

LLNS	 Subcontract	 No.	 B599860	
Subcontractor	 Name	 Intel	 Federal	 LLC	
Subcontractor	 Address	 2200	 Mission	 College	 Blvd.	

Santa	 Clara,	 CA	 95052	

Copyright	 2014,	 The	 HDF	 Group.	 All	 Rights	 Reserved.	 	
B599860-‐SS	

Date:	
June	 30,	 2014	

Delivered	 as	 part	 of	 Milestones	
8.1,	 8.2,	 8.5	

Design	 and	 Implementation	 of	
FastForward	 Features	 in	 HDF5	 	

FOR	 EXTREME-‐SCALE	 COMPUTING	
RESEARCH	 AND	 DEVELOPMENT	 (FAST	
FORWARD)	 STORAGE	 AND	 I/O	

NOTICE:	 THIS	 MANUSCRIPT	 HAS	 BEEN	 AUTHORED	 BY	 THE	 HDF	 GROUP	 UNDER	 THE	 INTEL	 SUBCONTRACT	 WITH	 LAWRENCE	
LIVERMORE	 NATIONAL	 SECURITY,	 LLC	 WHO	 IS	 THE	 OPERATOR	 AND	 MANAGER	 OF	 LAWRENCE	 LIVERMORE	 NATIONAL	 LABORATORY	
UNDER	 CONTRACT	 NO.	 DE-‐AC52-‐07NA27344	 WITH	 THE	 U.S.	 DEPARTMENT	 OF	 ENERGY.	 	 THE	 UNITED	 STATES	 GOVERNMENT	
RETAINS	 AND	 THE	 PUBLISHER,	 BY	 ACCEPTING	 THE	 ARTICLE	 OF	 PUBLICATION,	 ACKNOWLEDGES	 THAT	 THE	 UNITED	 STATES	
GOVERNMENT	 RETAINS	 A	 NON-‐EXCLUSIVE,	 PAID-‐UP,	 IRREVOCABLE,	 WORLD-‐WIDE	 LICENSE	 TO	 PUBLISH	 OR	 REPRODUCE	 THE	
PUBLISHED	 FORM	 OF	 THIS	 MANUSCRIPT,	 OR	 ALLOW	 OTHERS	 TO	 DO	 SO,	 FOR	 UNITED	 STATES	 GOVERNMENT	 PURPOSES.	 	 THE	
VIEWS	 AND	 OPINIONS	 OF	 AUTHORS	 EXPRESSED	 HEREIN	 DO	 NOT	 NECESSARILY	 REFLECT	 THOSE	 OF	 THE	 UNITED	 STATES	
GOVERNMENT	 OR	 LAWRENCE	 LIVERMORE	 NATIONAL	 SECURITY,	 LLC.	

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 i	 	 	 	 	 	 6/30/2014	

Table	 of	 Contents	
Revision	 History	 ...	 iii	

1	 Introduction	 ..	 1	

2	 Definitions	 ..	 1	

3	 Changes	 from	 Solution	 Architecture	 ...	 1	

4	 Specification	 ...	 2	
4.1	 New	 HDF5	 Library	 Capabilities	 ..	 2	
4.1.1	 Asynchronous	 I/O	 and	 Event	 Stack	 Objects	 ..	 2	
4.1.2	 End-‐to-‐End	 Data	 Integrity	 ..	 4	
4.1.3	 Transactions,	 Container	 Versions,	 and	 Data	 Movement	 in	 the	 I/O	 Stack	 ..	 5	
4.1.3.1	 Transactions	 and	 Writing	 to	 HDF5	 Files	 (Containers)	 ..	 6	
4.1.3.1.1	 Managing	 Transactions	 ...	 7	
4.1.3.1.2	 Container	 Versions	 ..	 8	
4.1.3.1.3	 Persist	 and	 Snapshot	 ...	 8	
4.1.3.1.4	 General	 Discussion	 ..	 9	
4.1.3.1.5	 Design	 Decisions	 ...	 9	
4.1.3.1.6	 Support	 for	 Legacy	 Applications	 ..	 11	

4.1.3.2	 Reading	 from	 HDF5	 Files	 (Containers)	 ...	 12	
4.1.3.3	 Burst	 Buffer	 Space	 Management	 ..	 13	

4.1.4	 Data	 Layout	 Properties	 ...	 13	
4.1.5	 Optimized	 Append/Sequence	 Operations	 ...	 13	
4.1.6	 Map	 Objects	 ..	 14	
4.1.7	 Data	 Analysis	 Extensions	 (Query,	 View	 and	 Index	 Operations)	 ..	 14	
4.1.7.1	 Query	 Objects	 ..	 15	
4.1.7.2	 View	 Objects	 ...	 15	
4.1.7.3	 Index	 Objects	 ..	 18	
4.1.7.3.1	 Index	 Plugins	 ...	 18	
4.1.7.3.2	 Stakeholder	 Feedback	 and	 Possible	 Future	 Extensions	 ..	 19	
4.1.7.3.3	 Index	 Plugin	 Limitations	 ..	 20	

4.1.7.4	 Analysis	 Shipping	 Operation	 ...	 20	
4.2	 Architectural	 Changes	 to	 the	 HDF5	 Library	 ..	 21	
4.3	 Storing	 HDF5	 Objects	 in	 IOD	 Containers	 ..	 22	
5	 API	 and	 Protocol	 Additions	 and	 Changes	 ...	 23	
5.1	 Generic	 changes	 to	 HDF5	 API	 routines	 ...	 23	
5.2	 Additions	 to	 the	 HDF5	 API	 ...	 24	
5.2.1	 Dataset	 Objects	 –	 Optimized	 APIs	 (designed	 but	 not	 fully	 implemented)	 ..	 24	
5.2.1.1	 H5DOappend_ff	 ..	 24	
5.2.1.2	 H5DOget_ff	 ..	 26	
5.2.1.3	 H5DOset_ff	 ...	 27	
5.2.1.4	 H5DOsequence_ff	 ..	 28	
5.2.1.5	 H5Pset_dcpl_append_only	 ..	 29	

5.2.2	 Analysis	 Shipping	 API	 ...	 Error!	 Bookmark	 not	 defined.	

6	 Risks	 &	 Unknowns	 ..	 29	

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 ii	 	 	 	 	 	 6/30/2014	

Appendix	 A	 Aspects	 of	 the	 HDF5	 Data	 Model	 ..	 30	
	

 	

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 iii	 	 	 	 	 	 6/30/2014	

Revision	 History	
Date	 Revision	 Description	 Authors	
Feb. 26, 2013 1.0 Quincey Koziol, The HDF

Group
Feb. 27, 2013 2.0, 3.0 Quincey Koziol, Ruth

Aydt, The HDF Group
Feb. 28, 2013 4.0 Quincey Koziol, Ruth

Aydt, Mohamad
Chaarawi, Jerome
Soumagne, The HDF
Group

Mar. 1, 2013 5.0 Quincey Koziol, Ruth
Aydt, Mohamad
Chaarawi, Jerome
Soumagne, The HDF
Group

Mar. 1, 2013 6.0 Quincey Koziol, Ruth
Aydt, Mohamad
Chaarawi, Jerome
Soumagne, The HDF
Group

Mar. 4, 2013 7.0 Delivered to DOE as part of Milestone 3.1 Quincey Koziol, Ruth
Aydt, Mohamad
Chaarawi, Jerome
Soumagne, The HDF
Group

Mar. 22, 2013 8.0 Small additions related to end-to-end data
integrity and asynchronous operations based
on feedback.

Quincey Koziol, Ruth
Aydt, Mohamad
Chaarawi, Jerome
Soumagne, The HDF
Group

May 27, 2013 9.0 Add sections for dynamic data structures
(append property and operations, and map
object)

Quincey Koziol, The HDF
Group

May 30, 2013 10.0, 11.0,
12.0, 13.0,
14.0

Add data analysis extensions
(query/view/index objects).

Quincey Koziol, The HDF
Group

June 5, 2013 15.0, 16.0 Add section “Transactions, Container
Versions, and Data Movement in the I/O
Stack” and related man pages, replacing the
less fully-developed Transactions section
originally delivered as part of Revision 7.0.

Highlight headings of sections added or
substantially revised since Milestone 3.1.
Deliver to DOE as part of Milestone 4.1.

Ruth Aydt, Quincey
Koziol, The HDF Group

June 20,
2013

17.0 Add Event Queue objects and operations.
Update description of Asynchronous
operations to use Event Queues.

Mohamad Chaarawi, Ruth
Aydt, Quincey Koziol, The
HDF Group

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 iv	 	 	 	 	 	 6/30/2014	

Change all asynchronous operations to take
event queues instead of request pointers.

Highlight headings of sections added or
substantially revised since Milestone 4.1 and
remove highlights that were in V16.0.
Deliver to DOE as part of Milestones 4.2, 4.3,
and 4.4.

June 27,
2013

18.0 Clarify text based on feedback received for
Version 16.
Add Note to Data Analysis Extensions alerting
reader that further updates will be made to
response to DOE feedback on Version 17.
Make available to public as part of Q4
accepted document.

Ruth Aydt, Quincey
Koziol, The HDF Group

July 13, 2013 19.0 Clarify text based on DOE stakeholder
feedback received for Version 18.

Quincey Koziol, The HDF
Group

July 15, 2013 20.0 Revisions to text, based on internal
dicussions.
Distributed to DOE reviewers.

Quincey Koziol, Ruth
Aydt, The HDF Group

July 15, 2013 21.0 Removed change tracking, added previous
highlighting (from v18), and posted publicly

Quincey Koziol, The HDF
Group

July 22, 2013 22.0 Reformatted, primarily to add numbered
section headings.

Ruth Aydt, The HDF
Group

September
29, 2013

23.0 • Change title.
• Update text in Generic Changes to HDF5

API Routines.
• Move routine descriptions to User’s Guide

reference man pages, expanding details.
• Refer readers to HDF5 Data in IOD

Containers Layout Specification for details
on Storing HDF5 Objects in IOD
Containers.

• Change from Event Queues and
Asynchronous Objects to Event Stacks and
remove Asynchronous Objects.

• Update discussion of Optimized Append.
• Update Transactions section to reflect

latest design.
• Deliver to DOE as part of Milestones 5.6 &

5.7

Ruth Aydt, Quincey
Koziol, The HDF Group

December 16,
2013

24.0 • Update H5Q routines with H5Qapply
• Add analysis shipping routine,

H5ASexecute
• Update analysis shipping description

Mohamad Chaarawi, The
HDF Group

December 19,
2013

25.0 • Update analysis shipping section Jerome Soumagne, The
HDF Group

December 23,
2013

26.0 • Final edits, update date / disclaimers /
TOC;

• Footer date on main pages reconciled
without version change 1/4/14.

Quincey Koziol, Ruth
Aydt, The HDF Group

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 v	 	 	 	 	 	 6/30/2014	

February 7,
2014

27.1 • Update data markings / copyright year Ruth Aydt, The HDF
Group

February 13,
2014

27.2 • Update query/view/index APIs Quincey Koziol, The HDF
Group

February 25,
2014

27.3 • Revise text related to BB space
management, referencing the separate
document on this topic.

Ruth Aydt, The HDF
Group

March 28,
2014

27.4 • Update index design
• Update index/view APIs

Jerome Soumagne, The
HDF Group

March 30,
2014

27.5 • Overall edit pass Ruth Aydt, The HDF
Group

March 31,
2014

27.6 • Indexing sections editing pass and added
index plugin design appendix

• Deliver to DOE as part of Milestones 7.1,
7.2, 7.3

Quincey Koziol, The HDF
Group

April 10, 2014 28.0 • Base version for Quarter 8 deliverables Ruth Aydt, The HDF
Group

April 28, 2014 28.1 • Expand query and view APIs for metadata
additions, plus new H5Dquery API routine

Quincey Koziol, The HDF
Group

May 6, 2014 28.2 • Add note about evict granularity and
named snapshots to Open Issues.

• Update text related to evict & related APIs

Ruth Aydt, The HDF
Group

May 21, 2014 28.3 • Update H5Q API Jerome Soumagne, The
HDF Group

May 22, 2014 28.4 • Update Open Issues with notes about
RCacquire.

• Add footnote about HDF5 using a
transaction on file close.

Ruth Aydt, The HDF
Group

June 23,
2014

28.5 • Revise text about optimized appends, for
which there is an initial design but no
implementation in prototype. Include
designed APIs in this document,
previously cut from UG.

• Change future tense to past tense.
• Delete enumerated APIs that were added

for the project, referring reader to the
User Guide.

• Delete Open Issues – these have been
covered in the final report.

Ruth Aydt, The HDF
Group

June 27,
2014

28.6 • Misc. light edits, mostly in response to
Ruth’s comments

• Included Mohamad’s info for data layout
properties

• Updated query/view/index text
• Updated analysis shipping text
• Added some additional text to the Risks &

Unknowns section

Quincey Koziol, The HDF
Group

June 30,
2014

28.7 • Moved Index Plugin Appendix to the UG
• Move H5X interface routines to the UG

Quincey Koziol, The HDF
Group

June 30,
2014

28.8 • Move View interface routines to the UG
• Move some Query interface routines to the

Quincey Koziol, The HDF
Group

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 vi	 	 	 	 	 	 6/30/2014	

UG
June 30,
2014

28.9 • Move rest of interface routines to the UG
• Revised asynchronous operations text to

reflect that cancel operations for event
stacks are actually implemented.

• Final polishing pass
• Delivered to DOE stakeholders as part of

Milestone 8.1/8.2/8.5 demonstration
output.

Quincey Koziol, The HDF
Group

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 1	 	 	 	 	 6/30/2014	

1 Introduction	
This document describes the design of multiple additions to the HDF5 library and API, including
asynchronous I/O, end-to-end data integrity, transactions, data layout properties, a new Map
object, and data analysis extensions for indexing and querying HDF5 containers and shipping
analysis scripts to execute where the data resides. All changes for these capabilities were
combined into one design document for easier tracking; furthermore, because many of the
features affect the same HDF5 API routines, they are easier to understand in combination.

Please refer to the User’s Guide to FastForward Features in HDF5 for details on H5* API routines
that were created or modified to support the features described in this document.

Some technical lessons learned during the project are mentioned in this documention, while the
majority are discussed in the final report.

2 Definitions	
ACG = Arbitrarily Connected Graph

AXE = Asynchronous Execution Engine

BB = Burst Buffer

CN = Compute Node

DAOS = Distributed Application Object Storage

EFF = Exascale FastForward

IOD = I/O Dispatcher

ION = I/O Node

VOL = Virtual Object Layer

3 Changes	 from	 Solution	 Architecture	
In discussions with the ACG team, it was determined the addition of a pointer or other dynamic
datatype to HDF5 was not the best approach to meet their needs. Instead, adding support for
optimized appends and a new Map object to HDF5’s data model would have a greater utility to
their use case. This document reflects that divergence from the Solution Architecture
document. The Map object has been added, and initial support for optimized appends to blobs
was added at the IOD level and designed at the HDF5 level. Unfortunately, as described in the
final report, some unexpected challenges arose in conjunction with the implementation of
optimized appends and transactional I/O, and that feature was not completed during the
prototype. The initial design of optimized appends at the HDF5 level is included in this
document for reference and possible future implementation.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 2	 	 	 	 	 6/30/2014	

4 Specification	
4.1 New	 HDF5	 Library	 Capabilities	

New functionality added to the HDF5 library is listed below, with sections for each capability:

• Asynchronous I/O and Event Stack Objects

• End-to-End Data Integrity

• Transactions, Container Versions, and Data Movement in the I/O Stack

• Data Layout Properties

• Optimized Append/Sequence Operations (initial design, not implemented)

• Map Objects

• Query, view and indexing extensions

• Data Analysis Extensions

4.1.1 Asynchronous	 I/O	 and	 Event	 Stack	 Objects	

Support for asynchronous I/O in HDF5 was implemented by:

1) Building a description of the asynchronous operation

2) Shipping that description from the CN to the ION for execution

3) Generating a request object and inserting it into an event stack object that the
application provides, while the operation completes on the ION

As originally designed, all asynchronous operations returned a request object for every
operation that the application used to test/wait on. Completing every request through a call to
test or wait was necessary or resource leaks would occur. This, along with tracking all of the
request objects became very cumbersome in scenarios with large number of asynchronous
operations. To address these issues, in Quarter 4 we added a new type of object to HDF5 called
an Event Queue. This object was to be passed as a parameter in all the newly added
asynchronous routines instead of the request object that was used in Quarter 3.

After further consideration in Quarter 5, the Event Queue object was renamed Event Stack, and
the test and wait functionality slated for the Asynchronous Object routines was integrated into
Event Stack APIs. The Event Stack Object APIs also allow access to more complete function
call, completion status, and error information for the asynchronous requests that was previously
provided. Although the Event Stack design was completed in Quarter 5, the code was not
implemented and delivered until Quarter 6. Although the design for retrieving detailed error
information about operations that fail has been designed and documented here, implementation
of this more advanced feature wasn’t necessary at this stage and has been deferred.

An Event Stack provides an organizing structure for managing and monitoring the status of
functions that have been called asynchronously. The association of an event for an
asynchronous function call with a given Event Stack has nothing to do with the order in which

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 3	 	 	 	 	 6/30/2014	

the function (the event) will execute or complete. The Event Stacks merely organize the IDs
that are needed to track the status of the asynchronous functions.

Once an Event Stack is created, its identifier can be passed to other HDF5 APIs that will be
executed asynchronously. The event associated with an asynchronous call will be pushed onto
the Event Stack whose identifier was passed as a parameter to the function. The application can
monitor the completion status of individual events via H5ESwait and H5EStest. The application
can also wait or test the status of all the request objects in a given Event Stack. The
H5ESget_event_info routine provides information on the calling parameters, completion status,
and error codes for one or more events in an Event Stack (although implementation of this
feature has been deferred currently). Event cancellation is also supported.

The application is free to continue with other actions while an asynchronous operation executes.
The application may test or wait for an asynchronous operation’s completion with calls to HDF5
API routines. All parameters passed to asynchronous operations are copied by the HDF5 library
and may be deallocated or reused, except for the buffers containing data elements. The
application must not deallocate or modify data element buffers used in asynchronous operations
until the asynchronous operation has completed. In addition, for reads, the data element buffers
should not be examined until the asynchronous read operation has completed.

The HDF5 library tracks asynchronous operations to determine dependencies between
operations. Dependencies exist between operations when a later operation requires information
from an unfinished earlier operation in order to proceed. A simple “progress engine” within the
HDF5 library updates the state of asynchronous operations when the library is called from the
application. There is no use of background threads on CNs, only on the IONs, eliminating the
possibility of “jitter” from background operations on CNs interfering with application computation
and communication.

Dependencies between operations are captured at the HDF5 IOD VOL client and shipped with
every operation to the HDF5 IOD VOL servers on the IONs. At the server, the operations are
inserted into the Asynchronous eXecution Engine (AXE)1, taking into account the dependencies
that they have been shipped with. The AXE makes sure that child operations are scheduled only
after their parent operations have completed. While this approach allows completely
asynchronous behavior at the client (HDF5 operations return immediately regardless of
dependencies between each other), there are still few scenarios that retain the asynchronous
behavior that was described in Quarter 3, where the dependent operation may be delayed at the
client waiting for the parent operation to complete.

This behavior is a consequence of not using background threads on the CNs and not having a
complex progress engine.

To demonstrate the behaviour of different asynchronous execution scenarios we give two
examples.

First, consider an application that asynchronously creates an attribute then asynchrously writes
data elements to the new attribute. Both calls are asynchronous and return immediately to the
application. In the write call, the IOD VOL plugin detects a dependency on the attribute create
call and ships the dependency to the server. At the server, the write operation is delayed until
the attribute create operation completes.

1 See the AXE Design Document for details on AXE.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 4	 	 	 	 	 6/30/2014	

Next, consider an application that asynchronously opens an attribute then asynchronously writes
data elements to the attribute. In this example, the data write operation may be delayed inside
the HDF5 library until the attribute open operation completes. The reason for this delay is that
the write operation at the client requires the dataspace of the attribute that is being opened
before it can ship the write operation to the server. This metadata is available in the first
scenario, in the case of attribute create, because the create call provides this metadata about
the attribute. In contrast, for the open call the metadata needs to be pulled from the server.

Asynchronous invocations of HDF5 routines that create or open an HDF5 object will return a
“future” object ID2 when they succeed. Future object IDs can be used in all HDF5 API calls, with
the HDF5 library tracking dependencies created as a result. If the asynchronous operation
completes successfully, a future object ID will transparently transition to a normal object ID and
will no longer generate asynchronous dependencies. If the asynchronous operation fails, the
future object ID issued for the operation (and any future object IDs that depend on it) will be
invalidated and not be accepted in further HDF5 API calls. If a future object ID is invalidated, all
asynchronous operations that depend on it will fail.

See below, in the API and Protocol Additions and Changes section, for details on how existing
HDF5 API routines are extended, and details on new H5ES* API routines to create and operate
on event stack objects.

4.1.2 End-‐to-‐End	 Data	 Integrity	

When enabled by the application, end-to-end data integrity is guaranteed by performing a
checksum operation on all application data before it leaves a CN. The checksum for the
information (both data elements and metadata information, such as object names, etc.) in each
HDF5 operation will be passed along with the information to the underlying IOD layer, which will
store the checksum in addition to the information. Checksum information is stored in the
container for both data elements and the metadata (such as creation properties, the group
hierarchy, attributes, etc.)

The HDF5 library checksums application data before sending it from the CN to the ION for
storage in the HDF5 container. In addition, the HDF5 library can optionally perform a checksum
of the application data that it must copy into internal buffers within the library; whenever
possible, data is written directly from the application’s buffers and this copy is avoided. When
data is read from the container, the IOD layer will provide a checksum with the data, which will
be verified by the HDF5 library before returning the data to the application. If the checksum of
the data read doesn’t match the checksum from IOD, the HDF5 library will issue an error by
default, but will also provide a way for the application to override this behavior and retrieve data
even in the presence of checksum errors.

In addition to checksumming data elements and metadata, which protect against passive or
active corruption of data buffers (i.e., corruption of an in-place buffer in memory or while a
memory buffer is being moved), additional integrity checks may be performed as information
from a CN is sent to an ION to be stored in a container. Each time information is transformed
from one representation to another, serializing a metadata data structure in memory into a
buffer for storage or changing data element values from one endianness to another, for
example, the transformed result can be verified to ensure that the transformation was accurate.
However, at this time, we don’t see a strong need to implement every possible verification step

2 For other uses of “future variables”, see e.g. http://blog.interlinked.org/programming/rfuture.html

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 5	 	 	 	 	 6/30/2014	

and have limited our implementation to only verifying data movement from the CN to the ION,
across the interconnect fabric. As needed, or as part of a future project, we will implement the
full set of verification steps on all data transformations, along with properties for
enabling/disabling individual verification steps.

See below, in the API and Protocol Additions and Changes section, for details on new API
routines to set properties for controlling the optional checksum behaviors.

4.1.3 Transactions,	 Container	 Versions,	 and	 Data	 Movement	 in	 the	 I/O	 Stack	

Several revisions occurred in this section during Quarter 5. Most significant was the addition of
the explicit read context for a given version of a container, and the specification of a read
context when a transaction is started. The transaction management model also evolved from
leader/followers and peers to one or more leaders and delegates.

The application is given almost complete control over managing data movement in the Exascale
FastForward I/O stack. The HDF5 library, building on the capabilities of IOD and DAOS,
provides the application with the ability to coordinate data movement between the application’s
memory on the CNs, the BBs on the IONs managed by IOD, and the storage managed by
DAOS.

In this section, we introduce and discuss transactions, container versions, container snapshots,
persisting data from the BB to DAOS storage, prefetching data from DAOS storage into the BB,
reading data from the BB or DAOS storage into the application memory, and evicting data from
the BB.

A high-level diagram of the components of the Exascale FastForward I/O stack and the data
movement that takes place under the control of the application is shown in Figure 1.3 Although
not referenced explicitly in the text that follows, the diagram may provide a useful visual model
of the concepts that are introduced and discussed in this section.

3 Also see Figure 6 in the IOD Design Document.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 6	 	 	 	 	 6/30/2014	

Figure 1: Data movement in the Exascale Fast Forward stack controlled by application requests.

4.1.3.1 Transactions	 and	 Writing	 to	 HDF5	 Files	 (Containers)	

The HDF5 library, building on the capabilities of IOD and DAOS, will allow applications to
atomically perform multiple update operations on an HDF5 container through the use of
transactions.

A transaction consists of a set of updates to a container. Updates are added to a transaction,
not made directly to a container. Updates include additions, deletions, and modifications. When
a transaction is committed, the updates in the transaction are applied atomically to the
container.

The basic sequence of transaction operations an application typically performs on a container
that is open for writing is:

1) start transaction N
2) add updates for container to transaction N
3) finish transaction N

One or more processes in the application can participate in a transaction, and there may be
multiple transactions in progress on a container at any given time. Transactions can be finished
in any order, but they are committed in strict numerical sequence.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 7	 	 	 	 	 6/30/2014	

The HDF5 VOL and the IOD VOL plugin handle the translation between the HDF5 transaction
APIs called by the application and the IOD transaction APIs. Exposing a constraint from the
DAOS layer that is necessary to insure container consistency, only one application can have a
container open for writing at any given time.

4.1.3.1.1 Managing	 Transactions	

Transactions are numbered, and the application is responsible for assigning transaction numbers
while a container is open for write.45 Since transactions are committed in strict numerical order,
the numbering of transactions affects the order in which updates are applied to the container.

One or more transaction leaders can start a transaction N by calling H5TRcreate() and then
H5TRstart(). If there are multiple transaction leaders for transaction N, each leader that calls
H5TRstart() for the transaction must also specify the total number of leaders as a parameter to
the transaction start call.

If delegates (non-leader processes) also participate in the transaction, they also call
H5TRcreate, but must be notified by one of the transaction leaders that the transaction has
been started before they can add updates to transaction N.

Once a transaction has been started, a dependency on a lower-numbered prerequisite
transaction can be registered. This must be done if the dependent transaction would not be
able to commit successfully unless the prerequisite transaction committed successfully.

The transaction id, returned by H5TRcreate(), is passed to the HDF5 APIs that add updates to
the transaction. The traditional APIs, such as H5Gcreate, have been modified to accept a
transaction ID, and renamed with the “_ff” suffix, such as H5Gcreate_ff. The container updates
that are added to a given transaction can include adding or deleting H5Datasets,
H5NamedDataTypes, H5Groups, H5Links, H5Maps, and H5Attributes. The updates can also
change the contents of existing H5Objects. The updates performed by HDF5 operations on
H5Objects are reflected in updates to IOD objects. An update to one H5Object can result in
updates to multiple IOD objects. The updates added to a transaction are not visible in the
container until the transaction is committed.

Each delegate must notify a leader when it has finished adding updates to transaction N. Each
leader finishes the transaction when it and the delegates it is responsible for have completed
their updates to the transaction. The transaction finish call is H5TRfinish(). Transactions can be
finished in any order.

Finished transaction N will be committed (become readable) when all lower-numbered
transactions are committed, aborted, or explicitly skipped.

The application does not explicitly commit a transaction, but it indirectly controls when a
transaction is committed through its assignment of transaction numbers in “create transaction /
start transaction” calls and the order in which transactions are finished, aborted, or explicitly

4 IOD allows the application to ask for the “next transaction number” under some circumstances, but that is
currently not supported by HDF5.
5 HDF5 commits one additional transaction when the container is closed to save file metadata that helps improve
performance when the container is re-opened. This file metadata is “nice but not necessary”, so if a crash occurs
and the transaction with the metadata has not been committed, the container is still accessible.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 8	 	 	 	 	 6/30/2014	

skipped. An H5TRfinish operation completes when the transaction is committed (success) or
aborted (failure).

Once a transaction number has been used to start a transaction, or has been explicitly skipped,
it cannot be reused – even if the transaction is aborted. Transactions that are aborted or
explicitly skipped are discarded. Discarded transactions do not block commits of higher-
numbered transactions.

4.1.3.1.2 Container	 Versions	

When a transaction is committed, the state of the container is changed atomically. The data for
a committed transaction is managed by IOD and, when IONs are present, resides in the Burst
Buffers.

The version of the container after transaction N has been committed is N. A reader of this
version of the container will see the results from all committed transactions up through and
including N. The H5RC APIs allow an application acquire a read handle on a particular container
version and open an associated read context that can be used to access the container version
until the context is explicitly closed and the handle released. The application must specify a read
context when it creates a transaction, so that metadata reads within the transaction are made
from a consistent version of the container.

Note that container version N may not have resulted from N finished transactions on the
container; there is no guarantee that some transactions were not aborted or explicitly skipped.

There has been considerable discussion within the team about various naming and numbering
conventions related to transactions and versions, and there remain some discrepancies in
terminology across the various layers of the stack. We mention them here to help the reader as
they review and integrate the HDF5, IOD, and DAOS design documents.

At the HDF5 layer, transactions and transaction numbers are used to refer to actions related to
atomic updates of the container and the changes associated with those actions, while container
versions are used to refer to the state of the container. Therefore, read operations are
performed on versions of containers, not on transaction numbers.

IOD does not distinguish between transaction numbers and container versions – it describes
things strictly in terms of transactions and transaction ids. DAOS has “epochs” instead of
transactions.

4.1.3.1.3 Persist	 and	 Snapshot	
The application can persist a container version, N, causing the data (and metadata) for the
container contents that are in the BB to be copied to DAOS and atomically committed to the
persistent storage. When container version N is persisted, the data for all lower-numbered
container versions (committed transactions on the container) that have not yet been persisted is
also flattened6 and copied to DAOS. Data (and metadata) for persisted container versions is
not automatically removed from the BB. The application must explicitly evict data from the BB –
this is discussed in more detail in a later section on Burst Buffer Space Management. Note that

6 Only valid data for lower-number container versions is copied. Any data which has been overwritten in later
transactions lower than N will not be copied.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 9	 	 	 	 	 6/30/2014	

an application is not required to persist any versions of a container. For example, an application
that is utilizing the Burst Buffer for out-of-core storage may never persist the data to DAOS.

After container version N is persisted (assuming no higher-numbered versions have yet been
persisted), DAOS holds version N of the container. DAOS refers to this version as the Highest
Committed Epoch (HCE). IOD refers to it as durable.

The Exascale Fast Forward stack does not support unlimited “time travel” to every container
version, as versions may be automatically flattened for efficiency when they are persisted. For
example, say the HCE on DAOS is 19, the application finishes transactions 20, 21, 22, and those
transactions become committed (readable) on IOD. The application then asks that container
version 22 be persisted. The HCE on DAOS becomes 22, and container versions 19, 20, and 21
may be flattened and not individually accessible from DAOS. However, as discussed below, if a
read handle is open for a given container version, that version is guaranteed not to be flattened
until the read handle is closed. The IOD Design Document covers these concepts in greater
detail.

The application can request a snapshot of a readable container version that has been persisted
to DAOS. This makes a permanent entry in the namespace (using a name supplied by the
application) that can be used to access that version of the container. The snapshot is
independent of further changes to the original container. The snapshot container behaves like
any other container from this point forward. It can be opened for write and updated via the
transaction mechanism (without affecting the contents of the original container), it can be read,
and it can be deleted.

4.1.3.1.4 General	 Discussion	 	
The application has complete control over when container versions are persisted to DAOS and
when snapshots are taken. That said, we expect that snapshots will be taken infrequently,
persists will encompass multiple committed transactions, and transactions will contain several to
many operations. The prototype implementation offered some opportunity to assess the
frequencies that can be supported with good performance, but performance testing was limited
due to time contraints.

Transactions provide the benefit of ensuring logically-consistent container versions. In addition,
they provide a mechanism for detecting and recovering from errors, as transactions can be
aborted and their updates retried. In the prototype Exascale FastForward Stack, the DAOS
layer is the primary focus of error reporting and recovery. The IOD, VOL, and HDF5 layers will
detect and report errors, but will not be designed to recover from them. Ultimately, the
application will also need to be involved in the handling of failures that cannot be self-healed by
the lower layers.

New HDF5 API routines allow the application to start, abort, finish, and skip transactions, and to
persist and snapshot container versions. Routines were also added to inquire about transaction
and container status. Existing API routines were extended to accept transaction numbers,
indicating which transaction a given operation is part of.

4.1.3.1.5 Design	 Decisions	 	

Because we allow transactions to be started and finished out of order, and because the
application can pipeline multiple transactions, there are situations where operations in later
transactions may depend on the actions of earlier transactions that have not yet been
committed.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 10	 	 	 	 	 6/30/2014	

For example, say in Transaction 11 the application creates H5Group /A, and in Transaction 17
the application creates H5Dataset /A/B. Using asynchronous calls and allowing multiple
transactions to be in flight at once, there is no guarantee that the transaction containing /A’s
creation will have been committed at the time Transaction 17 tries to create /A/B. Even if
Transaction 11 was committed, it is possible that one of the operations in Transactions 12-16
could have deleted /A.

Four possible solutions (at least) present themselves for addressing this issue:

1) A pessimistic (but guaranteed safe) implementation would require that the container
be at Version 16 (i.e., Transactions 11-16 have committed) before asynchronous
operations in Transaction 17 can complete. This allows the HDF5 library to verify
the state of the container before completing updates in Transaction 17.

2) An optimistic implementation would assume the application knows what it is doing,
and that it will only update objects that it knows have been created, or that it
creates in the same transaction. In the above example, the application should make
sure Transaction 11 has committed, and know that it did not delete /A in
Transactions 12-16, before trying to create /A/B in Transaction 17.

3) An implementation could speculatively execute HDF5 operations by maintaining a
log of updates within a transaction and replay that log after lower-numbered
transactions are committed. This has the benefit of immediate execution and
eventual guaranteed correctness, but comes with the drawback of additional
complexity and duplicated I/O.

4) An implementation could maintain a distributed cache that tracked the state of the
container metadata and captured the application’s view during all the outstanding
transactions. The distributed metadata cache would be used to predict the
correctness of operations during a transaction, allowing an application to proceed
asynchronously and safely. However, the complexity and expected poor
performance of such a cache likely outweigh any correctness benefits it might have.

We have decided to adopt a version of the optimistic approach (option 2) for this phase of the
project, and to add support for the expression of some dependencies in the HDF5 API.

In the example above, /A, created in Transaction 11, must exist in the file when Transaction 17
commits and adds /A/B. The application can do one of the following:

• Use a read context between 11 and 16 to create Transaction 17.

o If /A exists in the read context that is specified, the application can create
“/A/B” using the pathname specifier for the new datasets.

o If any version other than 16 is used as the read context, it is still possible
that /A might be deleted Transactions 12-15, causing the commit of
Transaction 17 to fail.

• Use a read context < 11 for Transaction 17 and add a dependency to Transaction 17
saying that it depends on Transaction 11.

o If Transaction 11 is aborted, the I/O stack will abort Transaction 17.

o If this option is chosen, the application can’t create “/A/B” using the
pathname specifier, because “/A” can’t be read from the container version

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 11	 	 	 	 	 6/30/2014	

used as the basis for Transaction 17. When the application creates /A in
Transaction 11, the object id returned (not the “/A” path) must be used in
the call to create B. If the creation of “/A” occurs on a different process than
the creation of “/A/B” then the object id for A must undergo a local->global +
share with other process + global->local transformation before the other
process can use it to create B.

The most complicated dependencies have to do with object creation and metadata
management, but we believe that few applications require complex dependencies and can
manage simple ones well. The more likely case is that an H5Dataset will be created early in the
application, then later multiple ranks will update separate elements in the H5Dataset in
independent transactions that are in-flight simultaneously.

4.1.3.1.6 Support	 for	 Legacy	 Applications	 	

There is a desire to support legacy library and application code that make HDF5 calls without
specifying transactions or asynchronous request IDs. While not optimized for performance,
legacy HDF5 API calls could avoid the issue of asynchronous request IDs and execute
synchronously.

Handling the lack of transaction numbers in legacy API calls is more complicated. Legacy code
must operate within the constraints of the operating modes of the FastForward I/O stack and
could co-exist with new code that does assign and manage transaction numbers and.

Current HDF5 API calls that modify the file can be divided into two types: operations on
container metadata and operations on data elements of H5Datasets. Operations on container
metadata must be executed collectively (i.e., by all MPI processes that opened the container),
but operations on data elements may be executed either collectively or independently (i.e., by
any MPI process that opened the container, without coordination with other processes). Each of
these types of operations (collective metadata, collective data element, and independent data
element) must be put into the context of the transactions and versions that must be used to
interact with FastForward containers and taken into account when solutions for legacy HDF5
applications are designed.

One possible simple solution for legacy HDF5 applications accessing FastForward containers
would be to start a new transaction when the legacy application opened the container with write
access, using the latest version of the container as the read context for the transaction, and to
finish that transaction when the container is closed. However, legacy HDF5 applications expect
to be able to read from and interact with changes they make to the container (e.g., reading
from newly created objects or reading back data elements written while the file is open), which
is not possible when the changes are being written into a transaction, so this is not a completely
transparent solution. In addition, if the application is transitioning from using legacy HDF5 APIs
to FastForward HDF5 APIs, the transaction started when the file was opened would prevent later
transactions (managed explicitly with the FastForward HDF5 APIs) from committing in the
container until the application closed the container (and therefore committed the transaction
used for legacy operations). Nevertheless, this mode of operation may be useful for applications
that understand and can operate within these limitations, and wish to create or modify files in
the FastForward I/O environment. We could enable this mode of operation with an HDF5 file
access property that was set by the application and used to open the container.

Another, somewhat more flexible, solution to legacy HDF5 applications accessing FastForward
containers could be to provide two new API calls that can be used to package legacy operations
into a transaction. The exact API signatures are not yet specified, but in general terms, the

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 12	 	 	 	 	 6/30/2014	

“start_legacy_transaction” could be called with a transaction number that will be assigned to all
legacy HDF5 calls executed prior to the “end_legacy_transaction”. Note that the legacy
application would be required to use the start/end legacy transaction brackets even if it never
uses the FastForward APIs, and that the new API calls would need to be collective operations.
The application would be responsible for managing other transaction numbers, keeping in mind
the transaction number(s) assigned to the legacy operations packaged by the new start/end
calls. This solution still has the limitation that an application’s legacy HDF5 code would not be
able to read data that was created or updated during the current legacy transaction, but
application developers may be able to strategicly start and end legacy transactions so that the
updates are created in transactions before they need to be read. This solution would also have
the advantage that legacy transactions could be committed to the container as desired, allowing
explicitly managed transactions from FastForward HDF5 API calls to commit to the container as
well.

A third solution to legacy applications accessing FastForward containers would be to put each
legacy collective metadata or data element operation into its own transaction and to provide
new (collective) API calls that specified a transaction to use for legacy independent data element
operations (e.g., “start_ind_data_elem_trans” and “end_ind_data_elem_trans”), since they
must be written into a transaction and that transaction number must not collide with the
automatically generated transaction numbers for legacy collective operations. Applications that
used both legacy HDF5 code and also explicitly managed transaction numbers with FastForward
HDF5 API calls would be required to reserve managed transaction number ranges in advance of
using them with a new FastForward API call (e.g., “reserve_trans_range”), so that the legacy
operations did not use one of those transaction numbers and conflict with a managed
transaction. This solution may provide the best backward compability with legacy code,
provided it did not use independent data element operations, since each metadata operation
would immediately commit in the FastForward container, becoming visible to legacy HDF5 code
that wished to access the modified information. Drawbacks to this solution would include the
very small transactions created with legacy collective metadata operations, the possibility that
the application could attempt to read from independent data element operations before they are
committed, the need to reserve explicitly managed transaction numbers and the possibility of
transactions that were delayed in committing due to outstanding independent operation
transactions or gaps from reserved transactions.

While we could provide one or more of these solutions for legacy HDF5 applications, none are
very attractive. The first two would likely be bad from a fault-tolerance and IOD/DAOS
container management perspective, and the third would likely be awful from a performance
perspective. Since transactions and data migration are key to the Fast Forward stack, allowing
applications to run (poorly) with one or more of these proposed solutions does not seem wise,
and it is unlikely we will provide a solution for migration of legacy applications in the prototype
FastForward project. As we gain experience with the stack, we may see ways to offer intelligent
automation that is currently not obvious to us, and we will take advantage of those insights
if/when they occur.

4.1.3.2 Reading	 from	 HDF5	 Files	 (Containers)	 	

Applications perform reads on a particular version of an HDF5 File (container) in the EFF stack.

Once an application has acquired a read handle and created a read context for a container
version, it is guaranteed to see the contents of the container at that version until the context is
is closed and the read handle released, even if subsequent transactions are committed to the

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 13	 	 	 	 	 6/30/2014	

container. The application must specify a read context when it creates a transaction, so that
metadata reads within the transaction are made from a consistent version of the container.

If a container is already open by other processes that run on the same IOD instance, a new
reader can share data in the BB with those processes, even when the reader and the other
processes are not accessing the same version of the container. Note that the container versions
that are available in the BB on one set of IONs may be different that the container versions that
are available directly from DAOS due to flattening that can occur when a container version is
persisted.

The application can issue explicit prefetch commands to move data from DAOS to the BB. When
the data being read is not already in the BB (as the result of an earlier write or prefetch) it will
be read from DAOS. Data that is read from DAOS will go through the IONs to the CNs, but will
not be cached in the BBs unless explicitly requested.

4.1.3.3 Burst	 Buffer	 Space	 Management	

IOD is responsible for moving data into and out of the BBs when directed to do so by higher-
layers in the stack (HDF5, as directed by the application). Because the BB is managed
manually, the application must explicitly request eviction and residence, effectively controlling
the working set in the BBs.

Please refer to the separate document, Burst Buffer Space Management – Prototype and
Production, and to the final report, for a discussion of the prefetch and evict capabilities that will
be delivered as part of the EFF prototype project. Some additional features that have been
identified as potentially beneficial in a production version of the EFF stack are also introduced.

4.1.4 Data	 Layout	 Properties	

Data layout properties, and other aspects of HDF5, IOD and DAOS software stack behavior, will
be controlled by properties in HDF5 property lists (e.g. file creation, object creation, object
access, etc.). New properties are set and retrieved by HDF5 API routines described in the UG, in
the H5Pset_layout* functions.

The new properties control how HDF5 dataset objects (as IOD Arrays) will be stored on DAOS
after a call to persist those objects. The layout properties implemented are:

• The physical dimensionality storage of a dataset object. The user can indicate
whether a dataset should be physically stored on DAOS in row-major (default) or
column-major order.

• The stripe count or the number of DAOS shards used to store the dataset raw data.

• The stripe size or the number of dataset elements to store contiguously on each
DAOS shard, before moving to the next one.

Layout properties for storage on the Burst Buffer were not implemented, as they require HDF5
or the user to maintain a tag which is required to access the object with the modified layout.

4.1.5 Optimized	 Append/Sequence	 Operations	 	

Optimized dataset append operations were added to the HDF5 design and code in Quarter 4. In
Quarter 5 it seemed that they would be very difficult to support efficiently within the read

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 14	 	 	 	 	 6/30/2014	

context / transaction model adopted by the EFF project, and they were backed out. At the very
end of Quarter 5, a possible implementation of a modified set of append operations was
discussed further, and IOD later added support for appendable blob objects. In the end, these
features, intended to help ACG, were not implemented on the EFF stack, but we retain this
section and the design ideas for possible future implementation. The final report discusses the
implementation challenges in more detail.

To support ACG ingest operations and other applications that rapidly append data to HDF5
objects (as well as applications that sequence through objects in a similar fashion), we planned
to extend the HDF5 API with routines that allow append/sequence operations to be performed in
an optimized and easy to use manner. In addition, to flesh out the HDF5 API with calls that
ACG applications will frequently use, we planned to add simple routines for quickly setting and
retrieving single elements in an HDF5 dataset.

As we continued to refine our support for ACG applications, we determined that appending new
values to variable-length datatype elements may be a better match for ACG application needs.
Therefore, we hoped to add to or revise the H5DO* API routines initially delivered in Quarter 4
and described below to focus them on appending values to variable-length datatype elements
stored in datasets instead of appending elements to the datasets themselves. In the end, none
of the H5DO* APIs were fully integrated into the stack.

See below, in the API and Protocol Additions and Changes section, for the proposed new H5DO*
API routines for optimized sequential reads and writes.

4.1.6 Map	 Objects	 	

ACG applications have a great deal of data that doesn’t correspond well to the current HDF5
data model, showing a need for expanding that model. In particular, ACG data contains many
vertices in each graph, each of which has a large amount of name/value pairs that are inefficient
to store with HDF5 dataset objects. To address this need, we added a new Map object to the
HDF5 data model and API.

Map objects in HDF5 are similar to a typical “map” data structure in computer science. HDF5
maps set/get a value in the object, according to the key provided, with a 1-1 mapping of keys to
values. All keys for a given map object must be of the same HDF5 datatype, and all values
must also be of the same HDF5 datatype (although the key and value datatypes may be
different). Like HDF5 datasets, HDF5 maps will be leaf objects in the group hierarchy within a
container, and, like other HDF5 objects in the container, can have attributes attached to them.

Many extensions beyond a straightforward map data structure were considered, such as support
for multiple values for each key (i.e., a “multi-map”), allowing different datatypes for each key
and/or value, etc. However, the current capabilities meet the needs for ACG use cases and
allow us to explore further extensions to the map object’s capabilities incrementally. We expect
to add functionality to the map object over the course of the project, or in follow-on projects, as
more application needs are exposed.

4.1.7 Data	 Analysis	 Extensions	 (Query,	 View	 and	 Index	 Operations)	

Support for data analysis operations on HDF5 containers were implemented via:

• New “query” object and API routines, enabling the construction of query requests for
execution on HDF5 containers

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 15	 	 	 	 	 6/30/2014	

• New “view” object and API routines, which apply a query to an HDF5 container and
return a set of references into the container that fulfills the query criteria

• New “index” object and API routines, which allows the creation of indices on the
contents of HDF5 containers, to improve query performance

• New “analysis shipping” API routines for sending a query along with python scripts
to VOL servers to analyze data in a container

These extensions to the HDF5 API and data model enable application developers to create
complex and high-performance queries on both metadata and data elements within an HDF5
container and retrieve the results of applying those query operations to an HDF5 container.

4.1.7.1 Query	 Objects	

Query objects are the foundation of the data analysis operations in HDF5 and can be built up
from simple components in a programmatic way to create complex operations using Boolean
operations. The core query API is composed of two routines: H5Qcreate and H5Qcombine.
H5Qcreate creates new queries, by specifying an aspect of an HDF5 container, such as data
elements, link names, attribute names, etc., a match operator, such as “equal to”, “not equal
to”, “less than”, etc. and a value for the match operator. H5Qcombine combines two query
objects into a new query object, using Boolean operators such as AND and OR. Queries created
with H5Qcombine can be used as input to further calls to H5Qcombine, creating more complex
queries.

For example, a single call to H5Qcreate could create a query object that would match data
elements in any dataset within the container that are equal to the value 17. Another call to
H5Qcreate could create a query object that would match link names equal to “Pressure”. Calling
H5Qcombine with the AND operator and those two query objects would create a new query
object that matched elements equal to 17 in HDF5 datasets with link names equal to “Pressure”.

Creating the data analysis extensions to HDF5 using a “programmatic interface” for defining
queries avoids defining a text-based query language as a core component of the data analysis
interface, and is more in keeping with the design and level of abstraction of the HDF5 API. The
HDF5 data model is more complex than traditional database tables and a simpler query model
would likely not be able to express the kinds of queries needed to extract the full set of
components of an HDF5 container. A text-based query language (or GUI) could certainly be
built on top of the query API defined here to provide a more user-friendly (as opposed to
“developer-friendly”) query syntax like “Pressure = 17”. However, we regard this as out-of-
scope for the current project.

4.1.7.2 View	 Objects	

Applying a query to an HDF5 container creates an HDF5 view object. HDF5 view objects are
runtime, in-memory objects (i.e., not stored in a container) that consist of read-only references
into the contents of the HDF5 container that the query was applied to. View objects are created
with H5Vcreate, which applies a query to an HDF5 container, group hierarchy, or individual
object and produces the view object as a result. The attributes, objects, and/or data elements
referenced within a view can be retrieved by further API calls.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 16	 	 	 	 	 6/30/2014	

For example, starting with the HDF5 container described in the figure below:

Applying the ‘<link name> = “Pressure”’ query (described above) would result in the view
shown below, with the underlying container greyed out and the view highlighted in green:

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 17	 	 	 	 	 6/30/2014	

Alternatively, applying the ‘<data element> = 17’ query (described above) would result in the
view shown below, with the underlying container greyed out and the view highlighted in green:

Finally, applying the combined ‘<link name> = “Pressure” AND <data element> = 17’ query
(described above) would result in the view shown below, with the underlying container greyed
out and the view highlighted in green:

Views can be thought of as containing a set of HDF5 references (object, dataset region or
attribute7 references) to components of the underlying container, retaining the context of the
original container. For example, the view containing the results of the ‘<link name> =
“Pressure” AND <data element> = 17’ query will contain three dataset region references, which

7 Attribute references were initially targeted for delivery in Q6 of the FastForward project, but were rescheduled to
Q8, along with other metadata query operations.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 18	 	 	 	 	 6/30/2014	

can be retrieved from the view object and probed for the dataset and selection containing the
elements that match the query with the existing H5Rdereference and H5Rget_region API calls.
Note that selections returned from a region reference retain the underlying dataset’s
dimensionality and coordinates – they are not “flattened” into a 1-D series of elements. The
selection returned from a region reference can also be applied to a different dataset in the
container, allowing a query on pressure values to be used to extract temperature values, for
example.

4.1.7.3 Index	 Objects	

The final component of the data analysis extensions to HDF5 is the index object. Index objects
are designed to accelerate creation of view objects from frequently occurring query operations.

For example, if the ‘<link name> = “Pressure” AND <data element> = 17’ query (described
above) is going to be frequently executed on the container, indices could be created in that
container which would speed up the creation of views when querying for link names and for data
element values. Indices created for accelerating the ‘<link name> = “Pressure”’ or ‘<data
element> = 17’ queries would also improve view creation for the more complex ‘<link name> =
“Pressure” AND <data element> = 17’ query.

Although creating indices for metadata components of queries, such as link or attribute names,
is possible, this project focused on index creation for dataset elements, as they represent the
largest volume of data in typical HPC application usage of HDF5. Queries with metadata
components execute properly, but are not able to be accelerated with an index currently.

The indexing API works in conjunction with the view API. When an H5Vcreate call is made for a
group or dataset, an index attached to any dataset queried for element value ranges will be
used to speed up the query process and returns a dataspace selection to the library for later
use, for example by analysis shipping tasks.

There are different techniques for creating data element indices, and the most efficient method
will vary depending on the type of the data that is to be indexed, its layout, etc. We therefore
define a new interface for the HDF5 library that uses a plugin mechanism.

4.1.7.3.1 Index	 Plugins	
A new HDF5 interface has been defined for adding third-party indexing plugins, such as FastBit8,
Alacrity9, etc., and will be demonstrated in Quarters 7 and 8 of the project. The interface
provides indexing plugins with efficient access to the contents of the container for both the
creation and the maintenance of indices. In addition, the interface allows third-party plugins to
create private data structures within the container for storing the contents of the index.

Index objects are stored in the HDF5 container that they apply to, but are not visible in the
container’s group hierarchy10. Instead, index objects are part of the metadata for the file itself.

8 https://sdm.lbl.gov/fastbit/
9 ALACRITY: Analytics-Driven Lossless Data Compression for Rapid In-Situ Indexing, Storing, and Querying,
http://link.springer.com/chapter/10.1007%2F978-3-642-41221-9_4
10 Plugin developers, note that the HDF5 library’s existing anonymous dataset and group creation calls can be used
to create objects in HDF5 files that are not visible in the container’s group hierarchy.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 19	 	 	 	 	 6/30/2014	

New index objects are created by passing an H5Container to be indexed and index plugin ID to
the H5Xcreate call (see the H5Xcreate API call description in the User Guide for details).

When using the IOD VOL plugin in the EFF context, index information (such as plugin id and
index metadata) is stored/retrieved in the object’s metadata KV object. This extra information is
stored at index creation time, and when the user later calls H5Dopen, the plugin open callback
will retrieve this stored information and make use of the corresponding index plugin for all
subsequent operations. Similarly, calling H5Dclose will call the plugin index close callback and
close the objects used to store the index data.

When a call to H5Dwrite is made, the index plugin pre_update and post_update callbacks will be
triggered, allowing efficient index update by first telling the index plugin the region that is going
to be updated with new data, and then realizing the actual index update, after the dataset write
has completed. This allows various optimizations to be made, depending on the data selection
passed and the index plugin used. For example, a plugin could store the region and defer the
actual index update until the dataset is closed, hence saving repeated index computation/update
calls.

When a call to H5Vcreate is made, the index plugin query callback will be invoked to create a
selection of elements in the dataset that match the query parameters. Applications can also use
the new H5Dquery routine to directly execute a query on a dataset (accelerated by any index
defined on the dataset), retrieving the selection within that dataset that matches the query.

See the User’s Guide to FastForward Features in HDF5 for details on the index plugin interface
and operation.

4.1.7.3.2 Stakeholder	 Feedback	 and	 Possible	 Future	 Extensions	
During the Milestone 7.1 Index Plugin API Demonstration, the DOE stakeholders raised a
number of good questions that are beyond the scope of what will be implemented in the
prototype project, but that are worth considering for future work. They are captured here, with
some preliminary thoughts on how they might be addressed.

• How could an index be built in parallel for a dataset that already exists?

o Possibly the analysis shipping framework could help with this. We could prefetch
the dataset onto the IONs, run a parallel index build operation on the data in the
burst buffer (using the analysis shipping framework), then persist the data back
to DAOS.

• How to handle index updates when the specified index plugin is not available? (In
traditional databases, stored procedures are saved with the data and therefore available
at any time, but that is not the case here)

o We can possibly track the elements of the dataset that are updated when the
plugin is not available, then add a new “refresh” callback to the plugin callbacks,
that would get invoked with the selection of the elements that were modified
and need to be indexed once the plugin is available again.

• How to handle index queries when the specified index plugin is not available?

o The HDF5 library will ship with a default “brute force” index plugin, which will be
invoked when there is no index for a dataset, or when the index plugin is not
available.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 20	 	 	 	 	 6/30/2014	

• Another possible future optimization would be to build the indices on the server rather
than on the clients. This was deferred due to the complexity of re-entering the server
code from index plugins, but is possible now that a co-resident version of the
FastForward I/O stack is available.

4.1.7.3.3 Index	 Plugin	 Limitations	

Several things limit use of indices in the EFF I/O stack: FastBit and Alacrity don’t support
incremental updates, an index is a shared resource for a dataset, and the strong transactional
model in the EFF I/O stack. Taken together, these conspire to put limits on application updates
to datasets with indices. The strong transactional model restricts updates to an index in a
transaction from being visible to other processes (or even to the process which made the
changes, later in the transaction). This limits updates on existing index values (and the dataset
they are attached to) to single writes by one CN within each transaction. Additionally, because
FastBit and Alacrity don’t allow incremental updates to an index, each modification to an existing
index forces the index to be entirely rebuilt.

The limitation due to the transactional model could be mitigated by relaxing the model to allow
reads from an uncommitted transaction, or by caching index information on the IONs, although
the latter implementation would likely be unprotected from faults. The limitation in FastBit and
Alacrity will need to be addressed in the base packages’ implementation, so that they can make
incremental updates to their index information.

4.1.7.4 Analysis	 Shipping	 Operation	

Analysis shipping is the capstone of the data analysis framework and provides the user with a
means to ship an analysis request directly to the IONs or storage server nodes, thereby
performing analysis operations as close as possible to the data, and minimizing data movement
costs. To operate on the data, the query object, described in the earlier section, contains
selection criteria for selecting the data in the object that is stored in a specified container and
the user provides Python scripts that perform operations on the selected data.

An analysis request is composed of three stages of operations: a split operation, which is
executed on each dataset in parallel and locally to the data selected by the query to generate
intermediate results, a combine operation, which gathers data generated by the split operation
and optionally performs an operation on the intermediate results and an integrate operation
which gathers the results of all the combine operations optionally performs a final operation over
all of them. The server that receives the analysis request will distribute a split operation to all
the nodes that own a piece of the data, depending on the layout of the object in the underlying
storage, Those nodes then read the object’s data and apply the query to generate a subset of
the data that satisfies the query conditions. The split operation is then applied on the data
queried. The results from all the split operations are gathered back to the node that received the
operation. The original server then applies the combine operation on the gathered data to obtain
an intermediate analysis result for that dataset, and the integrate operation is applied to all the
intermediate results to generate a final result for all the datasets.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 21	 	 	 	 	 6/30/2014	

To easily interface with a user-defined analysis code on the client, the split, combine and
integrate operations are defined in the form of Python scripts that are converted into strings,
shipped and executed on the data. It is worth noting that the analysis shipping server must
encapsulate / deencapsulate data into / from NumPy arrays before / after the Python scripts are
executed.

In Q6, the H5AS and H5Q routines apply to raw data elements of HDF5 dataset objects only,
and the H5V and H5X routines have not yet been implemented. The H5V and H5X routines
have been fully implemented as of Q8, along with updating the H5ASinvoke routine used to
initiate analysis shipping operations to handle queries that apply to both metadata and raw data
elements.

4.2 Architectural	 Changes	 to	 the	 HDF5	 Library	

The architecture of the core HDF5 library was largely unaffected by the changes described in this
document. The majority of the capabilities added to the HDF5 API were handled by a wrapper
layer above the main HDF5 library, and a modest number of additions to the main API routines
Adding transactions required extending the VOL interface to incorporate some additional
callbacks and/or parameters as well. Fortunately, the VOL was already designed to support
asynchronous operations (although it is currently not used by any existing plugins), so few
changes were required to support that capability.

The following diagram shows an overview of the HDF5 library architecture before the
FastForward project capabilities are added:

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 22	 	 	 	 	 6/30/2014	

The following diagram shows an overview of the HDF5 library architecture after the EFF
capabilities were added, with the new or enhanced portions highlighted:

The majority of the implementation work was localized to the EFF wrapper routines and the IOD
VOL plugin. In particular, the end-to-end integrity checksums are created and validated in the
IOD plugin, and data layout information is translated from HDF5 properties to IOD hints there as
well. Transactions and asynchronous operation information is encapsulated in HDF5 properties
by the EFF wrapper routines and retrieved, interpreted and returned by the IOD plugin in the
same way. Details of the IOD VOL plugin design are located in the HDF5 Data in IOD Containers
Layout Specification document.

4.3 Storing	 HDF5	 Objects	 in	 IOD	 Containers	

Objects in the HDF5 data model and operations on them are mapped to IOD objects and
operations, as they are handled by the IOD VOL plugin. Please refer to the document “HDF5
Data in IOD Containers Layout Specification” for details.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 23	 	 	 	 	 6/30/2014	

5 API	 and	 Protocol	 Additions	 and	 Changes	
There were two kinds of changes to the HDF5 library API for the Exascale FastForward project:
(1) generic changes to existing API routines to accommodate new capabilities, such as
asynchronous I/O and transactions, and (2) additions to the HDF5 API that support new
features.

The reference manual pages for the modified and new routines can be found in the User’s Guide
to FastForward Features in HDF5. The reference manual pages for the designed, but not fully
implemented DO (optimized dataset) operations have been retained in this design document.

5.1 Generic	 changes	 to	 HDF5	 API	 routines	

Many HDF5 API routines operate on HDF5 file objects and needed to be extended in similar
ways. The generic modifications are described in this section. HDF5 API routines that were
extended in this manner have the suffix “_ff”11 added to the API routine’s name.

Existing HDF5 routines that operate on HDF5 file objects were are extended by adding one or
more parameters:

1. A read context id (rcxt_id) for routines that read from the HDF5 file.
• The read context id indicates what version of the container (the HDF5 file) will be

read.

2. A transaction id (trans_id) for routines that update the HDF5 file.
• The transaction id indicates both the transaction number and the read context

for the update operation.

3. An event stack id (estack_id) for routines that can execute asynchronously.
• The event stack identifier indicates where the event associated with the

asynchronous operation is pushed. The event stack provides a mechanism for
checking the operation’s completion status at a later time.

• Passing H5_EVENT_STACK_NULL for the event stack identifier indicates that the
operation should be executed synchronously.

The following pseudo-function prototypes demonstrate the method for these changes to HDF5
API routines:

Current routine that performs update:
<return type> H5Xexisting_update_routine(<current parameters>);

Extended routine that performs update:
<return type> H5Xexisting_update_routine_ff(<current parameters>,

 hid_t trans_id,
 hid_t estack_id);
Current routine that performs read:

<return type> H5Xexisting_read_routine(<current parameters>);

Extended routine that performs read:
<return type> H5Xexisting_read_routine_ff(<current parameters>,

11 “ff” is short for “FastForward”

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 24	 	 	 	 	 6/30/2014	

 hid_t rcxt_id,
 hid_t estack_id);

As a concrete example, the following prototypes show the changes to H5Gcreate, the group
creation API routine for HDF512 — a routine that performs updates:

Current routine:
hid_t H5Gcreate(hid_t loc_id, const char *name, hid_t lcpl_id,

 hid_t gcpl_id, hid_t gapl_id);

Extended routine:
hid_t H5Gcreate_ff(hid_t loc_id, const char *name, hid_t lcpl_id,

 hid_t gcpl_id, hid_t gapl_id,
 hid_t trans_id, hid_t estack_id);

Note that the error value returned when a routine is executed asynchronously only indicates the
status of the routine up to the point when it is scheduled for later completion. The new
asynchronous test and wait routines (H5EStest, H5ESwait, H5EStest_all, and H5ESwait_all)
return the error status for the “second half” of the routine’s execution.

We anticipate the “_ff” suffix will be removed and affected API routines will be versioned
according to the standard convention for modifying HDF5 API routines13 if the features from the
FastForward project are productized in a future public release of HDF5.

A note on the design of the API changes: We considered alternate forms of passing the
transaction, read context, and event stack information in to and out of the HDF5 API routines,
such as using HDF5 properties in one of the property lists passed to API. However, using HDF5
properties had some drawbacks. In particular, several of the API routines did not have property
list parameters and therefore would have to be extended with more parameters anyway, and
setting the additional information in properties can sometimes obscure the fact that an
operation’s behavior has been changed.

5.2 Additions	 to	 the	 HDF5	 API	

Please refer to the User’s Guide to FastForward Features in HDF5 to see the reference manual
pages for the HDF5 APIs added for the EFF project. The proposed, but not fully implemented,
H5DO* routines are documented here.

5.2.1 Dataset	 Objects	 –	 Optimized	 APIs	 (designed	 but	 not	 fully	 implemented)	

These descriptions reflect the function of the HDF5 routines delivered in Q4. Those routines were
never connected to the lower layers of the EFF stack, and therefore remain only “stubs”.

5.2.1.1 H5DOappend_ff	

Name: H5DOappend_ff

12 http://www.hdfgroup.org/HDF5/doc/RM/RM_H5G.html#Group-Create2
13 HDF5’s API versioning conventions are described here:
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 25	 	 	 	 	 6/30/2014	

Signature:
herr_t H5DOappend_ff(hid_t dataset_id, hid_t dxpl_id, unsigned axis, size_t extension,
hid_t memtype_id, const void *buffer, hid_t trans_id, hid_t es_id)

Purpose:
Perform an optimized append operation on a dataset, possibly asynchronously.

Description:
The H5DOappend_ff routine extends the dataset specified by dataset_id extension number of
elements along the dimension specified by axis, and writes the data values of memtype_id datatype located
in buffer into the newly created dataset elements. Data transfer properties are defined by the argument
dxpl_id.

axis must be a dimension that was declared unlimited when the dataset was created.

trans_id indicates the transaction this operation is part of.
EFF Note: This has no effect in the current version.

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the
function is executed asynchronously. The function may be executed synchronously by passing in
H5_EVENT_STACK_NULL for the es_id parameter.

The H5DOappend_ff routine combines calls to H5Dset_extent, H5Sselect_hyperslab and
H5Dwrite_ff into a single, convenient routine that simplifies application development for the common case of
appending elements to an existing dataset. It also improves performance of the overall set of operations.

When the dataset has more than one dimension, appending to one axis will write a contiguous hyperslab over the
other axes. For example, if a 3-D dataset currently has dimensions (3, 5, 8), extending the 0th axis (currently of
size 3) by 3 will append 3*5*8 = 120 elements (which must be pointed to by the buffer parameter) to the
dataset, making its final dimensions (6, 5, 8).

If a dataset has more than one axis with an unlimited dimension, any of those axes may be appended to, although
only along one axis per call to H5DOappend.

The H5DOappend routine is identical in functionality, but does not allow for asynchronous operation or
inclusion in a transaction.

Parameters:
hid_t dataset_id IN: Identifier of the dataset where data will be appended.

hid_t dxpl_id IN: Data transfer property list identifier.

unsigned axis IN: Number specifying the dimension that is to be extended; must correspond
to a dimension that was declared unlimited when the dataset was created.

size_t extension IN: Number of elements that will be added along the specified dimension.

hid_t memtype_id IN: Identifier of the memory datatype

const void *buffer IN: Buffer with data to be written (appended) to the dataset

hid_t trans_id IN: Transaction ID that this operation is a part of.

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to
monitor the status of the event associated with this function call when

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 26	 	 	 	 	 6/30/2014	

executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous
execution.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether
the operation has been successfully scheduled for asynchronous execution. The actual success or failure of the
asynchronous operation must be checked separately through the event queue.

History:
Added in Quarter 4.

Quarter 5: Changed from transaction to transaction id and from event queue to event stack.

5.2.1.2 H5DOget_ff	

Name: H5DOget_ff

Signature:
herr_t H5DOget_ff(hid_t dataset_id, hid_t dxpl_id, const hsize_t coord[], hid_t memtype_id,
void *buffer, hid_t rcxt_id, hid_t es_id)

Purpose:
Read a single element from a dataset, possibly asynchronously.

Description:
The H5DOget_ff routine reads a single element at offset coord from the dataset specified by dataset_id
to buffer of memtype_id datatype. Data transfer properties are defined by the argument dxpl_id.

rcxt_id indicates the version of the container this operation reads from.
EFF Note: This has no effect in the current version.

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the
function is executed asynchronously. The function may be executed synchronously by passing in
H5_EVENT_STACK_NULL for the es_id parameter.

The H5DOget_ff routine combines calls to H5Dselect_hyperslab and H5Dread_ff into a single,
convenient routine that simplifies application development for the common case of reading a single element from
a dataset.

The H5DOget routine is identical in functionality, but does not allow for asynchronous operation or inclusion in
a transaction.

Parameters:
hid_t dataset_id IN: Identifier of the dataset to read from.

hid_t dxpl_id IN: Data transfer property list identifier.

const hsize_t coord[] IN: Vector whose values specify the coordinates of the elemen to be read.
Vector length must equal number of dimensions in the dataset.

hid_t memtype_id IN: Identifier of the memory datatype

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 27	 	 	 	 	 6/30/2014	

void *buffer OUT: Buffer to receive data read from the dataset

hid_t rcxt_id IN: Read context ID, indicating version of container this operation reads from.

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to
monitor the status of the event associated with this function call when
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous
execution.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether
the operation has been successfully scheduled for asynchronous execution. The actual success or failure of the
asynchronous operation must be checked separately through the event queue.

History:
Added in Quarter 4.

Quarter 5: Added read context id and changed from event queue to event stack.

5.2.1.3 H5DOset_ff	

Name: H5DOset_ff

Signature:
herr_t H5DOset_ff(hid_t dataset_id, hid_t dxpl_id, const hsize_t coord[], hid_t memtype_id,
const void *buffer, hid_t trans_id, hid_t es_id)

Purpose:
Write a single element to a dataset, possibly asynchronously.

Description:
The H5DOset_ff routine writes a single element at offset coord to the dataset specified by dataset_id
from buffer of memtype_id datatype. Data transfer properties are defined by the argument dxpl_id.

trans_id indicates the transaction this operation is part of.
EFF Note: This has no effect in the current version.

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the
function is executed asynchronously. The function may be executed synchronously by passing in
H5_EVENT_STACK_NULL for the es_id parameter.

The H5DOset routine combines calls to H5Dselect_hyperslab and H5Dwrite_ff into a single,
convenient routine that simplifies application development for the common case of writing a single element to a
dataset.

The H5DOset routine is identical in functionality, but does not allow for asynchronous operation or inclusion in
a transaction.

Parameters:
hid_t dataset_id IN: Identifier of the dataset to write.

hid_t dxpl_id IN: Data transfer property list identifier.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 28	 	 	 	 	 6/30/2014	

const hsize_t coord[] IN: Vector whose values specify the coordinates of the elemen to be written.
Vector length must equal number of dimensions in the dataset.

hid_t memtype_id IN: Identifier of the memory datatype

const void *buffer IN: Buffer holding data to be written to the dataset

hid_t trans_id IN: Transaction ID that this operation is a part of.

hid_t es_id IN: Event stack identifier specifying the event stack that will be used to
monitor the status of the event associated with this function call when
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous
execution.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether
the operation has been successfully scheduled for asynchronous execution. The actual success or failure of the
asynchronous operation must be checked separately through the event queue.

History:
Added in Quarter 4.

Quarter 5: Changed from transaction to transaction id and from event queue to event stack.

5.2.1.4 H5DOsequence_ff	

Name: H5DOsequence_ff

Signature:
herr_t H5DOsequence_ff(hid_t dataset_id, hid_t dxpl_id, unsigned axis, size_t start,
size_t sequence, hid_t memtype_id, void *buffer, hid_t rcxt_id, hid_t es_id)

Purpose:
Perform an optimized stream-oriented read operation on a dataset, possibly asynchronously.

Description:
The H5DOsequence_ff routine reads sequence elements from the dataset specified by dataset_id
along the dimension specified by axis starting at offset start into buffer of memtype_id datatype. Data
transfer properties are defined by the argument dxpl_id.

rcxt_id indicates the version of the container this operation reads from.
EFF Note: This has no effect in the current version.

The es_id parameter indicates the event stack the event object for this call should be pushed onto when the
function is executed asynchronously. The function may be executed synchronously by passing in
H5_EVENT_STACK_NULL for the es_id parameter.

The H5DOsequence_ff routine combines calls to H5Sselect_hyperslab and H5Dread_ff into a
single, convenient routine that simplifies application development for the common case of appending elements to
an existing dataset.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 29	 	 	 	 	 6/30/2014	

When the dataset has more than one dimension, sequencing along one axis will read a contiguous hyperslab over
the other axes. For example, if a 3-D dataset currently has dimensions (6, 5, 8), a sequenced read of size 3 along
the 0th axis, starting at offset 0 will read 3*5*8 = 120 elements from the dataset into the buffer.

The H5DOsequence routine is identical in functionality, but does not allow for asynchronous operation or
inclusion in a transaction.

Parameters:
hid_t dataset_id IN: Identifier of the dataset that will be read.

hid_t dxpl_id IN: Data transfer property list identifier.

unsigned axis IN: Number specifying the dimension that is to be sequenced through.

size_t start IN: Number specifying the starting offset for the read

size_t sequence IN: Number of elements that will be read along the specified dimension.

hid_t memtype_id IN: Identifier of the memory datatype

void *buffer OUT: Buffer for data read (sequenced) from the dataset

hid_t rcxt_id IN: Read context ID, indicating version of container this operation reads from.

hid_t eq_id IN: Event stack identifier specifying the event stack that will be used to
monitor the status of the event associated with this function call when
executed asynchronously. Use H5_EVENT_STACK_NULL for synchronous
execution.

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

Note that when this routine is executed asynchronously, the return value from the routine only indicates whether
the operation has been successfully scheduled for asynchronous execution. The actual success or failure of the
asynchronous operation must be checked separately through the event queue.

History:
Added in Quarter 4.

Quarter 5: Added read context id and changed from event queue to event stack.

5.2.1.5 H5Pset_dcpl_append_only	

H5Pset_dcpl_append_only () – Set a property to indicate whether access to Dataset is in an append only fashion.

6 Risks	 &	 Unknowns	
As the changes to the HDF5 library are dependent on capabilities added to multiple lower layers
of the software stack (the function shipper, IOD and DAOS layers), it is likely that changes at
those layers will ripple up through the HDF5 API and cause additional work at this layer. On the
other hand, we can always mitigate the effect of changes at lower levels by abstracting those

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 30	 	 	 	 	 6/30/2014	

capabilities and implementing support within the HDF5 library for features missing or different
below it.

Conversely, the demands of the applications that use the HDF5 API may pull the features and
interface in unexpected directions as well, in order to provide the necessary capabilities for the
application to efficiently and effectively store its data. These two forces must be balanced over
the course of the project, hopefully producing a high quality storage stack that is useful to
applications at the exascale.

Additional specific risks, unknowns and deferred features are outlined below:

• Deferred features, such as support for canceling asynchronous operations, variable-
length datatypes or iterating over links in a group, may take more effort than
anticipated to implement when desired. These features should be investigated more
thoroughly and the implementation costs estimated as accurately as possible before
further efforts to implement them are pursued.

• New features that have been added to HDF5 should be tested by porting more DOE
applications to the EFF I/O stack. Iterating on the design of the extensions as part
of this project before putting them into production will help reduce the future
maintenance costs, both at the HDF5 level and for application developers.

• Although routines to append data to HDF5 datasets were defined, they were not
implemented. These additions should be evaluated for their value and discarded if
they are not valuable to applications.

• Index operations have a number of known limitations, stemming from the index
packages chosen and the transactional model for the EFF I/O stack. Care evaluation
of how to proceed with this valuable feature should be made.

The reader is also referred to the EFF I/O project final report for a more wholistic perspective,
taking all layers of the EFF I/O stack into account, along with many more ideas for future work.

Appendix	 A Aspects	 of	 the	 HDF5	 Data	 Model	
The following table describes aspects of the HDF5 data model, which are possible candidates for
indices, queries, and inclusion in views.

Aspect Details Indexable Queryable View Object
Reference

Link Name Name of link to an
object

Y Y Object reference14

Attribute Name of attribute Y Y Attribute reference15

14 An object reference isn’t precisely the same as a link name reference, but they are functionally identical in most
application usage.
15 Under development.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 31	 	 	 	 	 6/30/2014	

Name on an object

Map Key Key of map entry N N N/A

Datatype Datatype of
attribute or dataset

N N N/A

Dataspace Dataspace of
attribute or dataset

N N N/A

Dataset
Element

Value of element in
a dataset

Y Y Region reference

Attribute
Value

Value of attribute N N Attribute reference13

Map Value Value of map entry N N N/A

