

Date:
2013-09-26

High Level Design – POSIX Function
Shipping

FOR EXTREME-SCALE COMPUTING
RESEARCH AND DEVELOPMENT (FAST
FORWARD) STORAGE AND I/O

MILESTONE: 5.1 Initial POSIX Function
Shipping Demonstration

LLNS Subcontract No. B599860

Subcontractor Name Intel Federal LLC

Subcontractor Address 2200 Mission College Blvd.
Santa Clara, CA 95052

NOTICE: THIS MANUSCRIPT HAS BEEN AUTHORED BY INTEL UNDER ITS SUBCONTRACT WITH LAWRENCE
LIVERMORE NATIONAL SECURITY, LLC WHO IS THE OPERATOR AND MANAGER OF LAWRENCE LIVERMORE
NATIONAL LABORATORY UNDER CONTRACT NO. DE-AC52-07NA27344 WITH THE U.S. DEPARTMENT OF ENERGY.
THE UNITED STATES GOVERNMENT RETAINS AND THE PUBLISHER, BY ACCEPTING THE ARTICLE OF PUBLICATION,
ACKNOWLEDGES THAT THE UNITED STATES GOVERNMENT RETAINS A NON-EXCLUSIVE, PAID-UP, IRREVOCABLE,
WORLD-WIDE LICENSE TO PUBLISH OR REPRODUCE THE PUBLISHED FORM OF THIS MANUSCRIPT, OR ALLOW
OTHERS TO DO SO, FOR UNITED STATES GOVERNMENT PURPOSES. THE VIEWS AND OPINIONS OF AUTHORS
EXPRESSED HEREIN DO NOT NECESSARILY REFLECT THOSE OF THE UNITED STATES GOVERNMENT OR LAWRENCE
LIVERMORE NATIONAL SECURITY, LLC.

Copyright © 2013 The HDF Group

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.
Copyright 2013, The HDF Group

B599860-SS 2 2013-09-26 01/03/13

Table of Contents
Revision History .. 3

Introduction .. 4

Changes from Solution Architecture ... 4

Specification .. 4

Overview ... 4

POSIX I/O routines .. 5

API and Protocol Additions and Changes .. 5

POSIX I/O Support ... 5

Integration with HDF5 and other libraries .. 7

Open Issues ... 8

Risks & Unknowns ... 8

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.
Copyright 2013, The HDF Group

B599860-SS 3 2013-09-26 01/03/13

Revision History
Date Revision Author

2013-09-26 1.0 Jerome Soumagne, Quincey
Koziol, The HDF Group

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.
Copyright 2013, The HDF Group

B599860-SS 4 2013-09-26 01/03/13

Introduction
High performance I/O on exascale systems is not expected to be feasible without exporting

the I/O API from I/O nodes onto the compute nodes. One solution to address this problem is

to use a method called function shipping, also commonly called remote procedure call

(RPC). Making use of this method, I/O calls from the compute nodes are locally encoded

and sent through the network to the I/O nodes where they in turn get decoded and

executed—with the operation’s result being sent back to the issuing node. While the main

objective of the FastForward project is to realize I/O through the IOD and DAOS APIs, most

of the existing applications that make use of POSIX I/O must be able to run in this

environment and be able to remotely store and access data. This document describes the

implementation of the framework that allows POSIX I/O calls to be transparently redirected

to a remote function-shipping server.

Changes from Solution Architecture
None.

Specification

Overview
The framework is built on top of the existing function shipping framework, referred to as

Mercury. It is designed so that existing applications or libraries do not require any code

modifications to redirect POSIX I/O to a remote mercury server. As shown in the figure

below, applications and libraries can be dynamically linked to a mercury client library that

intercepts POSIX I/O calls and ships them through Mercury’s network abstraction layer to a

remote server; the server can in turn execute the POSIX I/O calls on its local file system.

POSIX I/O calls are shipped using transfer mechanisms defined by Mercury: metadata

transfer (small data arguments) and bulk data transfer (in case of large data arguments or

read/write calls).

Mercury

(Client)

Mercury

(Server)

File System

Application
/ Library

POSIX I/O POSIX I/O

Network (NA

transport)

POSIX I/O

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.
Copyright 2013, The HDF Group

B599860-SS 5 2013-09-26 01/03/13

POSIX I/O routines
POSIX I/O routines that are supported for this milestone are defined below:

access fdatasync mkdir truncate

chdir fpathconf mkfifo umask

chmod fstat mknod unlink

chown fsync open write

creat ftruncate pathconf

close getcwd read +LFS versions:

dup lchown readlink creat64

dup2 link rmdir ftruncate64

fchdir lockf stat lseek64

fchmod lseek symlink open64

fchown lstat sync etc.

Since applications and libraries can make use of large file support (LFS) offered by the Linux

kernel on file systems that support it and hence use 64-bit file offsets, support for 64

versions (e.g., open64, etc) of POSIX I/O routines has also been added.

API and Protocol Additions and Changes
Mercury itself has not been subject to any major modification and all the POSIX I/O calls

forwarded use the mechanisms and API that have been defined in the previous milestones.

Support for POSIX I/O is added by building a new package called Mercury POSIX, which

defines both a lightweight library and a server, built on top of the existing Mercury API.

Following sections describe the internal implementation of Mercury POSIX.

POSIX I/O Support
A large set of POSIX I/O routines is composed of relatively similar argument types, and

therefore the source code that is used to ship these routines and execute them onto the

remote server follows the same pattern. To improve maintainability and easily add support

for POSIX I/O calls, we make use of the Mercury Boost preprocessor macros that have been

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.
Copyright 2013, The HDF Group

B599860-SS 6 2013-09-26 01/03/13

defined in the previous milestone to build a new set of macros on top of them. The two

main macros that are internally used in this library to build on top of the Mercury interface

are the following:

/* Non-bulk routines */

MERCURY_POSIX_GEN_STUB(

 func_name, /* function name */

 ret_type, /* return type */

 in_types, /* sequence of input types */

 out_types /* sequence of output types */

)

/* Bulk routines */

MERCURY_POSIX_GEN_BULK_STUB(

 func_name, /* function name */

 ret_type, /* return type */

 in_types, /* sequence of input types */

 out_types, /* sequence of output types */

 bulk_read /* 1/0 if reading/writing bulk data */

)

Calling these macros generates: an input structure that can contain input parameters; an

encoding/decoding processor for the input parameters; an output structure that can contain

output parameters; an encoding/decoding processor for the output parameters (and return

value); a client stub routine that follows the POSIX I/O routine prototype and forwards the

call to a predefined server; a server stub routine that executes the POSIX I/O call when the

server receives the corresponding request.

For instance, adding support for the lseek routine which has the following prototype:

off_t lseek(int fildes, off_t offset, int whence);

Can be done by calling:

MERCURY_POSIX_GEN_STUB(

 lseek,

 hg_off_t,

 (hg_int32_t)(hg_off_t)(hg_int32_t),

)

where hg_off_t is an internally defined type that depends on the LFS support option and

maps to off_t or off64_t. Note that the order of the types must match the order defined in

the actual prototype for the function to be correctly called on the server.

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.
Copyright 2013, The HDF Group

B599860-SS 7 2013-09-26 01/03/13

The same happens for calls that make use of bulk data. In the case of the write call:

ssize_t write(int fildes, const void *buf, size_t nbyte);

Adding support for it can be done by calling the following macro:

MERCURY_POSIX_GEN_BULK_STUB(

 write,

 hg_ssize_t,

 (int32_t), ,

 MERCURY_GEN_TRUE

)

Bulk arguments (void *buf and size_t nbyte) are automatically included within this

macro, as they are internally replaced by an hg_bulk_t bulk handle. When the client and

server stubs are generated, void * and size_t parameters are automatically appended to

the list of parameters. This may of course not completely fit to the actual prototype in some

cases but a direct mapping of function parameters can be easily be done by calling an

intermediate routine or by defining another macro. It is worth noting that, in general,

automatic generation is limited for bulk data calls, in the sense that it may not be possible

to automatically generate everything from a macro, in which case client and server stubs

need to be manually written (although input/output structure as well as encoding/decoding

processor can still be automatically generated). Fortunately this only applies to a very

limited number of calls.

Integration with HDF5 and other libraries
As already mentioned, once the Mercury POSIX library is installed on a system, libraries and

existing tools that are dynamically linked can forward POSIX I/O to a remote server without

any code modification. However, environment variables need to be set in order to provide

the client with the required connection information:

 MERCURY_NA_PLUGIN: Underlying network transport method used to forward calls

to a remote server. (e.g., "bmi”)

 MERCURY_PORT_NAME: Port name information (IP/port) specific to the network

transport chosen – used to establish a connection with a remote server. (e.g.,

"tcp://72.36.68.242:22222”)

Additionally, the LD_PRELOAD environment variable must be set to the location of the

Mercury POSIX shared library. This allows the POSIX routines defined in the Mercury POSIX

library to be called instead of the ones that are defined in the standard library.

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.
Copyright 2013, The HDF Group

B599860-SS 8 2013-09-26 01/03/13

For instance, I/O of applications that use HDF5 and the sec2 driver (which uses POSIX I/O)

can be forwarded to a remote server without any modification of the original library:

Open Issues
The library defined provides a simple way of forwarding POSIX I/O to a remote server and

supports a large number of POSIX I/O calls already. It is, however, not guaranteed that all

the existing applications can use it at this time, especially if they make use of a POSIX call

that is not supported yet (which is also one of the reasons why the library has been

designed so that it can be easily extended). For instance the Lustre POSIX test suite makes

use of fdopen to get a file stream from an exisiting file descriptor, this is currently an issue

as file streams are currently not supported.

Risks & Unknowns
Libraries and applications that make use of static linking need to explicitly include and link

to the Mercury POSIX library. Libraries and applications that make use of dynamic linking

can have I/Os dynamically redirected.

client$ h5dump -H coord.h5

HDF5 "coord.h5" {

GROUP "/" {

 DATASET "multiple_ends_dset" {

 DATATYPE H5T_STD_I32LE

 DATASPACE SIMPLE { (4, 5,

3, 4, 2, 3, 6, 2) / (4, 5, 3, 4,

2, 3, 6, 2) }

 }

 DATASET

"multiple_ends_dset_chunked" {

 DATATYPE H5T_STD_I32LE

 DATASPACE SIMPLE { (4, 5,

3, 4, 2, 3, 6, 2) / (4, 5, 3, 4,

2, 3, 6, 2) }

 }

server$ mercury_posix_server bmi

Waiting for client...

Thu, 19 Sep 13 17:31:00 CDT:

Executing open64

Thu, 19 Sep 13 17:31:00 CDT:

Executing __fxstat64

Thu, 19 Sep 13 17:31:00 CDT:

Executing lseek64

Thu, 19 Sep 13 17:31:00 CDT:

Executing hg_posix_read

Thu, 19 Sep 13 17:31:00 CDT:

Executing lseek64

Thu, 19 Sep 13 17:31:00 CDT:

Executing hg_posix_read

Thu, 19 Sep 13 17:31:00 CDT:

Executing hg_posix_read

