

LLNS	 Subcontract	 No.	 B599860	
Subcontractor	 Name	 Intel	 Federal	 LLC	
Subcontractor	 Address	 2200	 Mission	 College	 Blvd.	

Santa	 Clara,	 CA	 95052	

Copyright	 2014,	 The	 HDF	 Group.	 All	 Rights	 Reserved.	 	
B599860-‐SS	

Date:	
February	 25,	 2014	

	

Burst	 Buffer	 Space	 Management	 –	
Prototype	 and	 Production	

FOR	 EXTREME-‐SCALE	 COMPUTING	
RESEARCH	 AND	 DEVELOPMENT	 (FAST	
FORWARD)	 STORAGE	 AND	 I/O	

NOTICE:	 THIS	 MANUSCRIPT	 HAS	 BEEN	 AUTHORED	 BY	 THE	 HDF	 GROUP	 UNDER	 THE	 INTEL	 SUBCONTRACT	 WITH	 LAWRENCE	
LIVERMORE	 NATIONAL	 SECURITY,	 LLC	 WHO	 IS	 THE	 OPERATOR	 AND	 MANAGER	 OF	 LAWRENCE	 LIVERMORE	 NATIONAL	 LABORATORY	
UNDER	 CONTRACT	 NO.	 DE-‐AC52-‐07NA27344	 WITH	 THE	 U.S.	 DEPARTMENT	 OF	 ENERGY.	 	 THE	 UNITED	 STATES	 GOVERNMENT	
RETAINS	 AND	 THE	 PUBLISHER,	 BY	 ACCEPTING	 THE	 ARTICLE	 OF	 PUBLICATION,	 ACKNOWLEDGES	 THAT	 THE	 UNITED	 STATES	
GOVERNMENT	 RETAINS	 A	 NON-‐EXCLUSIVE,	 PAID-‐UP,	 IRREVOCABLE,	 WORLD-‐WIDE	 LICENSE	 TO	 PUBLISH	 OR	 REPRODUCE	 THE	
PUBLISHED	 FORM	 OF	 THIS	 MANUSCRIPT,	 OR	 ALLOW	 OTHERS	 TO	 DO	 SO,	 FOR	 UNITED	 STATES	 GOVERNMENT	 PURPOSES.	 	 THE	
VIEWS	 AND	 OPINIONS	 OF	 AUTHORS	 EXPRESSED	 HEREIN	 DO	 NOT	 NECESSARILY	 REFLECT	 THOSE	 OF	 THE	 UNITED	 STATES	
GOVERNMENT	 OR	 LAWRENCE	 LIVERMORE	 NATIONAL	 SECURITY,	 LLC.	

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 i	 	 	 	 	 	 02/25/2014	

Table	 of	 Contents	
Revision	 History	 ..	 ii	

1	 Introduction	 ...	 1	

2	 Glossary	 ..	 2	

3	 Transactions	 ...	 2	

4	 Putting	 Data	 into	 the	 Burst	 Buffer:	 IOD	 ..	 3	
4.1	 Add	 Updates	 to	 a	 Transaction	 ..	 3	
4.2	 Replicate	 Readable	 Data	 from	 DAOS	 to	 BB	 ...	 5	
4.3	 Possible	 Modifications	 for	 Production	 Version	 ..	 5	

5	 Reading	 Data:	 IOD	 ..	 6	
5.1	 Reading	 with	 a	 Tagged	 TID	 ...	 6	
5.2	 Reading	 with	 a	 TID	 ..	 6	
5.3	 Possible	 Modifications	 for	 Production	 Version	 ..	 6	

6	 Removing	 Data	 from	 the	 Burst	 Buffer:	 IOD	 ..	 6	
6.1	 Evicting	 with	 a	 Tagged	 TID	 ..	 6	
6.2	 Evicting	 with	 a	 TID	 ...	 7	
6.3	 Evicting	 Updates	 of	 Aborted	 Transactions	 ...	 7	
6.4	 Possible	 Modifications	 for	 Production	 Version	 ..	 7	

7	 Mapping	 of	 HDF5	 Objects	 to	 IOD	 Objects	 ..	 8	

8	 Putting	 Data	 into	 the	 Burst	 Buffer:	 HDF5	 ...	 8	
8.1	 Add	 Updates	 to	 a	 Transaction	 ..	 9	
8.2	 Replicate	 Readable	 Data	 ...	 9	
8.2.1	 H5Dataset	 prefetch	 ..	 10	
8.2.1.1	 Possible	 Modifications	 for	 Production	 Version	 ...	 10	

8.2.2	 H5Group	 prefetch	 ...	 11	
8.2.2.1	 Possible	 Modifications	 for	 Production	 Version	 ...	 11	

8.2.3	 H5Map	 prefetch	 ...	 11	
8.2.3.1	 Possible	 Modifications	 for	 Production	 Version	 ...	 12	

8.2.4	 Prefetch	 Container	 Version	 –	 Possible	 Addition	 for	 Production	 Version	 ..	 12	

9	 Reading	 Data:	 HDF5	 ...	 12	
9.1	 Possible	 Modifications	 for	 Production	 Version	 ...	 13	

10	 Removing	 Data	 from	 the	 Burst	 Buffer:	 HDF5	 ...	 13	
10.1	 H5Dataset	 evict	 ..	 13	
10.2	 H5Group	 evict	 ...	 14	
10.3	 H5Map	 evict	 ...	 14	
10.4	 Possible	 Additions	 for	 Production	 Version	 ...	 14	

	

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 ii	 	 	 	 	 	 02/25/2014	

Revision	 History	
Date	 Revision	 Description	 Author	
Feb. 10-18,
2014

1.0 – 1.7 Initial drafts incorporating material from
previous documents and discussions with EFF
architecture team.

Ruth Aydt, The HDF
Group

Feb 18, 2014 2.0 Version sent to DOE stakeholders for
discussion at February stakeholder meeting.

Ruth Aydt

Feb 25, 2014 2.1 Update to reflect IOD’s eviction of BB data for
aborted transactions. Update colors in Fig 1
and fix minor typos.

Ruth Aydt

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 1	 	 	 	 	 02/25/2014	

1 Introduction	
The BB provides two primary functions in the context of the EFF stack. First, as the name
suggests, it provides a buffer where bursty data can be written quickly and then drained off to
spinning disk in the background at a slower rate between bursts. Second, it provides another
level in the cache hierarchy of the system, where data that exceeds CN memory can reside for
faster access than would be possible if read directly from disk.

This document describes data movement into and out of the BB, represented by the colored
lines in Figure 1. Operations available at the IOD level of the software stack are covered first,
followed by operations at the HDF5 level. Capabilities that will be delivered as part of the EFF
prototype project are described, and some additional features that have been identified as
potentially beneficial in a production version of the EFF stack are introduced.

This document covers these concepts at a fairly high level. Readers are directed to the IOD
Design Document for a more complete discussion of the IOD capabilities and implementation.
The User’s Guide to FastForward Features in HDF5 will be updated as part of the Q7 deliverables
to fully document the prefetch and evict APIs for HDF5.

Figure	 1:	 Burst	 Buffer	 Data	 Movement	

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 2	 	 	 	 	 02/25/2014	

2 Glossary	
BB = Burst Buffer – physical storage media within the ION

CN = Compute Node

CV = Container Version

DAOS = Distributed Application Object Storage

commit = Atomically make a set of updates to a container visible.

delta = The difference in the data for a given object between two, possibly non-consecutive,
CVs.

EFF = Exascale FastForward

IOD = I/O Dispatcher

ION = I/O Node

persist = Atomically commit a given container version to DAOS storage.

RC = Read Context – an open read handle on a CV

rcntxt_id = read context id at the HDF5 level

TID = Transaction ID at IOD level.

Tagged TID = Transaction ID with IOD-supplied tag used to identify a replica of part or all of an
object at IOD level.

Tr # = Transaction Number

Updates = The changes to objects in a container in a given transaction. Updates are not visible
to readers until the transaction is committed.

VL = Variable Length

VOL = Virtual Object Layer

3 Transactions	
As background for the BB data movement discussions, we briefly summarize concepts and
terminology used to talk about transactions in the EFF stack.

At the HDF5 level, a transaction holds a set of updates to a container that will all become visible
at the same time. Recall that (1) multiple transactions can be in progress at any given time, (2)
transactions can be finished1 in any order, and (3) transactions are committed in strict numeric
order when all lower-numbered transactions have been committed or aborted.

At the HDF5 level, the term Container Version refers to the state of the container after a
transaction has been committed. When transaction #T is committed, the updates in the
transaction are applied atomically to the container and a new container version #CV=T becomes
readable. When there is an open read context (RC) on a given CV, the container contents of
that CV are guaranteed to remain readable until the RC is closed. In addition, the container

1 A	 transaction	 is	 finished	 when	 no	 more	 updates	 will	 be	 added	 to	 it.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 3	 	 	 	 	 02/25/2014	

contents of highest CV (the highest committed transaction) are guaranteed to be readable (an
RC could be obtained for the CV) until another transaction is committed.

In IOD, the terminology is slightly different and a transaction ID (TID) is used to refer to:
a) An IOD write transaction

• Same usage as at HDF5 level
b) An IOD read transaction

• Similar to the RC at the HDF5 level
c) A replica of data from an object or sub-object in a read transaction, where the

replicated data is in the BB; replica creation is discussed further in the next section.
This type of TID is also known as a “Tagged TID”.

• At the HDF5 level, this is referred to as a Replica ID, and must always be
used in conjunction with an Object ID and a RC.

4 Putting	 Data	 into	 the	 Burst	 Buffer:	 IOD	
There are two primary IOD-user-initiated ways for data to be written to the BB.

1. Add IOD object updates to a transaction.

• IOD objects can be Arrays, KV Stores, or Blobs.

• Object updates can add, modify, or delete data, for example “add a new KV
entry”, “change the value of the KV entry with key = k”, or “delete KV entry
with key = k”

• Object updates are stored in log format to the BB, and the data becomes
readable when the transaction is committed.

2. Replicate some or all of the readable data in an IOD object.

• If the source of the replicated data is DAOS, this is a prefetch

• If the source of the replicated data is the BB, this is referred to by IOD as a
multi-format replica or semantic resharding, depending on the type of object.

BB->BB replication is not discussed further in this document and is not supported
by the prototype HDF5 APIs for EFF.

Other IOD-user-initiated operations, such as creating an IOD container or an IOD object, also
add data to the Burst Buffer. This document ignores the issue of container and object creation,
focusing on the data movement related to object contents.

In our discussions we will assume all objects are in a single container and we will primarily focus
our examples on Array and KV objects.

4.1 Add	 Updates	 to	 a	 Transaction	
The IOD APIs iod_array_write, iod_array_write_list, iod_kv_set, iod_kv_set_list,
iod_kv_unlink_keys, iod_blob_write, iod_blob_write_list, and iod_blob_append add Array, KV
Store, and Blob object updates to a transaction. All take a container handle, a TID, one or more
object handles, an indication of “where” the data should be written in the object (the Array

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 4	 	 	 	 	 02/25/2014	

cell(s), the key(s), the byte range(s) or “at the end”), and—with the exception of
iod_kv_unlink_keys—the data.

Tables 1 and 2 represent the user-level data in five transactions and the resulting container
versions.

Tr # Array Updates
(1D, datatype=int, 5 elements) KV Store Updates

5 5, 5, 5, 5, 5 [A, 5] [B, 5]

4 _, _, _, _, _ [B, 4]

3 _, _, 3, 3, 3 del[A]

2 _, 2, 2, _, _ [B, 2]

1 1, 1, 1, 1, 1 [A, 1]

Table	 1:	 IOD	 object	 updates	 in	 five	 transactions	

CV # Array Data Needed Updates KV Store Data Needed Updates

1 1, 1, 1, 1, 1 1 [A, 1] 1

2 1, 2, 2, 1, 1 1, 2 [A, 1] [B, 2] 1, 2

3 1, 2, 3, 3, 3 1, 2, 3 [B, 2] 1, 2, 3

4 1, 2, 3, 3, 3 1, 2, 3 [B, 4] 3, 4

5 5, 5, 5, 5, 5 5 [A, 5] [B, 5] 5

Table	 2:	 IOD	 object	 contents	 in	 five	 container	 versions	 and	 updates	 needed	 to	 read	 each	 version	

Table 1 illustrates updates for two IOD objects (Array and KV Store) added to five transactions.
For the Array, commas separate cell values, and _’s are used to indicate no updates to a given
cell in a given transaction. For the KV Store, the nomenclature is [key,value], with del[key]
meaning a key (and its value) is deleted from the store.

Object updates are logged to the BB by IOD as they are added to a transaction. The
transactions are shown in reverse numeric order in Table 1 because updates in later
transactions are effectively “layered” onto earlier committed transactions.

Table 2 shows the data values in the two IOD objects (Array and KV Store) at each CV after all
five transactions have been committed. The table also indicates the updates (identified by
transaction number) that are needed to access the object data at a given CV when the data is
physically arranged in the original log format.

A CV can be persisted to DAOS in an atomic commit from IOD to DAOS, triggered by an IOD-
user request. Every CV need not be persisted. When a CV is persisted, IOD figures out the
delta (the data that has changed) since the last persisted CV, and transfers only that data to

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 5	 	 	 	 	 02/25/2014	

DAOS; it does not write the complete container contents for the CV being persisted, nor does it
write the individual updates for every CV since the last persisted CV.

For example, referring to Table 1, say CV 1 has already been persisted and the user
requests that CV 3 be persisted. Conceptually, IOD will transfer the delta
{A:“_,2,3,3,3”, KV:del[A], [B, 2]} to DAOS and atomically commit the changes.

4.2 Replicate	 Readable	 Data	 from	 DAOS	 to	 BB	
The IOD API iod_obj_fetch is used to make a replica of data that is stored on DAOS in the BB.
This API takes an object handle, a TID indicating the CV, and parameters that control which
data in the object will be replicated and how the replicated data will be laid out in the BB.

In Quarter 7, IOD will support fetching of complete objects. In Quarter 8, support for object
subranges, and mapping of the replicated data to different layouts on the IONs will be added for
Array, KV Store, and Blob objects.

When iod_obj_fetch is called to create a replica, IOD returns a special Tagged TID that must be
used to read data from the replica, or to evict the replica from the BB. The Tagged TID has the
same type as IOD’s TID. But, it contains not only the TID value that was passed into the call
(the value that indicates the desired CV), but also a tag that identifies the replica to IOD. Every
Tagged TID associated with the same container is unique.

4.3 Possible	 Modifications	 for	 Production	 Version	
IOD’s current prototype implementation, where a Tagged TID is returned when an object (or
sub-object) is prefetched, has a number of limitations that recently came to light.

The Tagged TID mixes the specification of “which copy” of a subset of the container data with
the specification of which version of the container contents are being requested. From a user
perspective, the different dimensions (which copy on storage/which version in the evolution of
the container contents) make it hard to manage the TIDs consistently. Having the ability to
reference “this copy of data” separate from “as of this version of the container” would be
preferred.

In addition, the current Tagged TIDs do not allow the HDF5 layer (or other users of IOD) to
manipulate multiple related IOD objects together. The Tagged TID is assigned per-fetch, and
the fetch granularity is per object (or sub-object). This is especially challenging when trying to
take advantage of the BB as part of the cache hierarchy. The desire to manipulate multiple IOD
objects as a whole will be discussed in more detail in the HDF5 sections of this document.

In general, it seems that the identifiers for “which CV”, “which Object”, “which Replica” might be
specified and tracked separately. This would allow triplets of the three to specify a particular
copy of data for a particular object at a particular container version. Or, to use wildcards for one
or more components (e.g., [CV=x, Object=*, Replica=y] --> evict all the data in the BB that is
in CV x and that was fetched together); [CV=*, Object=z, Replica = *] --> evict all the data in
the BB for Object z, regardless of the version or replica it is part of.) Along these lines, the
“which Replica” could be passed in by the caller, allowing a way to create a batch of related
prefetches across multiple objects that could later be evicted together.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 6	 	 	 	 	 02/25/2014	

5 Reading	 Data:	 IOD	
The IOD APIs iod_array_read, iod_array_read_list, iod_kv_get_value, iod_blob_read,
iod_blob_read_list, and iod_blob_append read data from Array, KV Store, and Blob objects.
Additional IOD APIs not enumerated here also perform read operations to retrieve information
about the Array, about the number of entries in a KV store, and so on.

All IOD APIs that read data from the BB take a container handle, a TID (or Tagged TID), one or
more object handles, an indication of “where” the data can be found in the object (the Array
cell(s), the key(s), the byte range(s)), and where in memory the read data should be stored.

5.1 Reading	 with	 a	 Tagged	 TID	
If a Tagged TID is passed to the IOD call, the referenced replica will be used to read the data. If
all of the data requested is not available from the replica, IOD will retrieve the remaining data
from DAOS.

When IOD reads data from DAOS, it passes through the memory of the ION on its way to the
memory of the CN, but does not get copied into the BB.

5.2 Reading	 with	 a	 TID	
If a (non-tagged) TID is passed to the IOD call, IOD will retrieve data from the appropriate
updates, if they are still in the BB, and will retrieve the remaining data from DAOS.

When IOD reads data from DAOS, it passes through the memory of the ION on its way to the
memory of the CN, but does not get copied into the BB.

5.3 Possible	 Modifications	 for	 Production	 Version	
Allowing the user to specify the replica to read gives considerable power, but also imposes a
burden. In a production version, allowing the user to specify the CV and object data desired,
and having IOD find the closest copy of the data – either in the BB or on DAOS – would be
preferred. The user could still specify the replica, but would not have to. If the data requested
was not all in available from a specified replica, IOD would look for it first elsewhere in the BB
and then in DAOS.

6 Removing	 Data	 from	 the	 Burst	 Buffer:	 IOD	
The IOD API iod_obj_purge removes data from the BB, freeing the space to be used for other
data. This call takes an object handle and a TID (or Tagged TID).

Although the IOD API uses the term “purge”, the team later decided to call this operation evict
in the documentation and in the HDF5 API, and that is the term we use here. Regardless of the
term used, the resulting action is that data is removed from the BB and no copy of the data is
made before it is removed.

6.1 Evicting	 with	 a	 Tagged	 TID	
If a Tagged TID is passed to the call, the referenced replica for the object (or sub-object) will be
evicted from the BB.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 7	 	 	 	 	 02/25/2014	

6.2 Evicting	 with	 a	 TID	
A (non-tagged) TID must always be persisted before it can be evicted. If a (non-tagged) TID is
passed, and the evict would not violate the guarantees about the readability of CVs with open
RCs and readability of the highest CV, IOD will evict all updates for the object with update
numbers less than or equal to the transaction number indicated by the TID.

If the user tries to evict an object that violates the readability guarantees, the call to
iod_obj_purge will fail.

The reader is directed to the IOD Design Document for a more complete description of the evict
guidelines used by IOD.

6.3 Evicting	 Updates	 of	 Aborted	 Transactions	
When a transaction is aborted—either by the user or by the library in response to transaction
dependencies—IOD automatically evicts updates in the BB associated with the aborted
transaction. In addition, IOD will not log any updates for the aborted transaction that arrive
after the abort.

6.4 Possible	 Modifications	 for	 Production	 Version	
With the exception of clean-up after an aborted transaction, IOD leaves Burst Buffer space
management entirely under the control of user-initiated calls in the EFF prototype
implementation. While there are certainly times when the ability to manage the space at a per-
update / per-object granularity can have enormous benefit, having some assistance from IOD in
other cases would make it easier for no-longer-needed data to be removed from the BB.

Higher-level libraries and applications will not always have direct access to all of the object
handles that have been created/opened, and the current IOD API requires an object be open in
order for data in the object to be evicted from the BB. In addition, there are time when the
ability to specify a “larger granularity” of data to evict would be helpful

For example:

• “Evict all data for all objects at this CV”
o Useful when a CV has been persisted and there is no expectation that any

data will be read from it, as in a checkpoint.
o Useful when the higher levels don’t (or can’t) track each object and/or when

higher level isn’t designed to hold objects open until the data in the BB for
the object is evicted. (e.g., VPIC)

• “Evict all data for all objects in this container”
o Useful at file close

• “Evict all data for this object at this CV”
o Useful when you are done analyzing a timestep and you want to get rid of

multiple replicas.
While not possible with the current prefetch/replica implementation, having the ability to
prefetch data for multiple objects at a given CV as a batch, and having a single replica ID
associated with that batch that could be used to evict all of the objects at once would be useful
in workflows that incrementally step through data held in multiple related objects.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 8	 	 	 	 	 02/25/2014	

Another observation is that the use cases and behaviors for the eviction of updates (data written
to the container in transactions) and replicas (copies of data) seem quite different. In the case
of eviction of updates, you are removing data from the BB that resulted from write operations,
and the log structure of the updates means care must be taken not to evict data that is needed
to satisfy read operations for later CVs. In the case of the replicas, you are removing data from
the BB that was there to optimize read operations, and the likelihood that you want to
prefetch/evict batches of data from multiple objects in a coordinated fashion is high. Perhaps
the management of these two types of BB data should be done with different APIs to reflect the
underlying fact that one is clearing out “bursty write data” and the other “cached read data”.

7 Mapping	 of	 HDF5	 Objects	 to	 IOD	 Objects	
At the HDF5 layer of the stack, the primary data storage object types are H5Group, H5Dataset,
H5Map, H5NamedDatatype, and H5Attribute.

As discussed in the document HDF5 Data in IOD Containers Layout Specification, most of the
HDF5 objects are mapped to multiple IOD objects by the HDF5 to IOD VOL. This mapping is
summarized in Table 3.

The user of HDF5 makes calls to the HDF5 API that operation on HDF5 objects, and the HDF5
IOD VOL layer translates those operations into IOD API calls on IOD objects. Our discussions in
this document will focus primarily on the H5Dataset and H5Map objects.

HDF5 Object Primary IOD Object Auxiliary IOD Objects

H5Group KV
KV (metadata)
KV(Attributes)
Arrays (data for attributes)

H5Dataset Array

KV (metadata)
KV(Attributes)
Arrays (data for Attributes)
Blobs, when variable length data in cells

H5Map KV
KV (metadata)
Array (Attributes)
Arrays (data for Attributes)

H5NamedDatatype Blob
KV (metadata)
Array (Attributes)
Arrays (data for Attributes)

H5Attribute Array
No auxiliary IOD Objects;
H5Attributes are always associated with another
H5Object or with the H5File (container)

Table	 3:	 Mapping	 of	 HDF5	 Objects	 to	 IOD	 Objects	

8 Putting	 Data	 into	 the	 Burst	 Buffer:	 HDF5	
As was the case at the IOD level, there are two primary HDF5-user-initiated ways for data to be
written to the BB.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 9	 	 	 	 	 02/25/2014	

1. Add HDF5 object updates to a transaction.

• HDF5 objects can be Groups, Datasets, Maps, NamedDatatypes, and
Attributes.

• Updates to the HDF5 objects are translated into updates to the IOD Array, KV
Store, and Blob objects that are used to instantiate the HDF5 objects on the
EFF stack.

2. Replicate some or all of the readable data in an HDF5 object from DAOS to the BB.

• This is a prefetch.

8.1 Add	 Updates	 to	 a	 Transaction	
The HDF5 APIs H5Dwrite_FF and H5Mset_FF respectively add H5Dataset and H5Map object
updates to a transaction. Please refer to the User’s Guide to FastForward Features in HDF5
document, updated quarterly, for details on these APIs and others that operate on the complete
set of HDF5 objects with the EFF transactional semantics.

All HDF5 APIs that add updates to a transaction take an object ID, a transaction ID, and other
parameters conveying the details of the update. The HDF5 operations made by an HDF5 user
are translated by the HDF5-IOD VOL into IOD calls (see Section 4.1) on the related IOD objects.

8.2 Replicate	 Readable	 Data	
The HDF5 API offers prefetch commands corresponding to each of the HDF5 object types.

At the HDF5 level, a user must have a read context (RC) on a CV in order to read or prefetch
data from HDF5 Objects, because data is read from committed transactions and the RC
guarantees that consistent data can be read for all objects in the container at the CV. In the
HDF5 API, a read context id (rcntxt_id) is one of the parameters in every API used to read data
from the H5File (the container). The rcntxt_id parameter is an input parameter–there is no
expectation that it will be modified by the calls that access readable data.

The IOD fetch design and implementation delivered in the prototype phase of the EFF project
presents some problems for HDF5, primarily due to its use of a Tagged TID with replicated
object data. These problems were not noticed when the IOD API was proposed, but became
more apparent as design and implementation at the HDF5 level progressed.

When the HDF5-IOD VOL maps an HDF5 Object to multiple IOD Objects, as shown in Table 3,
all of the IOD Objects are passed the same TID, obtained from the rcntxt_id. Since the IOD API
returns a unique Tagged TID for each IOD object that is fetched, there would be multiple
Tagged TIDs to track for each HDF5 Object (except H5Attributes).

For the prototype phase, only the Primary IOD Object will be prefetched and tracked when the
HDF5 user issues a prefetch request for an HDF5 Object. Some of the possible IOD-level
modifications that were outlined in earlier sections would help address this restriction at the
HDF5 level, and could be implemented as the EFF I/O stack moves from prototype to
production.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 10	 	 	 	 	 02/25/2014	

At the HDF5 level, we treat the Tagged TID returned by IOD as a Replica ID, and do not modify
the rcntxt_id parameter that is passed in the prefetch call. The keeps the notions of “container
version” and “copy of data” separate.

The HDF5 APIs to prefetch H5Datasets, H5Groups, and H5Maps are outlined in the following
sections. There are also prefetch APIs for H5NamedDatatypes and H5Attributes. Support for
prefetch of H5Attributes will likely not be done in the prototype phase of the EFF project, as the
data size is typically small, and any prefetched Attribute can’t easily be linked back to the
H5Object the Attribute is associated with.

8.2.1 H5Dataset	 prefetch	
herr_t H5Dprefetch_ff (hid_t dset_id, hid_t rcntxt_id, hrep_t *replica_id, hid_t dapl_id,
hid_t es_id)

Prefetch an H5Dataset or subset of an H5Dataset at the container version associated with the
rcntxt_id.

Only the primary IOD Array object associated with the H5Dataset will be prefetched; auxiliary
IOD objects (including Blobs that hold VL data) will not be.

replica_id is set to indicate where the pre-fetched Array data can be found and is passed to
subsequent read and evict calls.

dapl_id is a data access property list identifier. It will be used to specify subsets (hyperslab
selection) and layout of the fetched data on the BBs.

Q7: Prefetch full objects with default layout
Q8: Prefetch subsets; ability to control layout, at the minimum, (1) the default layout and (2)
“put it all on ‘my’ BB”

8.2.1.1 Possible	 Modifications	 for	 Production	 Version	

Features that could be valuable, but that may not (or will not) be possible in the prototype
phase of the project:

Allow the user to specify the replica_id as an input parameter to the call rather than having IOD
assign the ID – this would allow the user to prefetch data for multiple objects as a “batch” and
later to evict the data together.

dapl_id is a data access property list identifier.
Properties to allow:

1. Prefetch attributes along with dataset. [Default would be attributes aren’t
prefetched]

2. For VL datatype, don’t prefetch the IOD Blob object(s) that hold the VL data.
[Default would be to prefetch the blobs]

3. Indicate the metadata associated with the datatype (datatype indicator, byte order,
dimensions, etc.), should not be prefetched [Default would be to prefetch it]

4. Choose “first-index-order” or “last-index-order” organization on BB.
5. Place data on the ION that the CN issuing the prefetch is connected to. [planned in

Q8]
6. Round-robin layout of the data with a given stripe per ION, with stripe size

expressed in terms of # of cells [may be possible in Q8]

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 11	 	 	 	 	 02/25/2014	

8.2.2 H5Group	 prefetch	
herr_t H5Gprefetch_ff (hid_t group_id, hid_t rcntxt_id, hrep_t *replica_id, hid_t gapl_id,
hid_t es_id)

Prefetch an H5Group at the container version associated with the rcntxt_id.

Only the Primary IOD KV object associated with the H5Group will be prefetched; Auxiliary IOD
objects will not be.

replica_id is set to indicate where the pre-fetched KV data can be found and is passed to
subsequent evict calls. [Note: Since H5Group data is most frequently used in path traversal,
and since there is no way to indicate which replica to read when traversing a path, the
prefetched H5Group data will not be accessed in the prototype phase of the project.]

gapl_id is a group access property list identifier. It will not be used in the prototype phase of
the EFF project.

Q7: Prefetch full objects with default layout.
Q8: No additional functionality.

8.2.2.1 Possible	 Modifications	 for	 Production	 Version	

Features that could be valuable, but that will not be possible in the prototype phase of the
project:

Allow the user to specify the replica_id as an input parameter to the call rather than having IOD
assign the ID – this would allow the user to prefetch data for multiple objects as a “batch” and
later to evict the data together.

gapl_id is a group access property list identifier.

Properties to allow:
1. Prefetch attributes along with group.
2. Specify one sub-range of keys (link names) to fetch.
3. Specify multiple sub-ranges of keys (link names) to fetch.
4. Place all the fetched data on the ION that the CN issuing the prefetch is connected

to.
5. Specify placement of individual sub-ranges of keys (link names).
6. Prefetch the H5Group and all its members and all their attributes.
7. Prefetch the H5Group and all its descendants.

8.2.3 H5Map	 prefetch	
herr_t H5Mprefetch_ff (hid_t map_id, hid_t rcntxt_id, hrep_t *replica_id, hid_t mapl_id,
hid_t es_id)

Prefetch an H5Map or subset of an H5Map at the container version associated with the rcntxt_id.

Only the Primary IOD KV object associated with the H5Map will be prefetched; Auxiliary IOD
objects will not be.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 12	 	 	 	 	 02/25/2014	

replica_id is set to indicate where the pre-fetched KV data can be found and is passed to
subsequent read and evict calls.

mapl_id is a data access property list identifier. It will be used to specify subsets (key ranges)
and layout of the fetched data on the BBs.

Q7: Prefetch full objects with default layout
Q8: Prefetch subset of keys; ability to control layout, at the minimum, (1) the default layout and
(2) “put it all on ‘my’ BB”

8.2.3.1 Possible	 Modifications	 for	 Production	 Version	

Features that could be valuable, but that may not or will not be possible in the prototype phase
of the project:

Allow the user to specify the replica_id as an input parameter to the call rather than having IOD
assign the ID – this would allow the user to prefetch data for multiple objects as a “batch” and
later to evict the data together.

mapl_id is a map access property list identifier.

Properties to allow:

1. Prefetch attributes along with map
2. Specify multiple sub-ranges of keys to fetch
3. Place all the fetched data on the ION that the CN issuing the prefetch is connected

to. [planned in Q8]
4. Specify placement of individual sub-ranges of keys.

8.2.4 Prefetch	 Container	 Version	 –	 Possible	 Addition	 for	 Production	 Version	
There is no easy way to prefetch all H5Objects in a container at a given container version in the
prototype EFF HDF5 APIs. This capability could be useful when reading all data in a container
that has just been opened for read when all the data fits into the BB. For example, when
restarting a simulation, especially if the data could be prefetched by a job scheduler.

HDF5 would need additional support from IOD to offer such a capability.

9 Reading	 Data:	 HDF5	
The HDF5 APIs H5Dread_FF reads H5Dataset object data. Please refer to the User’s Guide to
FastForward Features in HDF5 document, updated quarterly, for details on this API and others
that perform read operations on the complete set of HDF5 objects with the EFF read context
semantics.

All HDF5 APIs that perform read operations take an object ID, an RC ID, and other parameters
conveying the details of the read. The HDF5 calls made by an HDF5 user are translated by the
HDF5-IOD VOL into IOD calls (see Section 4.1) on the related IOD objects.

The H5Dread_ff API signature is shown as an example:

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 13	 	 	 	 	 02/25/2014	

herr_t H5Dread_ff(hid_t dset_id, hid_t mem_type_id, hid_t mem_space_id, hid_t
file_space_id, hid_t dxpl_id, void * buf, hid_t rcntxt_id,
hid_t es_id)

For the prototype EFF deliverables, in order to read from a replica in the BB, the user will have
to pass the replica_id that was returned in the H5Dprefetch_ff call as one of the properties
in the data transfer property list, dxpl_id. If all of the requested data is not in that replica,
IOD will read the remaining data from DAOS.

If no replica is specified in the property list, IOD will look in the BB for the requested data in the
log-format transaction updates for the specified CV, and any data that is not found there will be
read from DAOS.

Similar behavior will occur when reading other H5Object types.

9.1 Possible	 Modifications	 for	 Production	 Version	
If IOD could find the “closest data” for a read request as discussed in Section 5.3, the user
would never have to specify a replica id in order to access data that had been prefetched into
the BB. While replica IDs could still be set if desired, they would not be required.

The management of multiple prefetched IOD objects for a single HDF5 object will also need
attention. For example, if the cell values are VL, there will be an IOD Object for every cell in
the H5Dataset. Those need to be prefetched and “findable” as well as the Array cell values that
hold the Blob object IDs. If IOD can ‘find the best’ without having to have the replica ID
specified, both the necessary Blobs and Arrays should be found in the BB when requested by the
HDF5-IOD VOL, on behalf of the HDF5 user.

10 Removing	 Data	 from	 the	 Burst	 Buffer:	 HDF5	
The HDF5 APIs layer on top of IOD’s iod_obj_purge to evict data from the BB. At the HDF5
level, there are H5Xevict_ff calls defined for each of the HD5Objects (H5Group, H5Dataset,
H5Map, H5NamedDatatype, and H5Attribute), where the “X” would be “G”, “D”, “M”, “D”, or
“A”, depending on the type of object being evicted.

The data being evicted from the BB will be resident because of either (1) updates to a
transaction or (2) a prefetch. At the HDF5 level, when evicting prefetched data, the user must
pass the replica_id returned by the prefetch call in order to evict the replica. If no
replica_id is passed, the non-tagged TID will be passed on to the IOD purge call and the
logged updates will be evicted.

The HDF5 APIs to evict H5Datasets, H5Groups, and H5Maps are outlined in the following
sections. There will also be evict calls for H5NamedDatatypes and H5Attributes, but those are
not shown.

10.1 H5Dataset	 evict	
herr_t H5Devict_ff (hid_t dset_id, uint64_t container_version, hid_t dapl_id, hid_t es_id)

Evict data associated with an H5Dataset from the BB.

dapl_id is an dataset access property list identifier.

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 14	 	 	 	 	 02/25/2014	

• If there is a replica_id property in the property list, the Primary IOD Array Object
(or sub-object) in the indicated replica will be evicted.

• If there is no replica_id property in the property list, the logged updates for the
given CV and all lower CVs for the Primary and Auxiliary IOD objects associated with
the H5Dataset object will be evicted, according to the IOD eviction rules for non-
tagged TIDs.

Q7: Full functionality as described.

10.2 H5Group	 evict	 	
herr_t H5Gevict_ff(hid_t group_id, uint64_t container_version, hid_t gapl_id, hid_t es_id)

Evict data associated with an H5Group from the BB.

gapl_id is a group access property list identifier.
• If there is a replica_id property in the property list, the Primary IOD KV Object (or

sub-object) in the indicated replica will be evicted.
• If there is no replica_id property in the property list, the logged updates for the

given CV and all lower CVs for the Primary and Auxiliary IOD objects associated with
the H5Group object will be evicted, according to the IOD eviction rules for non-
tagged TIDs.

Q7: Full functionality as described.

10.3 H5Map	 evict	 	
herr_t H5Mevict_ff(hid_t map_id, uint64_t container_version, hid_t mapl_id, hid_t es_id)

Evict data associated with an H5Map from the BB.

mapl_id is a map access property list identifier.
• If there is a replica_id property in the property list, the Primary IOD KV Object (or

sub-object) in the indicated replica will be evicted.
• If there is no replica_id property in the property list, the logged updates for the

given CV and all lower CVs for the Primary and Auxiliary IOD objects associated with
the H5Map object will be evicted, according to the IOD eviction rules for non-tagged
TIDs.

Q7: Full functionality as described.

10.4 Possible	 Additions	 for	 Production	 Version	
As more functionality is added to the prefetch capabilities, the evict capabilities will need to be
expanded as well. For example, if the Auxiliary IOD Objects are prefetched with the Primary
IOD Object (presumably sharing the same replica_id), the Auxiliary Objects would need to be
evicted – or their eviction controlled by property settings.

For H5Groups, support eviction of a Group and its members or a Group and its descendants.

In general, provide APIs that allow the user to evict data from the BB at a ‘larger’ granularity
than the current (object or replica / container version). For example, a new evict call might take
the triple parameters (object ID, container version, replica ID), and allow wildcards for some of

Use	 or	 disclosure	 of	 data	 contained	 on	 this	 sheet	 is	 subject	 to	 the	 restriction	 on	 the	 title	 page	 of	 this	 document.	
Copyright	 ©	 The	 HDF	 Group,	 2014.	 All	 rights	 reserved	

B599860-‐SS	 	 	 	 	 	 15	 	 	 	 	 02/25/2014	

the parameters. Or, “match properties” for CV (LE, EXACT, GT, ALL, NE, …). This may make
more sense for replicas than for logged updates – at least for some of the properties.

Evict “batch” of data that was prefetched together and has same replica ID.

Support the ability to pin some data in BB and evict the unpinned data.

