

LLNS Subcontract No. B599860

Subcontractor Name Intel Federal LLC

Subcontractor Address
2200 Mission College Blvd.

Santa Clara, CA 95052

NOTICE: THIS MANUSCRIPT HAS BEEN AUTHORED BY THE HDF GROUP UNDER INTEL’S SUBCONTRACT WITH
LAWRENCE LIVERMORE NATIONAL SECURITY, LLC WHO IS THE OPERATOR AND MANAGER OF LAWRENCE

LIVERMORE NATIONAL LABORATORY UNDER CONTRACT NO. DE-AC52-07NA27344 WITH THE U.S.

DEPARTMENT OF ENERGY. THE UNITED STATES GOVERNMENT RETAINS AND THE PUBLISHER, BY ACCEPTING
THE ARTICLE OF PUBLICATION, ACKNOWLEDGES THAT THE UNITED STATES GOVERNMENT RETAINS A NON-

EXCLUSIVE, PAID-UP, IRREVOCABLE, WORLD-WIDE LICENSE TO PUBLISH OR REPRODUCE THE PUBLISHED

FORM OF THIS MANUSCRIPT, OR ALLOW OTHERS TO DO SO, FOR UNITED STATES GOVERNMENT PURPOSES.
THE VIEWS AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO NOT NECESSARILY REFLECT THOSE OF THE

UNITED STATES GOVERNMENT OR LAWRENCE LIVERMORE NATIONAL SECURITY, LLC.

© 2014 The HDF Group

Date:
June 17, 2013 Milestone 4.4 - Data Integrity Report

FOR EXTREME-SCALE COMPUTING
RESEARCH AND DEVELOPMENT (FAST
FORWARD) STORAGE AND I/O

i

Table of Contents

Introduction ... 1

Definitions ... 1

Background .. 1

Fault Detection of HDF5 Data ... 1

Testing Fault Detection of HDF5 Data ... 3

Open Issues.. 4

Risks & Unknowns ... 4

Revision History

Date Revision History Author

June 17, 2013 1.0 Submitted to DOE Mohamad Chaarawi,

Quincey Koziol – The

HDF Group

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group.

B599860-SS 1 06/17/13

Introduction
This report serves as a description for the data corruption fault generation and testing
process in the HDF5 level of the Exascale FastForward software stack. Currently, the IOD

and DAOS layers of the stack are not functional to the extent that they can be

incorporated in the data corruption testing, but as they become functional, we will

incorporate them into this report.

Definitions

CN = Compute Node

EFF = Exascale FastForward

FS = Function Shipper, also known as Mercury

IOD = I/O Dispatcher

ION = I/O Node

VOL = Virtual Object Layer

Background
End-to-end integrity and fault detection is of fundamental importance in the storage of

data – there is no point in storing information without having confidence in being able to

reliably determine if it has been corrupted before being read back in.

Fault Detection of HDF5 Data
As part of the EFF software stack’s end-to-end integrity checking, checksums have been

added to HDF5 data stored in IOD K-V store objects, to HDF5 data elements stored in

IOD array objects, and to data in IOD blob objects. These objects encompass all the
application data stored, so checksums applied to them will ensure fault detection of any

corrupted application data.

Currently, the scope of data integrity checks covers data element operations (H5Dataset

reads and writes) and not metadata, due to the limitations in the underlying IOD storage
library at this stage of the project. The following diagram describes the end-to-end

integrity verification for HDF5 data element I/O:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group.

B599860-SS 2 06/17/13

Figure 1: Data Integrity Workflow for HDF5 Dataset Elements

Note that the “corruption injection” property (in the HDF5 VOL IOD Client) is part of the
integrity regression testing framework, not part of normal I/O operations.

Figure 1 shows the application using an optional checksum verification routine to give the

HDF5 library a checksum value for the data written, which the HDF5 library will pass

down the stack for verification. If the application does not provide a checksum, one is

already generated internally at the VOL IOD client before data is shipped to the VOL IOD
server. For read operations, the user will be able to provide a pointer to memory where

the checksum can be stored when the read operation completes. The HDF5 API routines

for generating and receiving checksums are:

herr_t H5Pset_dxpl_checksum(hid_t dxpl_id, uint32_t value);

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group.

B599860-SS 3 06/17/13

herr_t H5Pset_dxpl_checksum_ptr(hid_t dxpl_id, uint32_t *value);

Note that all checksums given to the library must be generated using the checksum

algorithm that HDF5 provides:

uint32_t H5checksum(const void *buf, size_t length, H5_checksum_seed_t *cs)

The H5checksum routine returns a checksum value for the data in buf with size length

bytes. If the buffer is contiguous, the pointer to the checksum state structure, cs, can be

NULL. Otherwise, for checksumming a set of non-contiguous regions that will be passed
in a single call to H5Dwrite, cs captures the internal state of the checksum generation

algorithm, allowing a single checksum to be generated for the set of non-contiguous data

that is identical to the checksum that would be generated if the same data was

checksummed in one contiguous block. The checksum state structure is defined as
follows:

typedef struct H5_checksum_seed_t {

 uint32_t a;

 uint32_t b;

 uint32_t c;

 int32_t state;

 size_t total_length;

} H5_checksum_seed_t;

When creating a checksum for a set of non-contiguous buffers, H5checksum should be
called on each contiguous portion of the buffer with that portion’s corresponding length.

The a, b, c, and state fields in the checksum state structure should be initialized to 0 for

the first call to H5checksum, and total_length should be set to the total size in bytes of all

the data to be checksummed (over all the non-contiguous sections of the data to
checksum). Every subsequent call to H5checksum should use the previous cs value as a

seed value to the current checksum call.

Testing Fault Detection of HDF5 Data
In order to verify that the fault detection facilities in the EFF software stack are operating
correctly, we have added special properties that may be set to trigger introduction of data

corruption at various levels in the software stack. Currently, as for the checksum

verification above, this facility is only available for HDF5 data, but will be expanded to the

IOD and DAOS layers as they become available.

Data corruption fault generation in HDF5 is indicated through a data transfer property

that the user sets before issuing the I/O operation using that transfer property. The

library will check for this flag and corrupt the data before it is sent across the network, if

the property is set. The data corruption is detected at the target once the checksum of
the corrupted data is generated and compared to the checksum that is sent along with

the data itself.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group.

B599860-SS 4 06/17/13

The routine to inject a corruption in the data written is:

herr_t H5Pset_dxpl_inject_corruption(hid_t dxpl_id, hbool_t flag);

where corruption is injected if the flag is set to TRUE.

Open Issues
Metadata checksums are not yet generated by the HDF5 library, due to the early state of
the IOD software.

As noted above, this report describes an early state of the end-to-end integrity in the EFF

software stack. As facilities for storing data in IOD and DAOS become available, this

report will be updated with information about fault detection in those layers.

Risks & Unknowns
The IOD and DAOS data integrity implementation is not completely specified yet and

details described above may change if features in those layers change in an incompatible

way.

