
i

LLNS Subcontract No. B599860

Subcontractor Name Intel Federal LLC

Subcontractor Address
2200 Mission College Blvd.

Santa Clara, CA 95052

NOTICE: THIS MANUSCRIPT HAS BEEN AUTHORED BY THE HDF GROUP UNDER INTEL’S SUBCONTRACT

WITH LAWRENCE LIVERMORE NATIONAL SECURITY, LLC WHO IS THE OPERATOR AND MANAGER OF

LAWRENCE LIVERMORE NATIONAL LABORATORY UNDER CONTRACT NO. DE-AC52-07NA27344 WITH THE
U.S. DEPARTMENT OF ENERGY. THE UNITED STATES GOVERNMENT RETAINS AND THE PUBLISHER, BY

ACCEPTING THE ARTICLE OF PUBLICATION, ACKNOWLEDGES THAT THE UNITED STATES GOVERNMENT

RETAINS A NON-EXCLUSIVE, PAID-UP, IRREVOCABLE, WORLD-WIDE LICENSE TO PUBLISH OR
REPRODUCE THE PUBLISHED FORM OF THIS MANUSCRIPT, OR ALLOW OTHERS TO DO SO, FOR UNITED

STATES GOVERNMENT PURPOSES. THE VIEWS AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO

NOT NECESSARILY REFLECT THOSE OF THE UNITED STATES GOVERNMENT OR LAWRENCE LIVERMORE
NATIONAL SECURITY, LLC.

Copyright © 2013 The HDF Group

Date:
September 29, 2013

Delivered as part of
Milestones 5.6 & 5.7

HDF5 Data in IOD Containers Layout
Specification

FOR EXTREME-SCALE COMPUTING
RESEARCH AND DEVELOPMENT (FAST
FORWARD) STORAGE AND I/O

Table of Contents

Introduction ... 1

Definitions ... 1

Background .. 1

The HDF5 to IOD Object Mapping .. 2
1.1 HDF5 File -> IOD Container .. 3
1.2 HDF5 Group -> IOD Key Value Store Object .. 4
1.3 HDF5 Dataset -> IOD Array Object ... 5

Fixed Length Data ..5
Variable Length Data ...6

1.4 HDF5 Named Datatypes ... 7
1.5 HDF5 Attributes .. 8
1.6 HDF5 Maps ... 9
1.7 Metadata format..10

Open Issues...10

Risks & Unknowns ..10

Revision History

Date Revision History Author

Mar. 21, 2013 1.0 First Draft Mohamad Chaarawi,

Quincey Koziol – The

HDF Group

Mar. 21, 2013 1.1 More details on file format

 Submitted to DOE - M3.3

Mohamad Chaarawi,

Quincey Koziol – The

HDF Group

June 17, 2013 2.0 Added layout spec for Named

Datatypes.

 Added layout spec for Attributes.
 Submitted to DOE – M4.2

Mohamad Chaarawi,

Quincey Koziol – The

HDF Group

September
25, 2013

3.0 Revamped the entire document
 Removed Old picture and created

new ones through MW itself. This

will make modification to

graphics much easier.
 Added Maps.

 Added VL datatypes.

Mohamad Chaarawi –
The HDF Group

September

29, 2013

3.1 Changed title Ruth Aydt – The HDF

Group

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group

B599860-SS 1 09/29/13

Introduction
The document details how HDF5 File, Group, Dataset, and Attribute objects map to IOD
objects. The application will call the HDF5 library while running on the system’s compute

nodes (CNs). Using the VOL architecture, the IOD VOL plugin will use a function shipper

(FS) to forward the VOL calls to a server component running on the I/O nodes (IONs). At

that point, the VOL calls are translated into I/O Dispatcher (IOD) API calls and executed
at the IONs. The translation includes mapping HDF5 object into IOD objects. The IOD will

be responsible for storing the data on distributed storage using DAOS.

Definitions

CN = Compute Node

EFF = Exascale FastForward

FS = Function Shipper

IOD = I/O Dispatcher

ION = I/O Node

VOL = Virtual Object Layer

Background
The HDF5 VOL intercepts all HDF5 calls that would potentially touch the storage and
routes them to an internal or user-developed plugin. This allows for HDF5 objects to be

stored in different file formats or storage abstractions that are hidden from the

application, allowing the application to continue using the same HDF5 API and data model

while benefiting from new storage methods and architectures.

The overall architecture of the HDF5 library with the addition of an IOD VOL plugin looks
like this:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group

B599860-SS 2 09/29/13

The HDF5 to IOD Object Mapping
The EFF storage software stack contains several components essential to the proper
functioning and performance of the application I/O. The scope of this document is from

the HDF5 library to the high level IOD API routines. We will not discuss here how IOD

implements its API internally or its interaction with the DAOS library and underlying

distributed storage.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group

B599860-SS 3 09/29/13

1.1 HDF5 File -> IOD Container

An HDF5 file is mapped to an IOD container. The container is created/opened by the file

name. In addition to that, the HDF5 library specifies that each file contains a root group.

The root group always has a predefined ID (for now we will make that ID be 0). From

that root ID, one can reach any object in the container by traversing the KV entries in the
group KV store objects, retrieving the object names and corresponding IOD IDs of each

group to reach the final object.

Since the root object is an actual HDF5 group, it will be stored in IOD the same way we

store any group as described in 1.1. The following diagram shows an HDF5 file with a
group /G1 under the root group, and an attribute “attribute1” attached to the file:

Container with name file_name

The creation property list can be created by calling H5Pdecode() on the binary buffer that

is stored in the “object_create_plist” Key in the metadata KV store. This also applies to all

creation property lists for all objects that are described next.

The indexes stored in the metadata KV for the file indicate the starting index for IDs that
the client should use to generate IOD IDs for KV, Array, and BLOB objects.

KV Store with:

ID = mdkv_id;

Scratch Pad: NULL

<”object_create_plist”, plist_buf>

<”kv_ids_index”, index>

<”array_ids_index”, index>

<”blob_ids_index”, index>

 …

Root KV Store with:

ID = x;
Scratch Pad:

{mdkv_id, attrkv_id,

UNDEFINED_ID,

UNDEFINED_ID}

<”G1”, G1_iod_id>

…

KV Store with:

ID = attrkv_id;

Scratch Pad: NULL

<”attribute1”, attribute_iod_id>

…

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group

B599860-SS 4 09/29/13

1.2 HDF5 Group -> IOD Key Value Store Object

An HDF5 group maps to a IOD KV store object. To access the KV store object, one must

have its IOD ID. From this ID, one can open that object and retrieve/add/update the KV

pairs in that KV store object.

The KV pairs in the KV object describe links to the child objects that are linked to from

this group. The key is a string that contains the link name and the value associated with
that key contains that object’s IOD ID. For example, a group “G1” that is a parent of

dataset “G1/D1” and another group “G1/G2” will contain the following KV pairs:

<”D1”, D1_iod_id>

<”G2”, G2_iod_id>

In addition to the “links” to its children, an HDF5 group has its own metadata associated

with it that it stored in the metadata KV. It includes the creation properties, the HDF type

for the object (H5I_GROUP), and the number of links that point to this group. Attribute

objects can be attached to an HDF5 group, all which need to be stored and retrieved from
the file. To be able to store that information, we will use the scratch pad field that IOD

provides for each object. In this 32-byte scratch pad we will store two IOD IDs for

auxiliary KV store objects, KV1 and KV2, that we create to store metadata and attribute

information for the object, respectively. (KV1’s ID is stored in the upper 16 byte of the
scratch pad and KV2’s ID in the lower 16 bytes).

Here is an example that summarizes the mapping of HDF5 group with ID G1_iod_id with

two child objects and three attribute objects in IOD:

KV Store with:

ID = mdkv_id;

Scratch Pad: NULL

<”object_create_plist”, plist_buf>

<”object_type”, H5I_GROUP>

<”object_link_count”, count>

 …

Group KV Store with:

ID = G1_iod_id;
Scratch Pad:

{mdkv_id, attrkv_id,

UNDEFINED_ID,

UNDEFINED_ID}

<”D1”, D1_iod_id>

<”G2”, G2_iod_id>

…

KV Store with:
ID = attrkv_id;

Scratch Pad: NULL

<”attribute1”, attribute_iod_id>

<”attribute2”, attribute_iod_id>

<”attribute3”, attribute_iod_id>

…

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group

B599860-SS 5 09/29/13

1.3 HDF5 Dataset -> IOD Array Object

An HDF5 dataset is stored as an IOD array object. The IOD array dimensions are

determined from the HDF5 dataspace specified by the application. Similarly, the size of

each IOD array element is determined by the HDF5 datatype. The IOD array creation

operation allows us to chunk a dataset in the same way that HDF5 allows the application

to store a chunked dataset.

Similarly to groups, HDF5 stores metadata associated with datasets (i.e. the datatype,

dataspace, etc…) and allows users to attach attributes to a dataset. This is handled again

with an IOD scratch pad field in the array object that contains IDs for an auxiliary

metadata KV store object and attribute KV store object for each dataset, stored in the
same order as for the group scratch pad information. Here is a diagram that describes a

dataset in IOD with attribute “attribute1”:

Array with:
ID = did;

Scratch pad =

{mdkv_id, attrkv_id,

UNDEFINED_ID,
UNDEFINED_ID}

The datatype and dataspace objects can be retrieved from the binary buffers stored in

the metadata KV store by calling H5Tdecode() and H5Sdecode() respectively.

Fixed Length Data

Datasets that are created with element types that are of fixed length (integers, floats,

compound types of fixed length types, etc…) will have their data elements stored directly
in the cells of the IOD array object.

For example, if a dataset has been created with an integer type, the following figure

shows how the IOD array that represents the dataset in IOD might look like:

KV Store with:

ID = mdkv_id;

Scratch Pad: NULL

<”object_create_plist”, plist_buf>

<”object_type”, H5I_DATASET>

<”object_link_count”, count>

<”object_datatype”, dtype_buf>

<”object_dataspace”, dspace_buf>

 …

KV Store with:

ID = attrkv_id;
Scratch Pad: NULL

<”attribute1”, attribute_iod_id>

…

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group

B599860-SS 6 09/29/13

0 25 6 8

7 90 26 78

87 676 87 56

46 67 87 56

Variable Length Data

The HDF5 library allows users to specify that elements of datasets be of variable length.

This can be done by passing a VL datatype to the dataset creation operation. Since IOD
does not have the capability to store variable length data in array cells, we instead create

a blob object for each cell that is written to the IOD array object. The BLOB

corresponding to every cell will hold the variable length data that was supposed to be

stored in the array cell originally.

For example, if a dataset has been created with a variable length string type, here is

what the representation in IOD might be:

BLOB_ID1 BLOB_ID2 BLOB_ID3 BLOB_ID4

BLOB_ID5 …

“Bla Bla”

“Triple Bla”

“HDF5 is Awesome”

“HDF5 is Great”

“HDF5 is Super”

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group

B599860-SS 7 09/29/13

1.4 HDF5 Named Datatypes

An HDF5 named datatype will be stored in IOD as a BLOB object. The BLOB will contain

the binary encoded form of the datatype that can be obtained by calling H5Tencode() on

the HDF5 datatype. Calling H5Tdecode() on that binary buffer will reconstruct the HDF5

datatype object.

Similarly to group and dataset objects, HDF5 stores metadata associated with named
datatypes and allows users to attach attributes to them. This is handled again with an

IOD scratch pad field in the array object that contains IDs for an auxiliary metadata KV

store object and attribute KV store object for each named datatype, stored in the same

order as for the group scratch pad information.

BLOB with:

ID = dtid;

Scratch pad =
{mdkv_id, attrkv_id,

UNDEFINED_ID,

UNDEFINED_ID}

dtype_buf

KV Store with:
ID = mdkv_id;

Scratch Pad: NULL

<”object_create_plist”, plist_buf>

<”object_type”, H5I_DATATYPE>

<”object_link_count”, count>

<” serialized_size”, dtype_size>

 …

KV Store with:
ID = attrkv_id;

Scratch Pad: NULL

<”attribute1”, attribute_iod_id>

…

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group

B599860-SS 8 09/29/13

1.5 HDF5 Attributes

An HDF5 attribute will be represented in IOD with an array object, the same as an HDF5

Dataset is stored. The IOD array dimensions are determined from the HDF5 dataspace

specified by the application. Similarly, the size of each IOD array element is determined

by the HDF5 datatype.

The metadata for an attribute is stored in an IOD scratch pad of the array object, which
will contain a metadata KV object. Since attributes cannot have other attributes attached

to them, the scratch pad will not include an attribute KV object for storing attribute IDs.

Here is a diagram that describes an attribute in IOD:

Array with:

ID = did;

Scratch pad =

{mdkv_id, attrkv_id,
UNDEFINED_ID,

UNDEFINED_ID}

Attributes always are created attached to an object (File, Group, Dataset, or Named

Datatype). Objects can have multiple attributes attached to them. As we have shown

previously, each type of those objects has a separate KV store for storing attributes in

their scratch pad. The Key will hold the attribute name which has to be unique for a

particular object (i.e. an object cannot have two attributes with the same name), and the
value will hold the IOD ID for the actual attribute object.

KV Store with:

ID = mdkv_id;
Scratch Pad: NULL

<”object_create_plist”, plist_buf>

<”object_type”, H5I_ATTRIBUTE>

<”object_datatype”, dtype_buf>

<”object_dataspace”, dspace_buf>

 …

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group

B599860-SS 9 09/29/13

1.6 HDF5 Maps

An HDF5 map object maps directly to an IOD KV store object. To access the KV store

object, one must have its IOD ID. From this ID, one can open that object and

retrieve/add/update the KV pairs in that KV store object.

The KV pairs in the KV object are identical to the KV pairs the application sets to the MAP

object.

In addition to the KV pairs, an HDF5 map has its own metadata associated with it that it

stores in the metadata KV. It includes the creation properties, the datatype for Keys and

Values, the HDF5 object type (H5I_MAP), and the number of links that point to this map.

Attribute objects can be attached to an HDF5 map, all which need to be stored and
retrieved from the file.

Here is an example that summarizes the mapping of an HDF5 map with ID M1_iod_id

with two KV pairs and an attribute object in IOD:

KV Store with:

ID = mdkv_id;

Scratch Pad: NULL

<”object_create_plist”, plist_buf>

<”object_type”, H5I_MAP>

<”object_link_count”, count>

<”key_type”, keytype_buf>

<”value_type”, valtype_buf>

…

KV Store with:
ID = M1_iod_id;

Scratch Pad:

{mdkv_id, attrkv_id,

UNDEFINED_ID,

UNDEFINED_ID}

<1, {1,2,3,4}>

<2, {8,9,10,11}>

…

KV Store with:

ID = attrkv_id;

Scratch Pad: NULL

<”attribute1”, attribute_iod_id>

…

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group

B599860-SS 10 09/29/13

1.7 Metadata format

The metadata stored in auxiliary KV objects for group and dataset objects is formatted in

the same manner as specified in the HDF5 File Format Specification:

http://www.hdfgroup.org/HDF5/doc/H5.format.html

Open Issues
The HDF5 library allows users to create VL datatypes nested within other VL datatypes.

Furthermore it allows VL datatypes to be part of compound and array datatypes. We will

not support such complex form of variable length data since their usage is not common in

user applications.

Risks & Unknowns
The IOD implementation is not completely specified yet and details described above may

still change if IOD’s features change in an incompatible way.

http://www.hdfgroup.org/HDF5/doc/H5.format.html

