_ff 

Signature:  
herr_t H5Vget_attrs_ff( hid_t view_id, hsize_t start, hsize_t count, hid_t attr_id[],   
hid_t es_id )  

Purpose:  
Retrieve attributes from an HDF5 View object. 
 

Description:  
H5Vget_attrs_ff retrieves attributes contained in a view object, given by view_id.  Attributes contained 
in the view are uniquely enumerated internally to the view object, and the set of count attributes returned from 
this routine begin at offset start in that enumeration and are placed in the array of IDs given by attr_id, 
which must be preallocated by the user. The user is responsible for calling H5Aclose on all the attributes that 
have been returned in attr_id[] to free resources. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

Parameters:  
hid_t view_id  IN: View identifier 

hsize_t start IN: Starting index of the attributes in the view. 

hsize_t count IN:  Number of attributes to return. 

hid_t attr_id[]  OUT: preallocated array where the attribute identifiers will be returned. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous operation 
must be checked separately through the event stack.   Values in attr_id[] should not be used until after the 
operation has completed. 

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

	   	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   224	   	   	   	   	   06/30/2014	  

4.16.6 H5Vget_objs_ff 

Name: H5Vget_objs_ff 

Signature:  
herr_t H5Vget_objs_ff( hid_t view_id, hsize_t start, hsize_t count, hid_t obj_id[], 
hid_t es_id  )  

Purpose:  
Retrieve objects that are contained in the view. 
 

Description:  
H5Vget_objs_ff gets count objects starting from index start that are contained in the view object. 
Identifiers for those objects are return in the array obj_id[].  

H5Vget_objs_ff retrieves objects contained in a view object, given by view_id.  Objects contained in the 
view are uniquely enumerated internally to the view object, and the set of count objects returned from this 
routine begin at offset start in that enumeration and are placed in the array of IDs given by obj_id, which 
must be preallocated by the user. The user is responsible for closing those objects with their corresponding 
close operations or with H5Oclose. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

Parameters:  
hid_t view_id  IN: View identifier 

hsize_t start IN: Starting index of the objects in the view. 

hsize_t count IN:  Number of objects to return. 

hid_t obj_id[]  OUT: Array where the identifiers of the returned objects will be placed. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.  In addition, obj_id[] values 
are set.  

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous operation 
must be checked separately through the event stack.   Values in obj_id[] should not be used until after the 
operation has completed. 

History:  
Added in Quarter 8.   

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   225	   	   	   	   	   06/30/2014	  

4.16.7 H5Vget_elem_regions_ff 

Name: H5Vget_elem_regions_ff 

Signature:  
herr_t H5Vget_elem_regions_ff( hid_t view_id, hsize_t start, hsize_t count,  
hid_t dataset_id[], hid_t dataspace_id[], hid_t es_id  )  

Purpose:  
Retrieve datasets and dataspace element regions from the HDF5 view object. 
 

Description:  
H5Vget_elem_regions_ff retrieves dataset and dataspace (with selection) pairs contained in a view 
object, given by view_id.  Data element regions referenced by the view are uniquely enumerated 
internally to the view object, and the set of count regions returned from this routine begin at offset 
start in that enumeration and are placed in the array of IDs given by dataset_id and 
dataspace_id, which must be preallocated by the user.  Both dataset_id and dataspace_id 
must be large enough to hold at least count IDs. 

Each dataspace ID returned from this routine corresponds to the dataset ID at the same offset as the 
dataspace ID.  Each dataspace returned by this routine has a selection defined, which corresponds to the 
elements from the dataset that are included in the view.  A dataspace returned from this routine can be 
used as a file dataspace parameter for calls to H5Dread or H5Dwrite on the matching dataset (or any other 
dataset with identical dimensions). 

The user is responsible for closing the datasets and dataspaces with H5Dclose and H5Sclose 
respectively to free resources. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

Parameters:  
hid_t view_id  IN: View identifier 

hsize_t start IN: Starting index in the view. 

hsize_t count IN:  Number of dataset/dataspace regions to return.  

hid_t dataset_id[]  OUT: array with the datasets identifiers that are returned. 

hid_t dataspace_id[]  OUT: array with the dataspace selection for the datasets in dataset_id[] array. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous operation 
must be checked separately through the event stack.   Values in dataset_id[] and dataspace_id[] 
should not be used until after the operation has completed. 

History:  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   226	   	   	   	   	   06/30/2014	  

Added in Quarter 7.  Man page added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   227	   	   	   	   	   06/30/2014	  

4.16.8 H5Vclose 

Name: H5Vclose 

Signature:  
herr_t H5Vclose( hid_t view_id  )  

Purpose:  
Terminate access to a view. 
 

Description:  
H5Vclose ends access to a view specified by view_id and releases resources used by it. Further use of the 
view identifier is illegal. 

Parameters:  
hid_t view_id  IN: View identifier for the view that is being closed.  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

History:  
Added in Quarter 7.  Man page added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   228	   	   	   	   	   06/30/2014	  

4.17 H5X:	  Index	  Operation	  APIs	  	  
These routines are used to register and manage index plugins, as well as create and remove 
indices on datasets. 

These routines did not exist prior to the Exascale FastForward project. 

 

Routine Implemented Notes 

H5Xcreate_ff Quarter 8  

H5Xget_count_ff Quarter 8  

H5Xremove_ff Quarter 8  

H5Xregister Quarter 8  

H5Xunregister Quarter 8  
  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   229	   	   	   	   	   06/30/2014	  

4.17.1 H5Xcreate_ff 

Name: H5Xcreate_ff 

Signature:  
herr_t H5Xcreate_ff( hid_t file_id, unsigned plugin_id, hid_t scope_id, hid_t xcpl_id,  
hid_t trans_id, hid_t es_id )  

Purpose:  
Create a new index on a container. 
 

Description:  
H5Xcreate_ff creates a new index object of type plugin_id (from the list of index plugins registered with the 
HDF5 library) in a container, given by file_id, over a set of objects in the container, given by scope_id. 
 
The set of objects that an index applies to is determined by the scope_id passed to H5Xcreate_ff.  Three types 
of scope are currently defined, determined by the type of ID passed in for the scope_id: 

• H5File ID – Creates indices that include information about the contents of the whole container 

• H5Group ID – Creates indices that include information about a group and all its descendants 

• H5Dataset ID – Creates indices that include information about a dataset 

Currently, only the dataset ID scope is supported for the scope_id. 

Note that some combinations, such as creating a link name index on a dataset, are invalid and will fail with an 
error.  Also, indices are created immediately on the objects in file and group scopes and future new objects added 
to the scope won’t be included in the index (although they could have an index applied to them individually). 

The indices created on the container are stored in the container’s metadata and are not visible in the group 
hierarchy. 

xcpl_id can be the constant H5P_DEFAULT, in which case the default index creation properties are used. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

Parameters:  
hid_t file_id  IN: File identifier indicating the container that the index will be created for. 

unsigned plugin_id IN: ID of index plugin to use for this operation. 

hid_t scope_id IN: Identifier indicating the scope that the index creation applies to. 

hid_t xcpl_id IN: Index creation property list.   

hid_t trans_id  IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   230	   	   	   	   	   06/30/2014	  

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous operation 
must be checked separately through the event stack.   The index will not be usable until the operation completes. 

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   231	   	   	   	   	   06/30/2014	  

4.17.2 H5Xget_count_ff 

Name: H5Xget_count_ff   

Signature:  
herr_t H5Xget_count_ff( hid_t object_id, hsize_t * idx_count,  hid_t rcntxt_id,   
hid_t es_id )  

Purpose:  
Determine the number of index objects on an object, possibly asynchronously. 
 

Description:  
H5Xget_count_ff retrieves the number of index object that exist for the object specified by object_id.  
scope_id must be in scope for the read context identified by rcntxt_id.  

The number of index objects is returned in idx_count. 

rcntxt_id indicates the read context for this operation. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter.  

Parameters:  
hid_t object_id IN: Identifier of the object. 

Must be in scope for the read context. 

hsize_t *idx_count OUT: The number of index objects for the object. 

hid_t  rcntxt_id IN: Read context identifier indicating the read context for this operation. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when 
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous 
execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 
 
When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous 
operation must be checked separately through the event stack.  

History:  
Added in Quarter 8. 

 
Man Page Status:  

No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   232	   	   	   	   	   06/30/2014	  

4.17.3 H5Xremove_ff 

Name: H5Xremove_ff 

Signature:  
herr_t H5Xremove_ff( hid_t file_id, unsigned plugin_id, hid_t scope_id, hid_t trans_id, 
hid_t es_id )  

Purpose:  
Remove an index from objects in a container. 
 

Description:  
H5Xremove_ff removes index objects of type plugin_id (which doesn’t have to be from the set of index 
plugins currently registered with the HDF5 library) in a container, given by file_id, over a set of objects in the 
container, given by scope_id. 
 
The set of objects that an index applies to is determined by the scope_id passed to H5Xremove_ff.  Three 
types of scope are currently defined, determined by the type of ID passed in for the scope_id: 

• H5File ID – Creates indices that include information about the contents of the whole container 

• H5Group ID – Creates indices that include information about a group and all its descendants 

• H5Dataset ID – Creates indices that include information about a dataset 

Currently, only the dataset ID scope is supported for the scope_id. 

trans_id indicates the transaction this operation is part of. 

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the 
function is executed asynchronously. The function may be executed synchronously by passing in 
H5_EVENT_STACK_NULL for the es_id parameter. 

Parameters:  
hid_t file_id  IN: File identifier indicating the container that the index will be created for. 

unsigned plugin_id IN: ID of index plugin to use for this operation. 

hid_t scope_id IN: Identifier indicating the scope that the index creation applies to. 

hid_t trans_id  IN: Transaction identifier specifying the transaction this operation is a part of. 

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to 
monitor the status of the event associated with this function call when executed 
asynchronously. Use H5_EVENT_STACK_NULL for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   

When this routine is executed asynchronously, the return value indicates whether the operation has been 
successfully scheduled for asynchronous execution.  The actual success or failure of the asynchronous operation 
must be checked separately through the event stack.   The index will not be removed until the operation 
completes. 

History:  
Added in Quarter 8. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   233	   	   	   	   	   06/30/2014	  

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   234	   	   	   	   	   06/30/2014	  

4.17.4 H5Xregister 

Name: H5Xregister 

Signature:  
herr_t H5Xregister( const H5X_class_t *index_plugin )  

Purpose:  
Register a new index plugin. 
 

Description:  
H5Xregister registers an index plugin, given by index_plugin for use with H5Xcreate_ff.   The plugin 
registered is immediately available. 
 
The H5X_class_t structure is defined in the Index Plugin Interface section. 
 

Parameters:  
const H5X_class_t *index_class IN: A pointer to the index plugin class structure for the plugin 

to register. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues. 

  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   235	   	   	   	   	   06/30/2014	  

4.17.5 H5Xunregister 

Name: H5Xunregister 

Signature:  
herr_t H5Xunregister( unsigned plugin_id )  

Purpose:  
Unregister an index plugin. 
 

Description:  
H5Xunregister removes an index plugin, given by plugin_id, from the library. 
 

Parameters:  
unsigned plugin_id IN: The index plugin ID for the plugin to unregister 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value.   

History:  
Added in Quarter 8. 

Man Page Status:  
No known issues.	  

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   236	   	   	   	   	   06/30/2014	  

5 Index	  Plugin	  Interface	  
This interface allows index plugins to define callback routines that the HDF5 library can invoke, 
to perform various operations with indices on HDF5 datasets.  Index plugins are registered for 
application use with the H5Xregister  API routine. 

5.1 Index	  Plugin	  Callbacks	  

Each index plugin must implement the following callbacks: 

1. "create" 

Purpose: Creates a new index for a dataset. Called on dataset creation or later, after 
data has been written to the dataset, to create an index on an existing dataset. 

Parameters: 

IN: 

• container/file ID 

• dataset ID 

• index creation property list (XCPL) 

o Used for setting any permanent properties on the index 

• index access property list (XAPL) 

o Used for setting any transient properties on the index 

OUT: 

• metadata and metadata size, for future index opens 

o Allocated/managed by plugin 

o Stored by HDF5 library in object header for dataset 

Returns: 

 NULL on failure, pointer to index plugin's structure for future use on success 

Prototype: 

 void * (*create)(hid_t file_id, hid_t dataset_id, hid_t xcpl_id, hid_t xapl_id, size_t 
*metadata_size, void **metadata); 

Notes: 

o Index can query datatype & dataspace of dataset, if needed. 

o Internally, the index plugin may call public HDF5 API routines for storing its 
information.  The H5[D|G|T]create_anon() + H5Oincr_refcount() combination 
is ideal for creating an object that isn't attached to the file's group hierarchy, 
and whose existence can be managed by the index plugin (through the ref. 
count on the object).  (The anonymous object's address in the file will queried 
with H5Oget_info, so that it can be stored in the index plugin metadata for 
re-opening later) 

2. "open" 

Purpose: Opens an existing index for a dataset.  Called on dataset open. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   237	   	   	   	   	   06/30/2014	  

Parameters: 

IN: 

• container/file ID 

• dataset ID 

• index access property list (XAPL) 

o Used for setting any transient properties on the index 

• metadata and metadata size 

o Used to locate index within container 

OUT: 

• <none> 

Returns: 

 NULL on failure, pointer to index plugin's structure for future use on success 

Prototype: 

 void * (*open)(hid_t file_id, hid_t dataset_id, hid_t xapl_id, size_t 
metadata_size, void *metadata); 

Notes: 

o Index can query datatype & dataspace of dataset, if needed. 

o Internally, the index plugin may decode its metadata and use any information 
contained within to access its index information.  (Object addresses can be 
used to open objects with H5Oopen_by_addr) 

 

3. "pre-update" 

Purpose: Notifies index plugin that data elements will be overwritten. Called 
immediately before data elements are written (or overwritten). 

Parameters: 

IN: 

• index info pointer (from 'create' or 'open' callback) 

• selection for data elements to be written in dataset 

• index transfer property list (XXPL) 

o Used for setting any transfer properties on the index update 

OUT: 

• <none> 

Returns: 

 SUCCEED / FAIL 

Prototype: 

 herr_t (*pre_update)(void *idx_handle, hid_t dataspace_id, hid_t xxpl_id); 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   238	   	   	   	   	   06/30/2014	  

Notes: 

o This callback is designed to enable data element overwrites, by possibly 
allowing the plugin to remove elements that will be overwritten from its 
index. 

o This callback may be ignored by a plugin, if the 'post_update' callback is 
sufficient. 

4. "post-update" 

Purpose: Updates index information with new data elements. Called after data elements 
are written to the dataset (or overwritten). 

Parameters: 

IN: 

• index info pointer (from 'create' or 'open' callback) 

• buffer with data elements written to dataset 

• selection for data written to dataset (same as for ‘pre_update’ 
callback) 

• index transfer property list (XXPL) 

o Used for setting any transfer properties on the index update 

OUT: 

• <none> 

Returns: 

 SUCCEED / FAIL 

Prototype: 

 herr_t (*post_update)(void *idx_handle, const void *buffer, hid_t dataspace_id, 
hid_t xxpl_id); 

Notes: 

o Even with the ‘pre_update/post_update’ callbacks, overwrites are probably 
going to be painful, since the previous element location/value will need to be 
removed from the index.  Deferring actual updates to the index until the 
‘close’ callback may be possible, if the plugin tracks all the regions 
overwritten. 

5. "query" 

Purpose: Retrieves selection that matches query from index. Called when an application 
calls H5Vcreate or H5Dquery. 

Parameters: 

IN: 

• index info pointer (from 'create' or 'open' callback) 

• query 

• index transfer property list (XXPL) 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   239	   	   	   	   	   06/30/2014	  

o Used for setting any transfer properties on the index update 

OUT: 

• dataspace with selection of elements that match query 

Returns: 

 SUCCEED / FAIL 

Prototype: 

 herr_t (*query)(void *idx_handle, hid_t query_id, hid_t xxpl_id, hid_t 
*dataspace_id); 

Notes: 

o Any restriction on the region of the dataset to query (the "array slice") will be 
passed in as a property in the XXPL.  The index plugin can query it through 
the H5P*() interface. 

6. "refresh" 

Purpose: Refreshes the index metadata, if it has changed as a result of an update. 
Called after the ‘post_update’ callback when data elements are written to the dataset (or 
overwritten). 

Parameters: 

IN: 

• index info pointer (from 'create' or 'open' callback) 

OUT: 

• metadata and metadata size, for future index opens 

o Stored by HDF5 library in object header for dataset, 
overwriting previous metadata 

Returns: 

 SUCCEED / FAIL 

Prototype: 

 herr_t (*refresh)(void *idx_handle, size_t *metadata_size, void **metadata); 

Notes: 

o The previous metadata is presented to the plugin, which may update it, 
including reallocating it and/or changing the size. 

o If this routine is not needed, the callback value may be set to NULL. 

7. "close" 

Purpose: Close the in-memory data structures for an index plugin. Called when the 
dataset is closed. 

Parameters: 

IN: 

• index info pointer (from 'create' or 'open' callback) 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   240	   	   	   	   	   06/30/2014	  

OUT: 

• <none> 

Returns: 

 SUCCEED / FAIL 

Prototype: 

 herr_t (*close)(void *idx_handle); 

Notes: 

o <none> 

8. "remove" 

Purpose: Delete the index's information from the container. Called when the dataset is 
deleted from the container, or the index is removed from the dataset. 

Parameters: 

IN: 

• container/file ID 

• dataset ID 

• metadata and metadata size 

o Used to locate index within container 

OUT: 

• <none> 

Returns: 

 SUCCEED / FAIL 

Prototype: 

 herr_t (*remove)(void *idx_handle, hid_t dataset_id, size_t metadata_size, void 
*metadata); 

Notes: 

o The plugin will need to delete any objects in the container that it is using to 
store the index information. 

5.2 Index	  Plugin	  Types	  

The following types are defined to support the index plugin extensions: 

5.2.1 H5X_type_t 

typedef enum { 

    H5X_TYPE_LINK_NAME,           // Link name index 

    H5X_TYPE_ATTR_NAME,           // Attribute name index 

    H5X_TYPE_DATA_ELEM,      // Dataset element index 

    H5X_TYPE_MAP_VALUES          // Map value index 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   241	   	   	   	   	   06/30/2014	  

} H5X_type_t; 

This enum is used to show the type of data that an index plugin can handle.  Currently, only 
plugins that handle dataset elements (H5X_TYPE_DATA_ELEMENTS) are supported. 

5.2.2 H5X_class_t 

typedef struct { 

    unsigned version;   /* Version number of the index plugin class struct */ 

                                 /* (Should always be set to H5X_CLASS_VERSION, which 

                                  *      may vary between releases of HDF5 library) 

                                  */ 

    unsigned id;           /* Index ID (assigned by The HDF Group, for now) */ 

    const char *idx_name; /* Index name (for debugging only, currently) */ 

    H5X_type_t type;    /* Type of data indexed by this plugin */ 

 

    /* Callbacks, described above */ 

    void * (*create)(hid_t file_id, hid_t dataset_id, hid_t xcpl_id, 

                hid_t xapl_id, size_t *metadata_size, void **metadata); 

    herr_t (*remove)(hid_t file_id, hid_t dataset_id, size_t metadata_size, 

                void *metadata); 

    void * (*open)(hid_t file_id, hid_t dataset_id, hid_t iapl_id, 

                size_t metadata_size, void *metadata); 

    herr_t (*close)(void *idx_hand); 

    herr_t (*pre_update)(void *idx_hand, hid_t buffer_dataspace, 

                hid_t xxpl_id); 

    herr_t (*post_update)(void *idx_hand, const void *buffer, 

                hid_t buffer_dataspace, hid_t xxpl_id); 

    herr_t (*query)(void *idx_hand, hid_t query_id, hid_t xxpl_id, 

                hid_t *dataspace_selection_id); 

    herr_t (*refresh)(void *idx_hand, size_t *metadata_size, void **metadata); 

} H5X_class_t; 

This struct holds all the information about an index plugin, and is passed to the HDF5 library to 
register the plugin, with H5Xregister. 

5.3 Sample	  Codeflow	  

The following pseudo-code outlines what calls occur when an index is created and updated: 

 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   242	   	   	   	   	   06/30/2014	  

Application Code: 

----------------- 

 
    . 
    . 
    . 
 

H5X_class_t idx_plugin_struct = { 

    H5X_CLASS_VERSION,        /* (From the HDF5 H5Xpublic.h header file) */ 

    32,                                      /* (Or whatever number is assigned) */ 

    "sample index plugin",          /* Whatever name desired */ 

    H5X_TYPE_DATA_ELEM,       /* This plugin operates on dataset elements */ 

 

    /* Plugin callbacks, defined elsewhere in application/library code */ 

    sample_create, 

    sample_remove 

    sample_open, 

    sample_close, 

    sample_pre_update, 

    sample_post_update, 

    sample_query, 

    sample_refresh, 

}; 

 
    . 
    . 
    . 
 

/* Register the index plugin */ 

       H5Xregister(&index_plugin_struct); 

 

       ==> Interally, registers the index plugin, but doesn't invoke any callbacks in it. 

 

/* Create a dataset '/A' */ 

dsid = H5Dcreate(fid, "A", ...); 

 

/* Add a data element index using our plugin to dataset '/A' */ 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   243	   	   	   	   	   06/30/2014	  

/* (Uses a default index creation property list, for now) */ 

       H5Xcreate(fid, 32, dsid, H5P_DEFAULT); 

 

        ==> Internally, the HDF5 library calls the index plugin's 'create' 

            callback, which allows plugin to create its metadata for indexing 

            the '/A' dataset.  The metadata returned from the index plugin is 

            stored by the HDF5 library with other object metadata for '/A'. 

 

        ==> The application could have also set up the index in a dataset creation property 

            list that was passed in to the H5Dcreate() call, which would create 

            the index at the same time as the dataset was created. 

 
    . 
    . 
    . 
 

/* Write data to '/A' */ 

       H5Dwrite(dsid, ...); 

 

        ==> Internally, the HDF5 library calls the plugin's 'pre_update' 

            callback, writes the data to the dataset, then calls the plugin's 

            'post_update' callback (allowing the plugin to update the index 

            information for the dataset), then calls the plugin’s 'refresh' callback. 

            [The plugin could also store the 

            region updated in the dataset, and defer the index update until 

            later (possibly the index 'close' callback).] 

 
    . 
    . 
    . 
 

/* Close the dataset */ 

       H5Dclose(dsid); 

 

        ==> Internally, the HDF5 library calls the plugin's 'close' callback, 

            allowing it to release in-memory data structures and to close 

            objects it may have open in the HDF5 file. 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   244	   	   	   	   	   06/30/2014	  

 

 

<< Later, in another section of code or a different application>> 

 

/* Open the dataset */ 

dsid = H5Dopen(fid, "A", ...); 

 

        ==> Internally, the HDF5 library reads the index metadata stored for 

            the index plugin, looks up and opens a DLL that contains the 

            plugin (if it isn't already opened) and calls the plugin's 'open' 

            callback. 

    . 
    . 
    . 
 
/* Define a query that will search for element values equal to 15 */ 

/* (Note that this is strictly "local" and doesn't actually invoke plugin) */ 

int query_val = 15; 

qid = H5Qcreate(H5Q_TYPE_DATA_ELEM, H5Q_MATCH_EQUAL, H5T_NATIVE_INT, 
&query_val); 

 

/* Create a view that holds the results of applying the query to a dataset */ 

/* (Uses a default view creation property list, for now) */ 

/* (A non-default view creation property list could contain an array slice, to 

 *      limit the query to a portion of the dataset) 

 */ 

vid = H5Vcreate(dsid, qid, H5P_DEFAULT); 

 

        ==> Internally, the HDF5 library calls the plugin's 'query' callback, 

            which will perform the query against the index and build a dataspace 

            selection to return to the library for later use. 

 

/* Retrieve the region that matched the query from the view */ 

    H5Vget_elem_regions(vid, ..., &dataspace_id); 

 

/* Use the region to read the elements from the dataset that matched the query */ 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   245	   	   	   	   	   06/30/2014	  

/* (Doesn’t invoke plugin) */ 

    H5Dread(dsid, H5T_NATIVE_INT, mem_space_id, dataspace_id, H5P_DEFAULT, buf); 

    . 
    . 
    . 
 

/* Close the dataset */ 

       H5Dclose(dsid); 

 

        ==> Internally, the HDF5 library calls the plugin's 'close' callback, 

            allowing it to release in-memory data structures and to close 

            objects it may have open in the HDF5 file. 

 

 

<< Later, in another section of code or a different application>> 

 

/* Remove an index from a dataset */ 

       H5Xremove(file_id, 32, dataset_id); 

 

        ==> Internally, the HDF5 library removes the metadata from the object's 

            metadata and calls the index plugin's 'remove' callback, so the plugin can 

            delete any objects it is using to store the index information in the container.  (The 

            plugin's 'remove' callback would also get called when the dataset 

            was deleted in the file) 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   246	   	   	   	   	   06/30/2014	  

6 Description	  of	  example	  programs	  
All the example programs that are included in the source code are heavily commented to 
describe the functionality being demonstrated. A higher-level description of the example 
programs is included in this section.    

Figure 1 shows the relationship of the client and server example programs to the layers of the 
EFF stack being demonstrated in this milestone. 

 

Figure 1: Client and server programs demonstration components 

6.1 h5ff_server.c	  

The h5ff_server.c program launches an MPI application that acts as a server. This program will 
run on the IONs in the EFF architecture, but is being run on the same multi-processor system as 
clients for Q5 Milestones.  

h5ff_server.c initializes the function shipper interfaces for metadata and bulk data, registers all 
the required callbacks to handle HDF5 VOL operations, and listens to incoming requests from 
clients. The first request received from clients is an initialization call that starts up the IOD 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   247	   	   	   	   	   06/30/2014	  

library for the client and creates an AXE engine to insert future operations into. The last call 
received from clients is a terminate call that will eventually shut down all the initialized libraries, 
once all clients have issued this call. 

Note that the server program is independent from the client program, meaning that any client 
that uses HDF5 with the HDF5 IOD VOL plugin can connect to the server. 

6.2 h5ff_client_*.c	  

Each of the client programs in the examples directory of the hdf5_ff source tree launches an MPI 
application that acts as a client. These programs run on the CNs in the EFF architecture.  The 
client programs demonstrate how an application would use the EFF I/O stack. This is a list of the 
primary client programs included with a note to indicate what each one is testing (note that the 
comments inside each program explain in much more detail the flow of execution and usage of 
the HDF5 routines and semantics): 

• h5ff_client_analysis.c: This tests the analysis shipping functionality (H5AS). 
• h5ff_client_attr.c : This tests attribute routines (H5A). 
• h5ff_client_dset.c : This tests dataset routines (H5D). 
• h5ff_client_evict_deltas.c: This tests eviction of transaction updates (deltas). 
• h5ff_client_links.c : This tests Links routines (H5L). 
• h5ff_client_map.c : This tests the new Map routines (H5M) added to support 

Dynamic Data Structures. 
• h5ff_client_multiple_cont.c : This tests access to multiple containers. 
• h5ff_client_obj.c : This tests generic object routines (H5O). 
• h5ff_client_prefetch.c: This tests prefetch and eviction of replicas.  
• h5ff_client_view.c: This tests query and view routines (H5Q and H5V) 
• H5ff_client_vl_data.c: This tests variable length data. 
• h5ff_client_M6.2_demo.c: HDF5 and I/O Dispatcher Container Versioning 

Demonstration. 
• h5ff_client_M7.2-pep_demo.c: Persist, Evict, and Prefetch data movement 

demonstration. 

 

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   248	   	   	   	   	   06/30/2014	  

7 Instructions	  for	  building	  and	  running	  demo	  code	  
These instructions can also be found in the file “EFF_INSTALL.txt” in the top directory of the 
distributed tarball. 

System pre-requisites:  
        An MPI3 implementation that supports MPI_THREAD_MULTIPLE 
            [i.e. MPICH3 or later - we built with MPICH 3.0.4 in Q6] 
        Pthread 
        BOOST 
 
build opa: 
        It is located in the tarball in the 'openpa' subdirectory, OR get it 
        from here: git clone git://git.mcs.anl.gov/radix/openpa.git 
 
        ./configure --prefix=/path/to/opa/install/directory 
        make 
        make check 
        make install 
 
 
build AXE: 
        It is located in the tarball in the 'axe' subdirectory, OR get it from 
        here: svn checkout https://svn.hdfgroup.uiuc.edu/axe/trunk 
 
        ./configure --prefix=/path/to/axe/install/directory --with-
opa=/path/to/opa/install/directory 
        make 
        make check 
        make install 
 
 
build DAOS, PLFS, and IOD: 
        Please refer to the IOD tarball for instruction on how to build and setup the 
three libraries. 
 
 
build Mercury (Function Shipper) 
        The code is located in tarball in the 'mercury' directory. 
 
        refer to the mercury build recipe in: 
        mercury/README 
 
build HDF5 IOD VOL plugin: 
        The code is located in the tarball in the 'hdf5_ff' subdirectory, OR 
        get it from here: 
            svn checkout http://svn.hdfgroup.uiuc.edu/hdf5/features/hdf5_ff 
 

./configure --with-daos=/path/to/daos/posix --with-plfs=/path/to/plfs --with-
iod=/path/to/iod/ --with-axe=/path/to/axe/install/directory 
PKG_CONFIG_PATH=/path/to/mercury/install/directory/lib/pkgconfig/:/path/to/mchecksu
m/install/dir --enable-parallel --enable-debug --enable-trace --enable-threadsafe -
-enable-unsupported --with-pthread=/usr --enable-eff --enable-shared --enable-
python 

 
        If you want indexing to be built in add --enable-indexing. 
 

Note in that case all 3rd party libraries have to be build shared or with -fPIC. 
You should also have devel python devel libraries and numpy installed on your 
system. 

 



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   249	   	   	   	   	   06/30/2014	  

You should see in the configure summary at the end if the EFF plugin in HDF5 was 
successfully configured. 
 

        make 
        make check 
        make install 
 
build the example programs: 
 
        The examples are located in hdf5_ff/examples/. 
        The server is h5ff_server. 
        The client programs are 
        - h5ff_client_attr.c : This tests attribute routines (H5A). 
        - h5ff_client_dset.c : This tests dataset routines (H5D). 
        - h5ff_client_links.c : This tests Links routines (H5L). 
        - h5ff_client_map.c : This tests the new Map routines (H5M) added this quarter to 
support Dynamic Data Structures. 
        - h5ff_client_multiple_cont.c : This tests access to multiple containers. 
        - h5ff_client_obj.c : This tests generic object routines (H5O). 
        - h5ff_client_analysis.c : This tests the analysis shipping functionality (H5AS). 
        - h5ff_client_M6.2_demo.c: HDF5 and I/O Dispatcher Container Versioning 
Demonstration 

- h5ff_client_M7.2-pep_demo.c: Prefetch, evict, persist data movement demo. 
 
        cd path/where/hdf5_ff/is/built/examples/ 
        make 
        chmod 775 run_ff_tests.sh 
        ./run_ff_tests.sh num_server_procs num_client_procs 
 
        Or you can run each test manually: 
                The client and server need to be launched from the same directory for now. 
                Launch the server first: 
                mpiexec -n <x> ./h5ff_server 
                then launch one of the clients 
                mpiexec -n <x> ./h5ff_client_xx 
 

Note, for now, the number of clients must be greater than or equal to the number of 
servers. 

END 
 

 	  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   250	   	   	   	   	   06/30/2014	  

8 Instructions	  for	  Building	  Python	  Wrappers	  &	  Regression	  Test	  Suite	  
All the API functions described above were integrated with Python using the framework utilized 
by the h5py1 module. H5py is an open-source Python module is based on one-to-one mapping 
to the standard HDF5 C API using the Cython2 programming language. Cython allows creating C 
language extensions for Python through language syntax very similar to Python’s own. 

Once the new API functions were added into appropriate Cython extension types (acting like 
Python built-in types), h5py’s Python interface was extended to reflect the new capabilities of 
the HDF5 library. A testing suite based on the Python unittest framework was developed to 
test the integrated API and its Python interface. 

The source code for the modified h5py module can be obtained from the HDF Group’s 
Subversion repository3. The prerequisites for building the module are: an installed FastForward 
version of the HDF5 library, and the NumPy and setuptools Python modules. If the files are 
checked out from the repository, another requirement is to have Cython installed. 

Once all the requirements are satisfied, the following command from the top-level directory 
(where the setup.py file is) builds the module: 

CC={path to h5pcc} python setup.py build --hdf5={path to HDF5 lib} --eff 

If the build step was successful, the next step is to test the module. The prerequisites for testing 
are similar as for using the module. 

• The following Python modules must be installed prior: 

o mpi4py 

o unittest (unittest2 in case of Python 2.6) 

• Several environment variables must also be set: 

o $EFF_MPI_IONS – contains cluster ION hostnames, separated by commas 

o $EFF_MPI_CNS – contains cluster CN hostnames, separated by commas 

o $H5FF_SERVER – path to the h5ff_server executable 

The command to run the testing suite is: 

mpiexec -np 1 -hosts {CN} python setup.py test 

where CN is hostname of one of the compute nodes. This command must be executed on an 
ION. 

Once the testing suite finishes, and assuming no problems are encountered, the final step is to 
install the module. The command to install the module in a system-wide location is: 

python setup.py install 

To install the modified h5py module for a specific user: 

python setup.py install --user 

                                            
1 http://www.h5py.org  
2 http://cython.org  
3 http://svn.hdfgroup.uiuc.edu/fastforward/h5py_ff  



Use	  or	  disclosure	  of	  data	  contained	  on	  this	  sheet	  is	  subject	  to	  the	  restriction	  on	  the	  title	  page	  of	  this	  document.	  
Copyright	  ©	  The	  HDF	  Group,	  2014.	  All	  rights	  reserved	  

B599860-‐SS	  	   	   	   	   	   251	   	   	   	   	   06/30/2014	  

User-specific installation requires an environment variable $PYTHONUSERBASE to point to a 
directory under which the modified h5py module will be installed. 

Incorporating the modified h5py module in Python programs is the same as the original h5py 
module: an “import h5py” statement should be added to the code that wants to use the module. 

	  


