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Introduction 
This document describes the design of multiple additions to the HDF5 library and API, 
including asynchronous I/O, end-to-end data integrity, transactions, data layout 

properties, optimized append operations, a new Map object and data analysis extensions 

for indexing and querying HDF5 containers.  All changes for these capabilities were 

combined into one document for easier tracking; furthermore, because many of the 
features affect the same HDF5 API routines, they are easier to understand in 

combination. 

Definitions 
 

ACG = Arbitrarily Connected Graph 

AXE = Asynchronous Execution Engine 

BB = Burst Buffer 

CN = Compute Node 

DAOS = Distributed Application Object Storage 

IOD = I/O Dispatcher 

ION = I/O Node 

VOL = Virtual Object Layer 

Changes from Solution Architecture 
As we’ve continued discussions with the ACG team, we’ve determined that their needs 

don’t necessarily include the addition of a pointer or other dynamic datatype to HDF5.  

Instead, they have indicated that optimized support for append operations (which target 

the ingest phase of graph creation) and adding a new Map object to HDF5’s data model 
would have a greater utility to them.  So, this document reflects that divergence from the 

Solution Architecture document. 

Specification 
New HDF5 Library Capabilities 

New functionality added to the HDF5 library is listed below, with sections for each 

capability: 

 Asynchronous I/O and Event Queue Objects 

 End-to-End Data Integrity 

 Transactions, Container Versions, and Data Movement in the I/O Stack 
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 Data Layout Properties 

 Optimized Dataset Append/Sequence Operations 

 Map Objects  

 Data Analysis Extensions 

Asynchronous I/O and Event Queue Objects 

Support for asynchronous I/O in HDF5 will be implemented by: 

1) Building a description of the asynchronous operation 

2) Shipping that description from the CN to the ION for execution 

3) Generating a request object and inserting it into an event queue object that 

the application provides, while the operation completes on the ION 

As originally designed, all asynchronous operations returned a request object for every 

operation that the application used to test/wait on. Completing every request through a 
call to test or wait was necessary or resource leaks would occur. This, along with tracking 

all of the request objects became very cumbersome in scenarios with large number of 

asynchronous operations. To address these issues, in Quarter 4 we added a new type of 

object to HDF5 called an Event Queue. This object will be passed as a parameter in all 
the newly added asynchronous routines instead of the request object that was used in 

Quarter 3. 

An Event Queue provides an organizing structure for managing and monitoring the status 

of functions that have been called asynchronously. The name “Event Queue” is 
misleading (and will likely be changed), as the association of a request object for an 

asynchronous function with a given Event Queue has nothing to do with the order in 

which the function (the event) will happen. The Event Queues merely organize the IDs 

that are needed to track the status of the asynchronous functions, and except for the 
ability to “pop” the request object for the last function added to the queue, they are more 

like bags than queues. 

Once an Event Queue is created, its identifier can be passed to other HDF5 APIs that will 

be run asynchronously. The request object associated with an asynchronous call will be 

pushed onto the Event Queue whose identifier was passed as a parameter to the 
function. The application can pop the last request object off of an Event Queue and 

monitor its completion status individually via H5AOwait and H5AOtest. The application 

can also wait or test the status of all the request objects in a given Event Queue.  Note 

that when a request object is popped, it is no longer in the Event Queue and will not 
impact the status of the overall queue. The ability to check the error status of the 

individual request objects that are in given Event Queue in a user-friendly manner is a 

design/implementation goal for future quarters. 

The application is free to continue with other actions while an asynchronous operation 
executes.  The application may test or wait for an asynchronous operation’s completion 

with calls to HDF5 API routines.  All parameters passed to asynchronous operations are 

copied into the HDF5 library and may be deallocated or reused, except for the buffers 

containing data elements.  The application must not deallocate, examine or modify data 
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element buffers used in asynchronous operations until the asynchronous operation has 

completed. 

The HDF5 library tracks asynchronous operations to determine dependencies between 
operations.  Dependencies exist between operations when a later operation requires 

information from an unfinished earlier operation in order to proceed.  A simple “progress 

engine” within the HDF5 library updates the state of asynchronous operations when the 

library is called from the application. There is no use of background threads on CNs, only 
on the IONs, eliminating the possibility of “jitter” from background operations on CNs 

interfering with application computation and communication. 

Dependencies between operations are captured at the HDF5 IOD VOL client and shipped 

with every operation to the HDF5 IOD VOL servers on the IONs. At the server, the 
operations are inserted into the AXE, taking into account the dependencies that they 

have been shipped with. The AXE makes sure that child operations are scheduled only 

after their parent operations have completed. While this approach allows completely 

asynchronous behavior at the client (HDF5 operations return immediately regardless of 
dependencies between each other), there are still few scenarios that retain the 

asynchronous behavior that was described in Quarter 3, where the dependent operation 

may be delayed at the client waiting for the parent operation to complete.  

This behavior is  a consequence of not using background threads on the CNs and not 

having a complex progress engine.  

To demonstrate the behaviour of different asynchronous execution scenarios we give two 

examples. 

First, consider an application that asynchronously creates an attribute then asynchrously 

writes data elements to the new attribute. Both calls are asynchronous and return 
immediately to the application. In the write call, the IOD VOL plugin detects a 

dependency on the attribute create call and ships the dependency to the server. At the 

server, the write operation is delayed until the attribute create operation completes.  

Next, consider an application that asynchronously opens an attribute then 
asynchronously writes data elements to the attribute. In this example, the data write 

operation may be delayed inside the HDF5 library until the attribute open operation 

completes. The reason for this delay is that the write operation at the client requires the 

dataspace of the attribute that is being opened before it can ship the write operation to 

the server. This metadata is available in the first scenario, in the case of attribute create, 
because the create call provides this metadata about the attribute.  In contrast, for the 

open call the metadata needs to be pulled from the server.  

Asynchronous invocations of HDF5 routines that create or open an HDF5 object will 

return a “future” object ID1 when they succeed.  Future object IDs (currently referred to 
as placeholder object IDs in the User’s Guide) can be used in all HDF5 API calls, with the 

HDF5 library tracking dependencies created as a result.  If the asynchronous operation 

completes successfully, a future object ID will transparently transition to a normal object 

ID and will no longer generate asynchronous dependencies.  If the asynchronous 
operation fails, the future object ID issued for the operation (and any future object IDs 

                                         
1
 For other uses of “future variables”, see e.g. http://blog.interlinked.org/programming/rfuture.html  

http://blog.interlinked.org/programming/rfuture.html
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that depend on it) will be invalidated and not be accepted in further HDF5 API calls.  If a 

future object ID is invalidated, all asynchronous operations that depend on it will fail. 

See below, in the API and Protocol Additions and Changes section, for details on how 
existing HDF5 API routines are extended, details on new H5EQ* API routines to create 

and operate on event queue objects along with new H5AO* API routines to test and wait 

on asynchronous request objects. 

End-to-End Data Integrity 

When enabled by the application, end-to-end data integrity is guaranteed by performing 

a checksum operation on all application data before it leaves a CN.  The checksum for the 

information (both data elements and metadata information, such as object names, etc.) 

in each HDF5 operation will be passed along with the information to the underlying IOD 

layer, which will store the checksum in addition to the information. Checksum information 
is stored in the container for both data elements and the metadata (such as creation 

properties, the group hierarchy, attributes, etc.) 

The HDF5 library will checksum application data before sending it from the CN to the ION 

for storage in the HDF5 container, and optionally can additionally checksum application 
data before copying it into internal buffers within the library (when it is copied).  When 

data is read from the container, the IOD layer will provide a checksum with the data, 

which will be verified by the HDF5 library before returning the data to the application.  If 

the checksum of the data read doesn’t match the checksum from IOD, the HDF5 library 
will issue an error by default, but will also provide a way for the application to override 

this behavior and retrieve data even in the presence of checksum errors. 

See below, in the API and Protocol Additions and Changes section, for details on new API 

routines to set properties for controlling the optional checksum behaviors. 

Transactions, Container Versions, and Data Movement in the I/O Stack 

The application is given almost complete control over managing data movement in the 

Exascale FastForward I/O stack.  The HDF5 library, building on the capabilities of IOD and 

DAOS, provides the application with the ability to coordinate data movement between the 

application’s memory on the CNs, the BBs on the IONs managed by IOD, and the storage 
managed by DAOS.   

In this section, we introduce and discuss transactions, container versions, container 

snapshots, evicting data from the BB to DAOS storage, pre-fetching data from DAOS 

storage into the BB, reading of data from the BB or DAOS storage into the application 
memory, and replicating or rearranging data on the BBs for optimized performance. HDF5 

Transaction Extensions are the Q4 deliverable, but the other topics are inter-related and 

therefore introduced as well. 

Some of the design, especially as it relates to BB memory management and the 

specification of layout optimization hints, remains under active development.  Open 
issues are noted, and discussions within the architecture team are ongoing.  Readers are 

encouraged to consult the IOD and DAOS design documents for details on those levels of 

the stack. 

A high-level diagram of the components of the Exascale FastForward I/O stack and the 
data movement that takes place under the control of the application is shown in Figure 
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1.2   Although not referenced explicitly in the text that follows, the diagram may provide 

a useful visual model of the concepts that are introduced and discussed in this section. 

 

Figure 1: Data movement in the Exascale Fast Forward stack controlled by application 
requests. 

Transactions and Writing to HDF5 Files (Containers) 

The HDF5 library, building on the capabilities of IOD and DAOS, will allow applications to 
atomically perform multiple update operations on an HDF5 container through the use of 

transactions.  The HDF5 VOL and the IOD VOL plugin handle the translation between 

the HDF5 transaction APIs called by the application and the IOD transaction APIs.  

Exposing a constraint from the DAOS layer that is necessary to insure container 

consistency, only one application can have a container open for writing at any given time. 

The basic sequence of transaction operations an application typically performs on a 

container that is open for writing is: 

1) start transaction N 

2) perform updates to container as part of transaction N 
3) finish transaction N    

                                         
2 Also see Figure 6 in the IOD Design Document. 
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One or more processes in the application can participate in a transaction, and there may 

be multiple transactions in progress on a container at any given time. 

Managing Transactions 

There are two primary modes for managing transactions:   

 For tightly-coupled applications, the application can have one process in a 

process group act as the transaction leader.   
 

In this mode, the transaction leader is responsible for starting transaction N 

via a call to H5TRstart(), notifying other processes participating in the 

transaction that they can make updates as part of transaction N, knowing 
when the participating processes are done making updates, and finishing the 

transaction via a call to H5TRfinish(). 

 For loosely-coupled applications, the I/O stack, and in particular IOD, can 

manage a transaction. 
 

In this mode, each process that will be participating in transaction N calls 

H5TRstart() with the transaction number (N) and the number of ranks that 

will be participating.  Note that all the processes participating in transaction N 

must be aware of the total number of participants.  When a given process 
finishes the updates it will be making as part of transaction N, it calls 

H5TRfinish().  When “number of ranks” processes have called HRTRfinish() for 

transaction N, the transaction is finished. 

The application must specify the transaction number (N) when a transaction is started3, 
provide that transaction number to all HDF5 operations that occur within the transaction, 

and eventually finish (or abort) the transaction.    

Container Updates during a Transaction 

The container updates that occur within a given transaction can include adding or 
deleting H5Datasets, H5CommitedDataTypes, H5Groups, H5Links, and H5Attributes.   

The updates can also change the contents of existing H5Objects.  The updates performed 

by HDF5 operations on H5Objects are reflected in updates to IOD objects.  An update to 

one H5Object can result in updates to multiple IOD objects. 

Finishing and Committing Transactions 

Transactions can be finished in any order.  The application is responsible for finishing a 

transaction (by calling H5TRfinish) when it is done making updates for the transaction. 

Finished transaction N will be committed (become readable) when all lower-numbered 

transactions are finished, aborted (via H5TRabort), or explicitly skipped (via H5TRskip).  

Once a transaction number has been used to start a transaction, or has been explicitly 

skipped, it cannot be reused – even if the transaction is aborted. Transactions that are 

                                         
3 IOD allows the application to ask for the “next transaction number” under some circumstances, but that is currently 

not supported by HDF5.  See the man page for H5TRstart for more details. 
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aborted or explicitly skipped are also considered committed when all lower-numbered 

transactions are finished, aborted, or explicitly skipped; commitment of an aborted or 

skipped transaction does not update the container contents. 

The application does not explicitly commit a transaction, but it indirectly controls when a 

transaction is committed through its assignment of transaction numbers in “start 

transaction” calls and the order in which transactions are finished, aborted, or explicitly 

skipped.  Our current thinking is that the default behavior will be to have asynchronous 
H5TRfinish operations complete when the transaction is committed. 

Container Versions 

When a transaction is committed, the state of the container is changed atomically.  The 

data for a committed transaction is managed by IOD and, when IONs are present, 
resides in the Burst Buffers. The version of the container after transaction N has been 

committed is N.  A reader of this version of the container will see the results from all 

committed transactions up through and including N.   

Note that container version N may not have resulted from N finished transactions on the 
container; there is no guarantee that some transactions were not aborted or explicitly 

skipped. Since aborted and skipped transactions are also committed, they advance the 

container version even though they do not change the contents of the container. 

Terminology Differences across the Stack 

There has been considerable discussion within the team about various naming and 
numbering conventions related to transactions, and there remain some discrepancies in 

terminology across the various layers of the stack. We mention them here to help the 

reader as they review and integrate the HDF5, IOD, and DAOS design documents.  

At the HDF5 layer, transactions and transaction numbers are used to refer to actions 
related to atomic updates of the container and the changes associated with those actions, 

while container versions are used to refer to the state of the container. Therefore, read 

operations are performed on versions of containers, not on transaction numbers. 

For example, in transaction 99 the application sets the element located at location [3,19] 
to 74 in H5Dataset /G1/A and creates a new H5Group with the path /G2. At the IOD 

layer, the changes related to this transaction update the Array object associated with 

/G1/A and the KV object that holds the H5Links for the root group (to point to the new 

/G2 H5Group), and a new KV object to hold the H5Links for the new group, /G2, is also 

created. After transaction 99 is committed, the value of A[3,19] in container version 99 
will be 74 and /G2 will exist in the container. Values for other elements in H5Dataset A 

and many other objects in the file are also visible in container version 99 (assuming 

lower-numbered transactions made updates to other elements in A and added other 

objects to the container).  

IOD does not distinguish between transaction numbers and container versions – it 

describes things strictly in terms of transactions and transaction ids.   DAOS has “epochs” 

instead of transactions. 

Persisting and Accessing Container Versions 
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The application can persist a container version, N, causing the data (and metadata) for 

the container contents that are in IOD to be copied to DAOS.  When container version N 

is persisted, the data for all lower-numbered container versions (committed transactions 
on the container) that have not yet been persisted is also flattened4 and copied to DAOS.   

Data (and metadata) for persisted container versions is not automatically removed from 

IOD.  The application must explicitly evict data from IOD – this is discussed in more detail 

in a later section on Burst Buffer Space Management. 

After container version N is persisted (assuming no higher-numbered versions have yet 

been persisted), DAOS holds version N of the container.   DAOS refers to this version as 

the Highest Committed Epoch (HCE). IOD refers to it as durable. 

The Exascale Fast Forward stack does not support unlimited “time travel” to every 
container version, as versions may be automatically flattened for efficiency when they are 

persisted.  For example, say the HCE on DAOS is 19, the application finishes transactions 

20, 21, 22, and those transactions become committed (readable) on IOD.    The 

application then asks that container version 22 be persisted.   The HCE on DAOS 
becomes 22, and container versions 19, 20, and 21 are flattened and not individually 

accessible from DAOS.  However, as discussed below, if a read handle is open for a given 

container version, that version is guaranteed not to be flattened until the read handle is 

closed. The IOD Design Document covers these concepts in greater detail. 

Note that an application is not required to persist any versions of a container.  For 
example, an application that is utilizing the Burst Buffer for out-of-core storage may 

never persist the data to DAOS. 

Making a Snapshot of a Container on DAOS 

The application can request a snapshot of the highest container version that has been 
persisted to DAOS.   This makes a permanent entry in the namespace (using a name 

supplied by the application) that can be used to access that version of the container.  The 

snapshot is created with version ID = [0 or the container version number] 5 and is 

independent of further changes to the original container.  The snapshot container 
behaves like any other container from this point forward.  It can be opened for write and 

updated via the transaction mechanism (without affecting the contents of the original 

container), it can be read, and it can be deleted.   

General Discussion 

The application has complete control over when container versions are persisted to DAOS 
and when snapshots are taken.  That said, we expect that snapshots will be taken 

infrequently, persists will encompass multiple committed transactions, and transactions 

will contain several to many operations.   The prototype implementation will offer the 

opportunity to assess the frequencies that can be supported with good performance. 

Transactions provide the benefit of ensuring logically-consistent container versions.  In 

addition, they provide a mechanism for detecting and recovering from errors, as 

                                         
4 Only valid data for lower-number container versions is copied.  Any data which has been overwritten in later 

transactions lower than N will not be copied. 

5 Is there a preference regarding which number (0 or HCE) is used?   
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transactions can be aborted and their updates retried.   In the prototype Exascale 

FastForward Stack, the DAOS layer is the primary focus of error reporting and recovery.  

The IOD, VOL, and HDF5 layers will detect and report errors, but will not be designed to 
recover from them.  Ultimately, the application will also need to be involved in the 

handling of failures that cannot be self-healed by the lower layers. 

New HDF5 API routines (see below) will allow the application to start, abort, finish, and 

skip transactions, and to persist and snapshot container versions.  Routines will also be 
added to inquire about transaction and container status. Existing API routines will be 

extended to accept transaction numbers, indicating which transaction a given operation is 

part of. 

Design Decisions 

Because we allow transactions to be started and finished out of order, and because the 

application can pipeline multiple transactions, there are situations where operations in 

later transactions may depend on the actions of earlier transactions that have not yet 

been committed.   For example, in Transaction 1 the application creates H5Group /A and 
in Transaction 7 the application creates H5Dataset /A/B.  Using asynchronous calls and 

allowing multiple transactions to be in flight at once, there is no guarantee that the 

transaction containing /A’s creation will have been committed at the time Transaction 7 

tries to create /A/B.  Even if Transaction 1 was committed, it is possible that one of the 

operations in Transactions 2-6 could have deleted /A. 

Four possible solutions (at least) present themselves for addressing this issue: 

A pessimistic (but guaranteed safe) implementation would require that the container be 

at Version 6 (i.e. transactions 1-6 have committed) before asynchronous operations in 

Transaction 7 can complete.  This allows the HDF5 library to verify the state of the 
container before completing updates in Transaction 7. 

An optimistic implementation would assume the application knows what it is doing, and 

that it will only update objects that it knows have been created, or that it creates in the 

same transaction.  In the above example, the application should make sure Transaction 1 
has committed, and know that it did not delete /A in Transactions 2-6, before trying to 

create /A/B in Transaction 7. 

An implementation could speculatively execute HDF5 operations by maintaining a log of 

updates within a transaction and replay that log after lower-numbered transactions are 

committed.  This has the benefit of immediate execution and eventual guaranteed 
correctness, but comes with the drawback of additional complexity and duplicated I/O. 

Finally, an implementation could maintain a distributed cache that tracked the state of 

the container metadata and captured the application’s view during all the outstanding 

transactions.  The distributed metadata cache would be used to predict the correctness of 
operations during a transaction, allowing an application to proceed asynchronously and 

safely.  However, the complexity and expected poor performance of such a cache likely 

outweigh any correctness benefits it might have. 

We have decided to adopt the optimistic approach for this phase of the project.  The most 
complicated dependencies have to do with object creation and metadata management, 

but we believe that few applications require complex dependencies and can manage 

simple ones well.  The more likely case is that an H5Dataset will be created early in the 
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application, then later multiple ranks will update separate elements in the H5Dataset in 

independent transactions that are in-flight simultaneously. 

Support for Legacy Applications 

There is a desire to support legacy library and application code that make HDF5 calls 

without specifying transactions or asynchronous request pointers.  While not optimized 

for performance, legacy HDF5 API calls will execute correctly, albeit synchronously. 

Handling the lack of transaction numbers in legacy API calls is a bit more complicated, 
because the legacy code could co-exist with new code that does assign and manage 

transaction numbers. Rather than insisting each legacy HDF5 API call be updated to 

include a transaction number, we will provide two special API calls that can be used to 

package legacy operations into a transaction.  The exact API signatures are not yet 
specified, but in general terms the “start_legacy_transaction” will be called with a 

transaction number that will be assigned to all legacy HDF5 calls executed prior to the 

“end_legacy_transaction”.  The application will be responsible for managing other 

transaction numbers, keeping in mind the transaction number(s) assigned to the legacy 
operations packaged by the new start/end calls. 

Reading from HDF5 Files (Containers) 

Applications perform reads on HDF5 Files (containers) in the EFF stack in almost the 

same way they perform them on an HDF5 File stored in the Binary HDF5 format.  The 

difference is that when an H5File is open for read in EFF, not only is the file (container) 
name specified, but also the container version. 

Once an application has obtained a read handle for a container version, it is guaranteed 

to see the contents of the container at that version until the container is closed (and the 

read handle released), even if subsequent transactions are committed to the container. 

If a container is already opened by other processes that run on the same IOD instance, a 

new reader can share data in the BB with those processes.   Otherwise, data will be read 

from DAOS.  Note that the container versions that are available in the BB on one set of 

IONs may be different that the container versions that are available directly from DAOS 
due to flattening that can occur when a container version is persisted. 

Data that is read from DAOS will go through the IONs to the CNs, but will not be cached 

in the BBs unless explicitly requested.  We are considering adding a hint to the read APIs 

that direct the data be cached in addition to being read.  In addition, we are considering 

allowing multiple read requests to be tagged with a batch identifier, indicating that all of 
the data in the batch should be read together. 

Pseudocode showing the sequence of HDF5 operations that occur when a container is 

opened for read follows.  The exact API signatures remain to be specified. 

  /* Open highest container version for reading;   

   * This results in a read handle being opened on that version so it  

   * will not be flattened or evicted. */     

  file_id = H5Fopen_ff( “myContainer”, H5F_ACC_RDONLY, … ); 

 

  /* If the highest container version is not the one desired,  

   * it is still required to get information about what other versions 
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   * exist. Find out how many there are and the version numbers */ 

  n = H5Fversion_count( file_id ); 

  err = H5Fgetversions( file_id, n, &ver[n] ); 

 

  /* Now get a read handle for the desired version; this might fail 

   * if that version was flattened or evicted between the previous call 

   * and this one.  We’ll assume it works */ 

  file_id2 = H5Fopen_ff( “myContainer, H5F_ACC_RDONLY, Ver=ver[3], …); 

 

  /* Close file_id to release read-handle on that version */ 

  H5Fclose_ff( file_id );    

  /* Do lots of HDF5 Group / Attribute / Dataset read operations using 

   * file_id2 */ 

  … 

 

  /* Close file_id2, releasing the read handle on that version */ 

  H5Fclose_ff( file_id2 );  

Processes that perform reads on an HDF5 file identifier that is open for write (one 

returned by an H5Fcreate_ff or H5Fopen_ff with flags=H5F_ACC_RDWR) will always see 

the results of the highest container version.  That version may change between 

subsequent reads because transactions are presumably being committed to the 
container.  Processes that want a stable view of the container data should re-open 

the container read-only, and use the read handle to access the container. 

Burst Buffer Space Management 

IOD is responsible for moving data into and out of the BBs when directed to do so by 

higher-layers in the stack (HDF5, as directed by the application).  Because the BB is 
managed manually, the application must explicitly request eviction and residence, 

effectively controlling the working set in the BBs. 

Moving Data into the Burst Buffers. 

As discussed previously, container updates are performed in transactions and result in 
writes to the BBs. (See the IOD design for more details on how updates are made to 

various types of IOD objects in the container). All objects in the BB resulting from 

updates performed in transactions have an associated container and transaction number 

(for transactions that are not yet committed) or container version (for committed 
transactions). When a container version is persisted, associated data in the BB is copied 

to DAOS and the copied data remains in the BB until explicitly evicted.   

The application can also request that data be pre-fetched from DAOS into the BBs.  The 

details on how these requests will be made have not yet been fully designed. We 

anticipate having application processes on the CNs issue pre-fetch requests for a given 
set of HDF5 Objects or sub-objects (such as a subset of elements in an H5Dataset) using 

calls that are similar to standard HDF5 read requests in terms of how the objects and 

sub-objects are specified (for example, through the use of hyperslab selections).    

Pre-fetch requests will be made for a specific container version, because the container 
version will be specified as part of the container open and associated with subsequent 
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operations by virtue of the file handle used to access the HDF5 objects in the container.  

We are considering allowing multiple pre-fetch requests to be tagged with a batch 

identifier, indicating that all of the data in the batch should be pre-fetched together.  A 
request from a given CN will be directed to its associated ION, and the data to fill the CNs 

request will go to the BB on that ION.   Hints may also allow further layout optimizations 

to be specified. 

Recall that read requests do not result in updates to the BB.  Read requests that can be 
satisfied by data already in the BB will be; other read requests will move data directly 

from DAOS to the CN via the ION, but without writing to the BB. 

Evicting Data from the Burst Buffers 

Putting the application in charge of evicting data from the burst buffers implies that the 
application must have an interface to manage data in the burst buffer in units that it 

understands.  This is challenging for a number of reasons, perhaps foremost of which is 

the application deals with HDF5 Objects (and sub-objects), which do not map one-to-one 

to the IOD objects (and sub-objects) that IOD uses to track BB contents.  While the VOL 
and IOD-VOL plugin can provide some assistance, they are not intimately aware of the 

“pieces” in the IOD logs that go into making up a particular container version; perhaps 

this awareness is not required in order for the VOL layer to help, but at this point it 

remains a concern. 

Discussions continue within the EFF team about how to design the evict interface and 
implementation.  Some relevant points and open issues are listed here: 

 Objects (and sub-objects) in the BB are associated with a given container and 

container version.   For this reason, an eviction operation should include a 

[container, version, object] triplet to fully specify the data to be evicted. 

 BB data resulting from transactions may be in log-structured format, while BB 

data resulting from pre-fetches may be in a flattened layout. 

 It is impractical to allow eviction of partial-objects from the BB because of 

implementation details at the IOD level.   This means that eviction is not the 
“mirror image” of pre-fetch, which can specify sub-objects.  Note that sub-

objects may reside in the BB (for example, as the result of a pre-fetch), but 

the evict can only be specified on a [container, version, object] granularity. 

 IOD’s ability to do semantic resharding and multi-format replicas can result in 

multiple copies of “the same” [container, version, object] data in the BB.  
How will the application specify which copy to evict? 

 Attempts to evict a [container, version, *] that has an open read handle will 

fail, because of the guarantee that the reader will be able to see a consistent 

view of the container as long as the read handle is open.   If the writer has 
the designated ‘clean up’ responsibility, how can it do that if a reader has the 

objects open?  Can evictions be queued until a read handle is released? 

 When there are multiple users of the data, can any user evict it (assuming 

there is no open read handle)?    Is there a need to reference-count users? 
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 How can the application evict objects it believes it is done with, without 

clearing oft-accessed metadata objects (such as the root group KV store) 

from the BB? 

 What happens to data from aborted transactions? Is it automatically evicted 

or left around for possibly recovery in which case the application must evict? 

 We will likely want to provide APIs that allow “sensible evictions” on a group 

of objects with a single command.  For example, if an H5Group is evicted, all 
of the children of that group (from the same container version) are evicted. 

Layout Optimizations 

IOD offers a number of optimizations including semantic resharding and multi-format 

replicas.  The mechanisms for exposing these capabilities to the application via HDF5 
APIs have not yet been designed.  Open questions include how to specify one of the 

replicas (versus another) be read or evicted, and how to allow the application to make 

optimizations without intimate knowledge of the underlying storage architecture.    

It may also be beneficial to allow multiple container versions to be flattened on IOD (BB) 
without having to persist the data to DAOS and pre-fetch it.  Out-of-core applications, for 

example, might benefit from this capability.    

We continue to work as a team to address open questions in this area.  Note that the 

initial design of these optimizations was part of the IOD Q4 deliverable (this quarter), so 

the concepts are still fairly new. 

 

Data Layout Properties 

Data layout properties, and other aspects of HDF5, IOD and DAOS software stack 

behavior, will be controlled by properties in HDF5 property lists (e.g. file creation, object 
creation, object access, etc.).  New properties are set and retrieved by HDF5 API routines 

described below, in the API and Protocol Additions and Changes section.  Existing HDF5 

properties will be translated to appropriate actions on the container, e.g. the contiguous 

and chunked storage properties for datasets in native HDF5 containers will be used by 

the IOD layer to control analogous storage settings in IOD and DAOS containers. The set 
of behaviors controlled by properties is still under active development; more properties 

(and API routines to control them) will be added over the course of the project. 

In support of ACG applications’ data ingest operations, as well as data gathering 

applications that record instrument measurements, we have added an optional data 
layout property to indicate that all write operations to a dataset will be append-only, with 

no random I/O of elements in the middle of a dataset, and no overwrites of existing 

elements.  This will allow the HDF5 library to store data elements for the dataset in a 

more optimized fashion. 

See below, in the API and Protocol Additions and Changes section, for details on the new 

H5Pset_write_mode() routine to set this data layout property. 
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Optimized Dataset Append/Sequence Operations 

To support ACG ingest operations and other applications that rapidly append data to an 

HDF5 dataset (as well as applications that sequence through those datasets in a similar 
fashion), we are extending the HDF5 API with routines that allow those operations to be 

performed in an optimized and easy to use manner.  In addition, to flesh out the HDF5 

API with calls that ACG applications will frequently use, we are adding simple routines for 

quickly setting and retrieving single elements in an HDF5 dataset. 

See below, in the API and Protocol Additions and Changes section, for details on the new 

H5DO* API routines for optimized sequential reads and writes. 

Map Objects 

ACG applications have a great deal of data that doesn’t correspond well to the current 

HDF5 data model, showing a need for expanding that model.  In particular, ACG data 
contains many vertices in each graph, each of which has a large amount of name/value 

pairs that are inefficient to store with HDF5 dataset objects.  To address this need, we 

plan to add a new Map object to the HDF5 data model and API. 

Map objects in HDF5 will be similar to a typical “map” data structure in computer science.  
HDF5 maps will set/get a value in the object, according to the key value provided, with a 

1-1 mapping of keys to values.  All keys for each map object must be of the same HDF5 

datatype, and all values must also be of the same HDF5 datatype (although the key and 

value datatypes may be different).  Like HDF5 datasets, HDF5 maps will be leaf objects in 
the group hierarchy within a container, and, like other HDF5 objects in the container, can 

have attributes attached to the map object. 

Many extensions beyond a straightforward map data structure were considered, such as 

support for multiple values for each key (i.e. a “multi-map”), allowing different datatypes 

for each key and/or value, etc.  However, the current capabilities meet the needs for ACG 
use cases and allow us to explore further extensions to the map object’s capabilities 

incrementally.  We expect to add functionality to the map object over the course of the 

project, or in follow-on projects, as more application needs are exposed. 

See below, in the API and Protocol Additions and Changes section, for details on new 
H5M* API routines to create and operate on map objects. 

Data Analysis Extensions (Supporting Index and Query Operations) 

Support for data analysis operations on HDF5 containers will be implemented by: 

 New “query” object and API routines, enabling the construction of query 

requests for execution on HDF5 containers  

 New “view” API routines, which apply a query to an HDF5 container and 

return a subset of the container that fulfills the query criteria 

 New “index” object and API routines, which allows the creation of indices on 

the contents of HDF5 containers, to improve query performance 

These extensions to the HDF5 API and data model enable application developers to 

create complex and high-performance queries on both metadata and data elements 
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within an HDF5 container and retrieve the results of applying those query operations to 

an HDF5 container. 

Query objects are the foundation of the data analysis operations and can be built up from 
simple components in a programmatic way to create complex operations using Boolean 

operations. The core query API is composed of two routines: H5Qcreate and 

H5Qcombine.  H5Qcreate creates new queries, by specifying an aspect of an HDF5 

container, such as data elements, link names, attribute names, etc., a match operator, 
such as “equal to”, “not equal to”, “less than”, etc. and a value for the match operator.  

H5Qcombine combines two query objects into a new query object, using Boolean 

operators such as AND and OR. Queries created with H5Qcombine can be used as input 

to further calls to H5Qcombine, creating more complex queries. 

For example, a single call to H5Qcreate could create a query object that would match 

data elements equal to the value 17.  Another call to H5Qcreate could create a query 

object that would match link names equal to “Pressure”.  Calling H5Qcombine with the 

AND operator and those two query objects would create a new query object that 
matched elements equal to 17 in HDF5 datasets with link names equal to “Pressure”.   

Creating the data analysis extensions to HDF5 using a “programmatic interface” for 

defining queries avoids defining a text-based query language as a core component of the 

data analysis interface, although such a query language could certainly be built on top of 

the query API defined here. 

Applying a query to an HDF5 container creates an HDF5 view object.  HDF5 view objects 

are virtual containers that consist of a read-only subset of the contents of the HDF5 

container that the query was applied to.  View objects are created with H5Vcreate, which 

applies a query to an HDF5 container, group hierarchy or individual object and produces 
the view object as a result.  View objects, being a HDF5 container, can be used as the 

basis for H5Vcreate, creating a new view object that refines an existing view by applying 

another query to the existing view.  Views can be queried for the attributes, objects 

and/or data elements that they contain. 

For example, starting with the HDF5 container described in the figure below: 
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Applying the ‘<link name> = “Pressure”’ query (described above) would result in the 

view shown below, with the underlying container greyed out and the view (composed of 

the datasets reached by links named “Pressure”) highlighted in green: 

 

Alternatively, applying the ‘<data element> = 17’ query (described above) would result 

in the view shown below, with the underlying container greyed out and the view 

(composed of dataset elements with a value of 17) highlighted in green: 
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Finally, applying the full ‘<link name> = “Pressure” AND <data element> = 17’ query 

(described above) would result in the view shown below, with the underlying container 

greyed out and the view (composed of data elements with a value of 17 in datasets 
reached by links named “Pressure”) highlighted in green: 

 

View objects created by applying queries to containers are analogous to the “map” phase 

of a “map/reduce” operation and are ripe candidates for extension with “reduce” 

operations in a follow-on project. 

The final component of the data analysis extensions to HDF5 is the index object.  Index 

objects are designed to accelerate execution of frequently occurring query operations.  

Index objects are stored in the HDF5 container that they apply to, but are not visible in 

the container’s group hierarchy.  Instead, index objects are part of the metadata for the 
file itself.  Unlike indexing implementations in many database systems, HDF5 index 

objects must be explicitly updated; HDF5 indices will not reflect modifications of the HDF5 

container they apply to unless updated by an application.  New index objects are created 

by passing a container to index and a query to accelerate to the H5Xcreate call. 

For example, if the ‘<link name> = “Pressure” AND <data element> = 17’ query 

(described above) was going to be frequently executed on the container in the figures 

above, an index could be created in that container which would speed up creation of 

views when using the query.  Alternatively, indices could be created for either the ‘<link 

name> = “Pressure”’ or ‘<data element> = 17’ queries, which would also accelerate 
view creation for the more complex ‘<link name> = “Pressure” AND <data element> = 

17’ query. 

The HDF5 library will expose an interface for third-party indexing plugins, such as 

interfaces to FastBit6, etc., which will be defined and demonstrated in quarters 6-8 of the 
project. 

                                         
6
 https://sdm.lbl.gov/fastbit/ 
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See below, in the API and Protocol Additions and Changes section, for details on the new 

H5Q*, H5V* and H5X* API routines used for query, view and index operations, 

respectively. 

Architectural Changes to the HDF5 library 

The architecture of the core HDF5 library is largely unaffected by the changes described 

in this document.  The majority of the capabilities added to the HDF5 API are handled by 
a wrapper layer above the main HDF5 library, and a small number of additions to the 

main API routines (details of these API changes are described below in the API and 

Protocols Changes section).  Adding transactions requires extending the VOL interface to 

incorporate some additional callbacks and/or parameters as well. Fortunately, the VOL is 
already designed to support asynchronous operations (although it is currently not used 

by any existing plugins), so few changes are required to support that capability. 

The following diagram shows an overview of the HDF5 library architecture before the 

FastForward project capabilities are added: 

 

The following diagram shows an overview of the HDF5 library architecture after the EFF 

capabilities are added, with the new or enhanced portions highlighted: 

 

The majority of the implementation work is localized to the EFF wrapper routines and the 
IOD VOL plugin.  In particular, the end-to-end integrity checksums are created and 
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validated in the IOD plugin, and data layout information is translated from HDF5 

properties to IOD hints there as well.  Transactions and asynchronous operation 

information is encapsulated in HDF5 properties by the EFF wrapper routines and 
retrieved, interpreted and returned by the IOD plugin in the same way.  Details of the 

IOD VOL plugin design are located in an accompanying document. 

Storing HDF5 Objects in IOD Containers 

Objects in the HDF5 data model and operations on them are mapped to IOD objects and 

operations, as they are handled by the IOD VOL plugin.  See section 4.3.2 in the IOD 

design document for a description of the mapping from HDF5 objects to IOD objects and 

the accompanying IOD VOL plugin design document for a description of how those 
mappings are carried out. 

API and Protocol Additions and Changes 
There are two kinds of changes to the HDF5 library API: generic changes to existing API 

routines that accommodate new capabilities, such as asynchronous I/O and transactions, 
and additions to the HDF5 API which add new features.  Both of these types of changes 

to the HDF5 API are described below. 

Generic changes to HDF5 API routines 

Many HDF5 API routines operate on HDF5 file objects and need to be extended in the 

same way.  Rather than describing each of the modified HDF5 API routines, a generic 

modification is described below, along with a list of HDF5 API routines that are affected. 

[Paragraph added for Milestone 4.2] This section was written before implementation had 
begun and gives a general overview of the API changes.  Readers are encouraged to 

consult the HDF5 API reference manual pages in the latest version of the User’s Guide to 

FastForward Features in HDF5  for the most current information.   

Existing HDF5 routines that operate on HDF5 file objects are extended by adding two new 
parameters: a transaction number and a pointer to an asynchronous operation request 

object.  Additionally, HDF5 API routines that are extended in this manner have a suffix 

appended to the routine name, to distinguish these routines from existing routines.  The 

following pseudo-function prototypes describe the method for these changes to HDF5 API 
routines: 

Current routine: 

<return type> H5Xexisting_routine(<current parameters>); 

Extended routine: 

<return type> H5Xexisting_routine_ff(<current parameters>, 

    uint64_t transaction_number, hid_t event_queue_id); 
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In other words, each extended HDF5 API routine has a suffix of “_ff”7 added to the API’s 

routine name and two new parameters added to its parameter list: a transaction number, 

which indicates the transaction this operation is part of, and an identifier for the event 
queue object where the request for this operation is pushed, for testing/waiting on the 

asynchronous completion of the operation.  Passing a NULL pointer for the request object 

pointer value indicates that an operation should complete synchronously. 

As a concrete example, the following prototypes show the change to the group creation 
API routine for HDF5, H5Gcreate8: 

Current routine: 

hid_t H5Gcreate(hid_t loc_id, const char *name, hid_t lcpl_id, 

    hid_t gcpl_id, hid_t gapl_id); 

Extended routine: 

hid_t H5Gcreate_ff(hid_t loc_id, const char *name, hid_t lcpl_id, 

    hid_t gcpl_id, hid_t gapl_id, uint64_t transaction_number, 

    hid_t event_queue_id); 

Note that the error value returned when a routine is invoked asynchronously only 

indicates the status of the routine up to the point when it is scheduled for later 
completion.  The asynchronous test and wait routines (below) return the error status for 

the “second half” of the routine’s execution. 

We anticipate that if the features from the FastForward project are productized in a future 

public release of HDF5, the “_ff” suffix will be removed and affected API routines will be 
versioned according to the standard convention for modifying HDF5 API routines9. 

A note on the design of the API changes:  We considered alternate forms of passing the 

transaction and request information into and out of the HDF5 API routines, such as using 

HDF5 properties in one of the property lists passed in to API routines to convey the 

information.  Using HDF5 properties had a number of drawbacks however: (1) several of 
the API routines did not have property list parameters and so would have to be extended 

with more parameters anyway, (2) setting the additional information in properties can 

sometimes obscure the fact that an operation’s behavior has been changed, and (3) it is 

particularly tedious for application developers to retrieve the asynchronous request object 
from a property list after each API call. 

[Paragraph added for Milestone 4.2] The following is a list of all HDF5 API routines that 

were originally targeted for extension in the manner described above.  Please consult the 

latest version of the User’s Guide to FastForward Features in HDF5  for the most recent 
information.  The list below will likely be removed from this document in Quarter 5. 

                                         
7
 “ff” is short for “FastForward” 

8
 http://www.hdfgroup.org/HDF5/doc/RM/RM_H5G.html#Group-Create2 

9
 HDF5’s API versioning conventions are described here: 

http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html 
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HDF5 Attribute Routines:  

 H5Acreate  

 H5Acreate_by_name  

 H5Adelete  
 H5Adelete_by_name  

 H5Adelete_by_idx  

 H5Aexists 

 H5Aexists_by_name 

 H5Aget_info_by_idx  

 H5Aget_info_by_name  
 H5Aget_name_by_idx  

 H5Aiterate 

 H5Aiterate_by_name 

 H5Aopen  

 H5Aopen_by_idx  

 H5Aopen_by_name  
 H5Aread  

 H5Arename  

 H5Arename_by_name  

 H5Awrite 

HDF5 Dataset Routines: 

 H5Dcreate  

 H5Dcreate_anon  

 H5Dopen  

 H5Dread 

 H5Dset_extent  

 H5Dwrite  

HDF5 Group Routines: 

 H5Gcreate  
 H5Gcreate_anon   

 H5Gget_info_by_idx  
 H5Gget_info_by_name   

 H5Gopen 

HDF5 Link Routines: 

 H5Lcopy  
 H5Lcreate_external  

 H5Lcreate_hard  

 H5Lcreate_soft  

 H5Lcreate_ud  
 H5Ldelete 

 H5Ldelete_by_idx 
 H5Lexists  

 H5Lget_info  

 H5Lget_info_by_idx  

 H5Lget_name_by_idx  
 H5Lget_val 

 H5Lget_val_by_idx 
 H5Literate  

 H5Literate_by_name 

 H5Lmove  

 H5Lvisit  
 H5Lvisit_by_name  

HDF5 Object Routines: 

 H5Ocopy  

 H5Odecr_refcount  

 H5Oexists_by_name  

 H5Oget_comment  

 H5Oget_comment_b
y_name  

 H5Oget_info  

 H5Oget_info_by_idx  

 H5Oget_info_by_name  

 H5Oincr_refcount  

 H5Olink  

 H5Oopen  

 H5Oopen_by_idx  

 H5Ovisit  

 H5Ovisit_by_name 

HDF5 Datatype Routines: 

 H5Tcommit  H5Tcommit_anon  H5Topen 

Additions to the HDF5 API 

The following routines will be added to the HDF5 API to support the new capabilities in 

the library. 

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5A.html#Annot-Create
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5A.html#Annot-CreateByName
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5A.html#Annot-Delete
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5A.html#Annot-DeleteByName
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Event Queue Operations:  

H5EQcreate() – Create an event queue object. 

hid_t H5EQcreate( hid_t fapl_id );  

H5EQcreate creates an event queue to manage the status of asynchronous requests. 

Multiple event queues can be created and used concurrently in a program. The identifier 
for the event queue can be used in all asynchronous operations that push the request 

associated with the operation into the event queue. All requests that were added to the 

event queue are bundled and tracked together.  

An event queue can be associated with one VOL plugin that the file access property list 
indicates. It is erroneous to use the same event queue for operations that use different 

VOL plugins than the one that the fapl_id was set to use. 

The return value from H5EQcreate is negative on failure and a positive attribute identifier 

on success. 
 

H5EQinsert() - Insert an asynchronous request into an event queue. 

herr_t H5EQinsert(hid_t eventq_id, H5_request_t req )  

H5EQinsert inserts the asynchronous request, req, into the event queue specified by 

eventq_id. The request is added in the top position of the event queue.  

The return value from H5EQinsert is negative on failure and non-negative on success. 

H5EQpop() - Retrieve the top asynchronous request from an event queue. 

herr_t H5EQpop(hid_t eventq_id, H5_request_t *req )  

H5EQpop removes the asynchronous request that was added most recently (the top one) 

from the event queue specified by eventq_id and returns it in req. The user is responsible 

for the request completion after popping it from the event queue. The user must 

eventually call H5AOwait() or H5AOtest() on the request returned and ensure completion 
of the request, otherwise resource leaks will develop.The return value from H5EQpop is 

negative on failure and non-negative on success. 

H5EQwait() - Wait on all asynchronous requests in an event queue. 

herr_t H5EQwait(hid_t eventq_id, int *num_requests, H5_status_t **status )  

H5EQwait waits for all asynchronous requests in the event queue specified by eventq_id 

to complete and returns the number of requests that are in the event queue in the 
num_requests parameter and the completion status for each request in the queue in the 

status vector. The order of the requests in the status array corresponds to the order in 

which they were inserted in the event queue. 

Possible status values are: 
• H5AO_SUCCEEDED – The operation completed successfully. 

• H5AO_FAILED – The operation completed, but was not successful. 

Further work will be done on this function in future quarters to refine the way completion 

status information is delivered. 

The return value from H5EQwait is negative on failure and non-negative on success. 
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H5EQclose() - Close an event queue. 

herr_t H5EQclose(hid_t eventq_id )  

H5EQclose closes the event queue specified by eventq_id and releases resources used by 
it.   The event queue identifier, eventq_id, is no longer valid as a result of this call. 

The return value from H5EQclose is negative on failure and non-negative on success. 

 

Asynchronous Operations: 

Note:  The test and wait operations below can be expanded with MPI-like testall/waitall 
and/or testany/waitany variants as needed. 

H5AOtest() – Test if an asynchronous operation has completed: 

herr_t H5AOtest(H5_request_t *request_ptr, H5_status_t *status_ptr); 

Calling H5AOtest will determine if an asynchronous operation has completed, and return 

the operation’s status to the application.  Possible values returned for the operation’s 

status are: 
 H5AO_PENDING – The operation has not yet completed 

 H5AO_SUCCEEDED – The operation completed successfully 

 H5AO_FAILED – The operation has completed, but failed 

Once an asynchronous operation has completed (successfully or not), the request object 
is invalid for future test/wall calls. 

An asynchronous operation has completed when the underlying operations have indicated 

success or failure.  That may mean that the data was stored in cache at a lower layer 

(such as IOD), but from HDF5’s perspective the operation is now out of its control.  If the 
operation is part of a transaction, that transaction’s commit operation must also complete 

successfully for the operation’s affect to become durable in the container.  

The return value from H5AOtest is negative on failure and non-negative on success. 

H5AOwait() – Wait for an asynchronous operation to complete: 

herr_t H5AOwait(H5_request_t *request_ptr, H5_status_t *status_ptr); 

Calling H5AOwait waits for an asynchronous operation to complete, returning the 
operation’s status to the application.  Possible values returned for the operation’s status 

are:10 

 H5AO_SUCCEEDED – The operation completed successfully 

 H5AO_FAILED – The operation has completed, but failed 

                                         
10

 Note for the future: we should add an intermediate “operation still pending, but data buffer can be re-

used” state for asynchronous operations. 
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Once an asynchronous operation has completed (successfully or not), the request object 

is invalid for future test/wall calls. 

An asynchronous operation has completed when the underlying operations have indicated 
success or failure.  That may mean that the data was stored in cache at a lower layer 

(such as IOD), but from HDF5’s perspective the operation is now out of its control.  If the 

operation is part of a transaction, that transaction’s commit operation must also complete 

successfully for the operation’s affect to become durable in the container.  

The return value from H5AOwait is negative on failure and non-negative on success. 

 

End-to-End Integrity: 

H5Pset_dxpl_checksum() – Set a checksum for data buffer in application memory: 

herr_t H5Pset_dxpl_checksum(hid_t dxpl_id, uint32_t value); 

H5Pset_dxpl_checksum sets a property in the dxpl_id data access property list specifying 
value as a user-supplied checksum for data written with a call to H5Dwrite_ff using 

dxpl_id. When this is set, the HDF5 IOD VOL client will create a checksum for the data 

and verify that checksum matches the value supplied by the user before sending the data 

on to the HDF5 VOL IOD server.   

Regardless of whether the user supplies a checksum value, the HDF5 IOD VOL client will 

create a checksum that is compared with the value generated on the HDF5 IOD VOL 

server. The user must call H5checksum to obtain the value used in the call to 

H5Pset_dxpl_checksum. This ensures that all levels of the stack are using compatible 

checksum algorithms. [Optionally, we could have the application give us function pointer 
to a routine that the HDF5 library can use for verifying the buffer’s checksum, but this is 

slower when the buffer doesn’t need to be copied, since the H5checksum routine must be 

used for passing checksums to IOD] 

The return value from H5Pset_dxpl_checksum is negative on failure and non-negative on 
success. 

H5Pset_dxpl_checksum_ptr() – Specifies a memory location to receive checksum: 

herr_t H5Pset_dxpl_checksum_ptr(hid_t dxpl_id, uint32_t * chksum_ptr) 

H5Pset_dxpl_checksum_ptr sets a property in the data transfer property list specifying 

value as a memory location to receive a checksum for data read with a call to H5Dread_ff 

using dxpl_id. When this is set, the HDF5 IOD VOL client will put the checksum for the 

data into the memory location (*chksum_ptr) supplied by the user, allowing the user to 

compare the client’s checksum to a value it generates using the H5checksum routine.   

Regardless of whether the user supplies a memory location for the checksum, the HDF5 

IOD VOL client will create a checksum and compare it with the value generated on the 

HDF5 IOD VOL server before the operation completes. The user must call H5checksum to 

obtain the value for its comparison with the received value. This ensures that all levels of 
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the stack are using compatible checksum algorithms.H5checksum() – Perform a 

checksum on a buffer:11 

H5checksum() – Generate a checksum. 

uint32_t H5checksum( const void *buf, hsize_t length, H5_checksum_seed_t 

*cseed ) 

H5checksum generates a checksum for the data in buf with size length bytes.  

H5checksum will generate the same checksum for identical data regardless of whether 

the data is stored in a single contiguous buffer or in multiple non-continguous buffers.  
For non-contiguous buffers, H5checksum must be called once for each buffer to 

“accumulate” the checksum for the complete data. 

The checksum seed structure is defined as follows:  

typedef struct H5_checksum_seed_t { 

    uint32_t a; 

    uint32_t b; 

    uint32_t c; 

    int32_t state; 

    size_t total_length; 

} H5_checksum_seed_t; 

If the checksum is for a data in a contiguous buffer, call H5checksum with NULL for cseed 

parameter. 

Otherwise, for checksumming a set of non-contiguous regions that will be passed in a 
single call to H5Dwrite_ff, cseed captures the internal state of the checksum generation 

algorithm, allowing a single checksum to be generated for the set of non-contiguous data 

that is identical to the checksum that would be generated if the same data was 

checksummed in one contiguous block.  

When creating a checksum for a set of non-contiguous buffers, H5checksum should be 
called on each contiguous portion of the buffer with length set to that portion’s 

corresponding size in bytes.  The a, b, c, and state fields in the checksum seed structure 

should be initialized to 0 for the first call to H5checksum, and total_length should be set 

to the total size in bytes of all the data to be checksummed (over all the non-contiguous 
sections of the data to checksum). Each call to H5checksum updates fields in cseed to 

capture the current internal state of the parameters used to compute the checksum and 

returns the updated checksum of the entire data that have been passed in so far to the 

routine with the same cseed parameter. The return values of the intermediate calls to 
H5checksum for a non-contiguous buffer can be discarded; only the last returned value is 

used as the checksum for the non-contiguous data. By using the same cseed structure in 

subsequent calls to H5checksum for each of the non-contiguous buffers, the overall 

checksum is computed step-by-step. 

                                         
11

 Note: we could improve this by creating a higher-level API routine to compute a checksum on an HDF5 

selection within a buffer. 
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The generated checksum can be used with H5Pset_dxpl_checksum to attach a checksum 

to H5Dwrite_ff transfers and to verify the the checksum returned by H5Dread_ff in the 

buffer specified by H5Pset_dxpl_checksum_ptr. 

 

H5Pset_edc_check() – Existing routine – Enables/disables checksum verification on 
data element reads. 

 

Transactions, Container Versions, and Data Movement in the I/O Stack: 

Name: H5TRstart  

Signature:  

herr_t H5TRstart( hid_t file_id, uint64_t num_ranks, uint64_t transaction_num, 

hid_t eq_id  )  

Purpose:  

Starts a new transaction. 

 

Description:  

H5TRstart starts a new transaction on a container that is open for writing.  

After the transaction has been started, objects in the container can be updated using the transaction 

number, and all updates will appear atomically when the transaction, and all lower-numbered 

transactions, are finished, aborted, or skipped. 

The file_id is the file identifier for a container that is open for write.  The container could have 

been created with H5Fcreate_ff or with H5Fopen_ff, flags=H5F_ACC_RDWR. 

num_ranks indicates the number of processes participating in the transaction.   

If num_ranks=0, the application has appointed a transaction leader to signal the start and 

finish of the transaction, and to coordinate with processes participating in the transaction regarding 

when they can begin updating and when their updates are done.  When this is the case, only one 

process (the transaction leader) can call H5TRstart and H5TRfinish for the given 

transaction_num.  This mode of operation is typical for tightly-coupled applications. 

If num_ranks>0, the I/O stack (in particular, IOD) will track the status of the transaction.  All 

num_ranks processes participating in the transaction must call H5TRstart with the same 

values for  num_ranks and transaction_num.  As each participating process is done with 

their updates in the transaction, they individually call H5TRfinish for this 

transaction_num. When all num_ranks processes have called H5TRfinish for this 

transaction_num, the I/O stack detects that the transaction is finished and updates appear 

atomically when all lower-numbered transactions are finished, aborted, or skipped.  This mode 

of operation is typical for loosely-coupled applications. 

EFF Note:  As VOL implements this, clarify if when > 1 rank participates in a transaction whether 

you must have a process group that contains all of the ranks that are participating (or if just some 

ranks in a process group can participate). 

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetEdcCheck
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transaction_num indicates the transaction that is being started. 

 

EFF Note:  iod_trans_start offers the option for leaving the transaction_number unspecified when 

it is called with num_ranks=0 and having IOD supply the next unused transaction number.    This 

capability is currently not exposed by H5TRstart because it would require a more complicated 

calling structure to accommodate the returned transaction number in the asynchronous call.  In 

addition, there is ongoing discussion regarding mixing support for application-supplied 

transaction numbers and IOD-transaction numbers, and race conditions that can occur.    The 

capability may be exposed at a later date, possibly via a separate call that would “request and 

lock” the next transaction number, that could then be passed into H5TRstart. 

The eq_id parameter indicates the event queue the request object for this call should be pushed 

onto when the function is executed asynchronously. The function may be executed synchronously 

by passing in H5_EVENT_QUEUE_NULL for the eq_id parameter.  

EFF Note: May want to add property list argument for later extensions. 

Parameters:  

hid_t file_id  IN: File identifier for container open for write.  

uint64_t 

num_ranks      

IN: Number of process ranks participating in the transaction.  If =0, only one 

rank will call H5TRstart for this transaction, and the application will manage 

the participating processes and call H5TRfinish from one rank.  If >0,  all ranks 

participating in this transaction will call H5TRstart with the same num_ranks 

and all ranks participating will also call H5TRfinish. 

uint64_t 
transaction_num 

IN: Value used to indicate transaction being started. 

hid_t eq_id IN: Event queue identifier specifying the queue that will be used to 

monitor the status of the request object associated with this function call 

when executed asynchronously. Use H5_EVENT_QUEUE_NULL for 

synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates 

whether the operation has been successfully scheduled for asynchronous execution.  The actual success 

or failure of the asynchronous operation must be checked separately through the event queue.  

 

 

Name: H5TRfinish  

Signature:  

herr_t H5TRfinish( hid_t file_id, uint64_t transaction_num, hid_t eq_id  )  

Purpose:  

Finish a transaction that was started with H5TRstart. 

 

Description:  
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H5TRfinish signals that no more updates will be made as part of a given transaction on a given 

container.    

The file_id is the file identifier for a container that is open for write.   

transaction_num indicates the transaction that is being finished. 

If the transaction was started by a single process who called H5TRstart with num_ranks=0, 

then a single process must finish the transaction with a call to H5TRfinish.  

If the transaction was started by one or more processes who called H5TRstart with 

num_ranks>0, then each of those processes must call H5TRfinish.  The transaction is 

finished when all of the processes have called H5TRfinish. 

After the transaction is finished and all lower-numbered transactions are finished, aborted, or 

explicitly skipped, the transaction is committed and all updates that were made as part of the 

transaction will become readable atomically. 

The eq_id parameter indicates the event queue the request object for this call should be pushed 

onto when the function is executed asynchronously. The function may be executed synchronously 

by passing in H5_EVENT_QUEUE_NULL for the eq_id parameter.  

EFF Note:  Currently thinking that the default behavior for H5TRfinish will be to complete when 

the transaction is committed (not just finished).  Will add property list argument to override 

default behavior (and allow completion on finish rather than commit).  Property list argument will 

also allow for later extensions.  Alternatively, may have H5TRcommit call that will finish & return 

on commit.  

Parameters:  

hid_t file_id  IN: File identifier for container open for write.  

uint64_t 
transaction_num 

IN: Value used to indicate transaction being finished. 

hid_t eq_id IN: Event queue identifier specifying the queue that will be used to 

monitor the status of the request object associated with this function call 

when executed asynchronously. Use H5_EVENT_QUEUE_NULL for 

synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates 

whether the operation has been successfully scheduled for asynchronous execution.  The actual success 

or failure of the asynchronous operation must be checked separately through the event queue.  

 

Name: H5TRabort 

Signature:  
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herr_t H5TRabort( hid_t file_id, uint64_t transaction_num, unsigned flags, hid_t 

eq_id  )  

Purpose:  

Abort one or more transactions that were started with H5TRstart. 

 

Description:  

H5TRabort signals that all updates made as part of one or more transactions on a given container 

should be discarded.    

The file_id is the file identifier for a container that is open for write.   

transaction_num indicates the lowest numbered transaction that is being aborted. 

The flags parameter specifies whether the single transaction specified by transaction_num 

should be aborted (flags=ABORT_SINGLE) or whether all transactions that have been started 

whose numbers are greater than or equal to transaction_num should be aborted 

(flags=ABORT_ALL).  If unspecified, the default value is ABORT_ALL. 

Unlike H5TRfinish, H5TRabort can always be called by a single process.  H5TRabort will 

cause all of the transaction updates to be discarded, even if other processes continue updating and 

eventually call H5TRfinish. 

Care should be taken when aborting a single transaction without also aborting higher-numbered 

transactions that have been started, as the higher-numbered transactions could depend on updates 

that were made in the single transaction being aborted.  Typically, a single transaction should be 

aborted only when it involves updates to H5Dataset elements that are known to be under the sole 

control of the aborting process.    

EFF Note:  When running on an I/O stack that does not have burst buffers (IOD runs directly on 

DAOS), ABORT_SINGLE is not supported. 

The eq_id parameter indicates the event queue the request object for this call should be pushed 

onto when the function is executed asynchronously. The function may be executed synchronously 

by passing in H5_EVENT_QUEUE_NULL for the eq_id parameter.  

EFF Note:  May want to add property list argument for later extensions. 

Parameters:  

hid_t file_id  IN: File identifier for container open for write.  

uint64_t 
transaction_num 

IN: Value used to indicate transaction being aborted. 

unsigned flags IN: Abort type 
ABORT_SINGLE 

Abort the single transaction identified by transaction_num 

ABORT_ALL 

Abort the transaction_num transaction, and all higher-

numbered transactions that have been started on the same 
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container.  

ABORT_ALL is the default. 

hid_t eq_id IN: Event queue identifier specifying the queue that will be used to 

monitor the status of the request object associated with this function call 

when executed asynchronously. Use H5_EVENT_QUEUE_NULL for 

synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates 

whether the operation has been successfully scheduled for asynchronous execution.  The actual success 

or failure of the asynchronous operation must be checked separately through the event queue.  

 

 

Name: H5TRskip 

Signature:  

herr_t H5TRskip( hid_t file_id, uint64_t transaction_num, hid_t eq_id  )  

Purpose:  
Explicitly skip a transaction number for a given container. 

 

Description:  

H5TRskip signals that the application will not be using the identified transaction number for a given 

container.   

The file_id is the file identifier for a container that is open for write.   

transaction_num indicates the transaction number that will be skipped. 

The eq_id parameter indicates the event queue the request object for this call should be pushed 

onto when the function is executed asynchronously. The function may be executed synchronously 

by passing in H5_EVENT_QUEUE_NULL for the eq_id parameter.  

H5TRskip should always be called by a single process.  It is an error to call both H5TRskip and 

H5TRstart with the same file_id and transaction_num parameters. 

EFF Note:  IOD currently doesn’t offer a skip but it can be achieved by calling iod_trans_start 

immediately followed by iod_trans_finish. 

If the application will not use one or more transaction numbers, they should be explicitly skipped 

so that higher-numbered transactions can be finished and committed.   

EFF Note:  May want to include a property list argument for future expansion (or consistency). 

EFF Note: May want to offer option of skipping multiple transaction numbers w/ single call. 

Parameters:  
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hid_t file_id  IN: File identifier for container open for write.  

uint64_t 
transaction_num 

IN: Value used to indicate transaction being skipped. 

hid_t eq_id IN: Event queue identifier specifying the queue that will be used to 

monitor the status of the request object associated with this function call 

when executed asynchronously. Use H5_EVENT_QUEUE_NULL for 

synchronous execution. 

Returns:  

Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates 

whether the operation has been successfully scheduled for asynchronous execution.  The actual success 

or failure of the asynchronous operation must be checked separately through the event queue.  

 

Name: H5Fpersist_ff 

Signature:  

herr_t H5Fpersist_ff( hid_t file_id, uint64_t container_version, hid_t eq_id )  

Purpose:  

Copy data from IOD to DAOS, bringing the container contents on DAOS to the specified version. 

 

Description:  

H5Fpersist_ff requests that IOD update the specified container on DAOS to the specified version.  

The file_id is the file identifier for a container that is open for write.   

container_version indicates the version ID of the container that is to be persisted, and 

must correspond to a committed transaction in IOD.   All updates to the container between the last 

persisted version and the version currently being persisted will be copied to DAOS as part of this 

persist request. 

The eq_id parameter indicates the event queue the request object for this call should be pushed 

onto when the function is executed asynchronously. The function may be executed synchronously 

by passing in H5_EVENT_QUEUE_NULL for the eq_id parameter.  

EFF Note:  May want to include a property list argument for future expansion (or consistency).  

For example, might be used to request that the objects that have been persisted be evicted from the 

BB or that a snapshot be taken (and the name of the snapshot). 

Parameters:  

hid_t file_id  IN: File identifier for container open for write.  

uint64_t 
container_version 

IN: Value indicating the version to be persisted. 

hid_t eq_id IN: Event queue identifier specifying the queue that will be used to 

monitor the status of the request object associated with this function 

call when executed asynchronously. Use H5_EVENT_QUEUE_NULL 
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for synchronous execution. 

Returns:  

Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates 

whether the operation has been successfully scheduled for asynchronous execution.  The actual success 

or failure of the asynchronous operation must be checked separately through the event queue.  

 

Name: H5Fsnapshot_ff 

Signature:  

herr_t H5Fsnapshot_ff( hid_t file_id, uint64_t container_version, const char* 

name, hid_t eq_id  )  

Purpose:  
Make a snapshot of a container on DAOS. 

 

Description:  

H5Fsnapshot_ff requests that DAOS make a copy of the specified container and version on 

DAOS, and give it the indicated container name. 

The file_id is the file identifier for a container that is open for write.   

container_version indicates the version ID for which the snapshot is to be made.  If this 

does not correspond to DAOS’ HCE for the container, the snapshot request will fail.     

EFF Note: We considered integrating the snapshot functionality into the H5Fpersist_ff call, but 

decided against it as there may be times when the application does not know it wants a snapshot 

when the data is persisted.   Perhaps only later does it discover that a given version is 

“interesting” and worthy of a snapshot.   By de-coupling the two, the application can request a 

snapshot of a given version at any point prior to doing the next persist. 

name is the name given to the newly created snapshot.     

The eq_id parameter indicates the event queue the request object for this call should be pushed 

onto when the function is executed asynchronously. The function may be executed synchronously 

by passing in H5_EVENT_QUEUE_NULL for the eq_id parameter.  

EFF Note:  May want to include a property list argument for future expansion (or consistency).   

Parameters:  

hid_t file_id  IN: File identifier for container open for write.  

uint64_t 
container_version 

IN: Version of container for which snapshot should be taken. 

const char* name  IN: Name of the snapshot. 

hid_t eq_id IN: Event queue identifier specifying the queue that will be used to 

monitor the status of the request object associated with this function 
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call when executed asynchronously. Use H5_EVENT_QUEUE_NULL 

for synchronous execution. 

Returns:  
Returns a non-negative value if successful; otherwise returns a negative value. 

Note that when this routine is executed asynchronously, the return value from the routine only indicates 

whether the operation has been successfully scheduled for asynchronous execution.  The actual success 

or failure of the asynchronous operation must be checked separately through the event queue.  

 

Data Layout Properties: 

H5Pset_layout() – Existing routine – Choose chunked or contiguous layout for dataset 

storage.  This property will be translated to an IOD hint when the dataset is created in 

the IOD/DAOS container. 

H5Pset_write_mode() – Indicate special properties of write operations to an object: 

herr_t H5Pset_write_mode(hid_t ocpl, H5P_write_mode_t mode); 

Calling H5Pset_write_mode will indicate special properties of writing data to an object.  

Possible values returned for the mode are: 

 H5P_APPEND_ONLY – Write operations will only append data to the object 

Currently this call is only supported for dataset objects, but could be expanded to other 

objects in the future. 

The return value from H5AOtest is negative on failure and non-negative on success. 

 

Library Instructure: 

EFF_init() – Initialize the Exascale FastForward storage stack: 

int EFF_init(MPI_Comm comm, MPI_Info info, const char *fs_driver, const 

char *fs_info); 

Must be called by an application before any HDF5/IOD/DAOS API calls are made.  The 

MPI communicator and info objects are used to set aside the IONs from the CNs and set 

up communication channels between each CN and an ION.  The fs_driver and fs_info 

parameters choose the network driver to use for function shipper communications and 
pass configuration information to that driver, respectively. 

The return value from EFF_init is negative on failure and non-negative on success. 

 

File Objects/Properties: 

H5Pset_fapl_vol_iod() – Use the IOD VOL plugin for container operations: 

herr_t H5Pset_fapl_vol_iod(hid_t fapl_id, MPI_Comm comm, MPI_Info info); 

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetLayout
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Calling H5Pset_fapl_vol_iod will cause the HDF5 library to use the IOD VOL plugin for 

accessing the HDF5 container object (as opposed to the native HDF5 file format, or 

another storage/access mechanism).  The communicator and info parameters are used to 
set up communication channels for collective operations on the HDF5 container. 

Calling this routine is mandatory to use the HDF5 API capabilities described in this 

document. 

The return value from H5Pset_fapl_vol_iod is negative on failure and non-negative on 
success. 

H5Pset_eff_snapshot() – Set snapshot to use when opening a container: 

herr_t H5Pset_eff_snapshot(hid_t fapl_id, uint64_t snapshot_value); 

Calling H5Pset_eff_snapshot will set a container snapshot value in the file access property 
list, to use when opening the HDF5 container, instead of the default action of accessing 

the latest consistent version of the container. 

The return value from H5Pset_eff_snapshot is negative on failure and non-negative on 

success. 

 

Dataset Objects: 

See the HDF5 API reference man pages in the User’s Guide to Fast Forward Features in 

HDF5 (Revision 2.0) for the definitive versions of these routines. 

 

H5DOappend() – Perform an optimized append operation on a dataset: 

herr_t H5DOappend(hid_t dataset_id, hid_t dxpl_id, unsigned axis, size_t 

extension, hid_t memtype, const void *buffer); 

herr_t H5DOappend_ff(hid_t dataset_id, hid_t dxpl_id, unsigned axis, size_t 

extension, hid_t memtype, const void *buffer, uint64_t transaction_number, 

hid_t event_queue_id); 

The H5DOappend routine extends a dataset extension number of elements along the 

dimension specified by axis and writes elements of memtype datatype in buffer to the 

new elements.  The H5DOappend_ff routine is identical in functionality, but allows for 

asynchronous operation and inclusion in a transaction. 

This routine combines calling H5Dset_extent, H5Sselect_hyperslab and H5Dwrite into a 

single, convenient routine that simplifies application development for the common case of 

appending elements to an existing dataset and improves performance of the overall set 

of operations. 

When the dataset has more than one dimension, appending to one axis will write a 

contiguous hyperslab over the other axes.  For example, if a 3-D dataset currently has 

dimensions (3, 5, 8), extending the 0th axis (currently of size 3) by 3 will append 3*5*8 

= 120 elements (which must be pointed to by the buffer parameter) to the dataset, 

making its final dimensions (6, 5, 8). 
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If a dataset has more than one axis with an unlimited dimension, any of those axes may 

be appended to, although only along one axis per call to H5DOappend. 

The return value from H5DOappend is negative on failure and non-negative on success. 

H5DOsequence() – Perform an optimized stream-oriented read operation on a dataset: 

herr_t H5DOsequence(hid_t dataset_id, hid_t dxpl_id, unsigned axis, hsize_t 

start, size_t sequence, hid_t memtype, void *buffer); 

herr_t H5DOsequence_ff(hid_t dataset_id, hid_t dxpl_id, unsigned axis, 

hsize_t start, size_t sequence, hid_t memtype, void *buffer, uint64_t 

transaction_number, hid_t event_queue_id); 

The H5DOsequence routine reads a sequence of sequence number of elements along the 

dimension specified by axis, starting at offset start, from a dataset into buffer of 

memtype datatype.  The H5DOsequence_ff routine is identical in functionality, but allows 

for asynchronous operation and inclusion in a transaction. 

This routine combines calling H5Sselect_hyperslab and H5Dread into a single, convenient 

routine that simplifies application development for the common case of sequenced reads 

from an existing dataset. 

When the dataset has more than one dimension, sequencing along one axis will read a 
contiguous hyperslab over the other axes.  For example, if a 3-D dataset currently has 

dimensions (6, 5, 8), a sequenced read of size 3 along the 0th axis, starting at offset 0 

will read 3*5*8 = 120 elements from the dataset into the buffer. 

The return value from H5DOsequence is negative on failure and non-negative on success. 

H5DOset() – Write a single element to a dataset: 

herr_t H5DOset(hid_t dataset_id, hid_t dxpl_id, const hsize_t coord[],hid_t 

memtype, const void *buffer); 

herr_t H5DOset_ff(hid_t dataset_id, hid_t dxpl_id, const hsize_t 

coord[],hid_t memtype, const void *buffer, uint64_t transaction_number, 

hid_t event_queue_id); 

The H5DOset routine writes a single element at offset coord, to a dataset from buffer of 

memtype datatype.  The H5DOset_ff routine is identical in functionality, but allows for 

asynchronous operation and inclusion in a transaction. 

This routine combines calling H5Sselect_hyperslab and H5Dwrite into a single, convenient 

routine that simplifies application development for the common case of writing a single 
element from a dataset. 

The return value from H5DOset is negative on failure and non-negative on success. 

H5DOget() – Read a single element from a dataset: 

herr_t H5DOget(hid_t dataset_id, hid_t dxpl_id, const hsize_t coord[],hid_t 

memtype, void *buffer); 
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herr_t H5DOget_ff(hid_t dataset_id, hid_t dxpl_id, const hsize_t 

coord[],hid_t memtype, void *buffer, uint64_t transaction_number, hid_t 

event_queue_id); 

The H5DOget routine reads a single element at offset coord, from a dataset to buffer of 

memtype datatype.  The H5DOget_ff routine is identical in functionality, but allows for 

asynchronous operation and inclusion in a transaction. 

This routine combines calling H5Sselect_hyperslab and H5Dread into a single, convenient 

routine that simplifies application development for the common case of retrieving a single 

element from a dataset. 

The return value from H5DOget is negative on failure and non-negative on success. 

H5Pset_dcpl_append_only () – Set a property to indicate whether access to Dataset is in 

an append only fashion (default is FALSE): 

herr_t H5Pset_dcpl_append_only(hid_t dcpl_id, hbool_t flag); 

The H5Pset_dcpl_append_only routine sets a property on the data creation property list, 

that is used in future operations to create a dataset (H5Dcreate_ff), to indicate that 

future access to a dataset will be in an append only manner, with no random I/O of 
elements in the middle of a dataset, and no overwrites of existing elements.  This will 

allow the HDF5 library to store data elements for the dataset in a more optimized 

fashion. 

The return value from H5Pset_dcpl_append_only is negative on failure and non-negative 
on success. 

Group Objects: 

None yet 

Named Datatype Objects: 

None yet 

Attribute Objects: 

None yet 

Link Objects: 

None yet 

Map Objects: 

H5Mcreate() – Create a new map object: 

hid_t H5Mcreate(hid_t loc_id, const char *name, hid_t keytype, hid_t 

valtype, hid_t lcpl_id, hid_t mcpl_id, hid_t mapl_id); 

hid_t H5Mcreate_ff(hid_t loc_id, const char *name, hid_t keytype, hid_t 

valtype, hid_t lcpl_id, hid_t mcpl_id, hid_t mapl_id, uint64_t 

transaction_number, hid_t event_queue_id); 
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The H5Mcreate routine creates a new map object named name at the location given by 

loc_id.  Map creation and access property lists (mcpl_id and mapl_id) modify the new 

map object’s behavior.  All keys for the map are of keytype datatype and all values for 

the map are of valtype datatype.  The H5Mcreate_ff routine is identical in functionality, 

but allows for asynchronous operation and inclusion in a transaction. 

Map IDs returned from this routine must be released with H5Mclose.  

The return value from H5Mcreate is negative on failure and a non-negative map object ID 
on success. 

H5Mopen() – Open an existing map object: 

hid_t H5Mopen(hid_t loc_id, const char *name, hid_t mapl_id); 

hid_t H5Mopen_ff(hid_t loc_id, const char *name, hid_t mapl_id, uint64_t 

transaction_number, hid_t event_queue_id); 

The H5Mcreate routine opens an existing map object named name at the location given 

by loc_id.  The map access property list (mapl_id) modifies the map object’s behavior. 

The H5Mopen_ff routine is identical in functionality, but allows for asynchronous operation 

and inclusion in a transaction. 

Map IDs returned from this routine must be released with H5Mclose.  

The return value from H5Mopen is negative on failure and a non-negative map object ID 

on success. 

H5Mset() – Insert or overwrite a key/value pair in a map object: 

herr_t H5Mset(hid_t map_id, hid_t key_mem_type_id, const void *key, hid_t 

val_mem_type_id, const void *value, hid_t dxpl_id); 

herr_t H5Mset_ff(hid_t map_id, hid_t key_mem_type_id, const void *key, 

hid_t val_mem_type_id, const void *value, hid_t dxpl_id, uint64_t 

transaction_number, hid_t event_queue_id); 

The H5Mset routine inserts or sets a key/value pair in a map object, given by map_id.  

The key (pointed to by key) is of type key_mem_type_id in memory and the value 

(pointed to by value) is of type value_mem_type_id in memory. The data transfer 

property list (dxpl_id) may modify the operation’s behavior. The H5Mset_ff routine is 

identical in functionality, but allows for asynchronous operation and inclusion in a 

transaction. 

The return value from H5Mset is negative on failure and non-negative on success. 

H5Mget() – Retrieves a value from a map object: 

herr_t H5Mget(hid_t map_id, hid_t key_mem_type_id, const void *key, hid_t 

val_mem_type_id, void *value, hid_t dxpl_id); 

herr_t H5Mget_ff(hid_t map_id, hid_t key_mem_type_id, const void *key, 

hid_t val_mem_type_id, void *value, hid_t dxpl_id, uint64_t 

transaction_number, hid_t event_queue_id); 
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The H5Mget routine retrieves a value from a map object, given by map_id.  The key value 

used to retrieve the value (pointed to by key) is of type key_mem_type_id in memory 

and the value (pointed to by value) is of type value_mem_type_id in memory. The data 

transfer property list (dxpl_id) may modify the operation’s behavior. The H5Mget_ff 

routine is identical in functionality, but allows for asynchronous operation and inclusion in 

a transaction. 

The return value from H5Mget is negative on failure and non-negative on success. 

H5Mget_types() – Retrieves the datatypes for keys and values of a map object: 

herr_t H5Mget_types(hid_t map_id, hid_t *key_type_id, hid_t *val_type_id); 

herr_t H5Mget_types(hid_t map_id, hid_t *key_type_id, hid_t *val_type_id, 

uint64_t transaction_number, hid_t event_queue_id); 

The H5Mget_types routine retrieves the datatypes for the keys and values of a map, 

given by map_id.  The key datatype is returned in key_type_id and the value datatype is 

returned in value_type_id.  The H5Mget_types_ff routine is identical in functionality, but 

allows for asynchronous operation and inclusion in a transaction. 

Either (or both) of the datatype ID pointers may be NULL, if that datatype information is 
not desired. 

Any datatype IDs returned from this routine must be released with H5Tclose.  

The return value from H5Mget_types is negative on failure and non-negative on success. 

H5Mget_count() – Retrieves the number of key/value pairs in a map object: 

herr_t H5Mget_count(hid_t map_id, hsize_t *count); 

herr_t H5Mget_count_ff(hid_t map_id, hsize_t *count, uint64_t 

transaction_number, hid_t event_queue_id); 

The H5Mget_count routine retrieves the number of key/value pairs in a map, given by 

map_id. The H5Mget_count_ff routine is identical in functionality, but allows for 

asynchronous operation and inclusion in a transaction. 

The return value from H5Mget_count is negative on failure and non-negative on success. 

H5Mexists() – Check if a key exists in a map object: 

herr_t H5Mexists(hid_t map_id, hid_t key_mem_type_id, const void *key, 

hbool_t *exists); 

herr_t H5Mexists_ff(hid_t map_id, hid_t key_mem_type_id, const void *key, 

hbool_t *exists, uint64_t transaction_number, hid_t event_queue_id); 

The H5Mexists routine checks if a key exists in a map, given by map_id.  The key value 

used (pointed to by key) is of type key_mem_type_id in memory and the status of the 

key in the map is returned in the exists pointer’s value. The H5Mexists_ff routine is 

identical in functionality, but allows for asynchronous operation and inclusion in a 

transaction. 
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The return value from H5Mexists is negative on failure and non-negative on success. 

H5Miterate() – Iterate over the key/value pairs in a map object: 

herr_t H5Miterate(hid_t map_id, hid_t key_mem_type_id, hid_t 

value_mem_type_id, H5M_iterate_func_t callback_func, void *context); 

The H5Miterate routine iterates over the key/value pairs in a map, given by map_id.  The 

user-defined callback routine, given by callback_func, defined below, will be invoked for 

each key/value pair in the map: 

typedef int (*H5M_iterate_func_t)(const void *key, const void *value, void 

*context); 

Keys and values presented to the callback routine will be in key_mem_type_id and 

value_mem_type_id format, respectively.  Additional information may be given to the 

callback routine with the context parameter, which is passed unmodified from the call to 

H5Miterate to the application’s callback. The iteration callback routine should obey the 

same rules as other HDF5 iteration callbacks: return H5_ITER_ERROR for an error 
condition (which will stop iteration), H5_ITER_CONT for success (with continued iteration) 

and H5_ITER_STOP for success (but stop iteration). 

As with other “iteration” routines in the HDF5 API, there is no asynchronous analog for 

this routine, as there is no way to have user callback routines get invoked 
asynchronously. 

The return value from H5Miterate is negative on failure and non-negative on success. 

H5Mdelete() – Delete a key/value pair in a map object: 

herr_t H5Mdelete(hid_t map_id, hid_t key_mem_type_id, const void *key); 

herr_t H5Mdelete_ff(hid_t map_id, hid_t key_mem_type_id, const void *key, 

uint64_t transaction_number, hid_t event_queue_id); 

The H5Mdelete routine removes a key/value pair from a map, given by map_id.  The key 

value used (pointed to by key) is of type key_mem_type_id in. The H5Mdelete_ff routine 

is identical in functionality, but allows for asynchronous operation and inclusion in a 
transaction. 

The return value from H5Mdelete is negative on failure and non-negative on success. 

H5Mclose() – Close a map object: 

herr_t H5Mclose(hid_t map_id); 

herr_t H5Mclose_ff(hid_t map_id, uint64_t transaction_number, hid_t 

event_queue_id); 

The H5Mclose routine terminates access to a map, given by map_id. The H5Mclose_ff 

routine is identical in functionality, but allows for asynchronous operation and inclusion in 

a transaction. 

The return value from H5Mclose is negative on failure and non-negative on success. 
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Query Objects: 

H5Qcreate() – Create a new query object: 

hid_t H5Qcreate(H5Q_query_type_t query_type, H5Q_match_op_t match_op, ...); 

The H5Qcreate routine creates a new query object of query_type type, with match_op 

determining the query’s match condition and additional parameters determined by the 
type of the query.  The following table describes the possible query types, match 

conditions and varargs parameters for the H5Qcreate parameters: 

Query Type 

(H5Q_query_type_t) 

Match Conditions 

(H5Q_match_op_t) 

Varargs parameters 

H5Q_TYPE_DATA_ELEMENT 

(selects data elements) 

H5Q_MATCH_EQUAL 

H5Q_MATCH_NOT_EQUAL 

H5Q_MATCH_LESS_THAN 

H5Q_MATCH_GREATER_THAN 

hid_t val_datatype_id, 

const void *val 

(gives the element value 

for the match condition) 

H5Q_TYPE_ATTR_NAME 

(selects attributes) 

H5Q_MATCH_EQUAL 

H5Q_MATCH_NOT_EQUAL 

const char *name 

(gives the string for the 

match condition) 

H5Q_TYPE_LINK_NAME 

(selects objects) 

H5Q_MATCH_EQUAL 

H5Q_MATCH_NOT_EQUAL 

const char *name 

(gives the string for the 

match condition) 

 

Examples of possible query creation calls are: 

Query to select data elements equal to 17: 

int x=17; 

hid_t q1=H5Qcreate(H5Q_TYPE_DATA_ELEMENT, H5Q_MATCH_EQUAL, H5T_NATIVE_INT, 

&x); 

Query to select objects with link names equal to “Pressure”: 

hid_t q2=H5Qcreate(H5Q_TYPE_LINK_NAME, H5Q_MATCH_EQUAL, “Pressure”); 

Many more query types are possible, including types that select attribute values or types 
that select datasets based on their datatype or dataspace (such as datasets with an 

integer datatype or with three dimensions), but the types above represent a starting 

point and more can always be added over time.  The same could be said for the match 

conditions, with additions of regular expressions for attribute or link names, etc. possible 

in the future. 
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There is no asynchronous form of this operation, or transaction ID parameter, as query 

objects don’t persist in HDF5 containers. 

Query IDs returned from this routine must be released with H5Qclose.  

The return value from H5Qcreate is negative on failure and a non-negative query object 

ID on success. 

H5Qcombine() – Combine query objects to create a new query object: 

hid_t H5Qcombine(hid_t query1, H5Q_combine_op_t combine_op, hid_t query2); 

The H5Qcombine routine creates a new query object by combining two query objects 

(given by query1 and query2), using the combination operator combine_op.  Valid 

combination operators are: H5Q_COMBINE_AND and H5Q_COMBINE_OR (although more 

operators can be created in the future). 

An example of a query combination to select data elements equal to 17 in datasets with 

link names equal to “Pressure” is: 

int x=17; 

hid_t q1=H5Qcreate(H5Q_TYPE_DATA_ELEMENT, H5Q_MATCH_EQUAL, H5T_NATIVE_INT, 

&x); 

hid_t q2=H5Qcreate(H5Q_TYPE_LINK_NAME, H5Q_MATCH_EQUAL, “Pressure”); 

hid_t q3=H5Qcombine(q1, H5Q_COMBINE_AND, q2); 

Query IDs returned from this routine must be released with H5Qclose.  

The return value from H5Qcombine is negative on failure and a non-negative query 

object ID on success. 

H5Qclose() – Close a query object: 

herr_t H5Qclose(hid_t query_id); 

The H5Qclose terminates access to a query object, given by query_id. 

The return value from H5Qclose is negative on failure and non-negative on success. 

View Objects: 

H5Vcreate() – Create a new view object: 

hid_t H5Vcreate(hid_t container_id, hid_t query_id); 

hid_t H5Vcreate_ff(hid_t container_id, hid_t query_id, hid_t 

event_queue_id); 

The H5Vcreate routine creates a new view object on the container, or portion of container, 

given by container_id, using the query given by query_id to determine what 

components of the container are included in the view.  The H5Vcreate_ff routine is 
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identical in functionality, but allows for asynchronous operation (a transaction ID is not 

included as views are not stored in containers). 

The container ID can be a HDF5 File ID (indicating that the entire container is used to 
construct the view), a HDF5 group ID (indicating that just the group and objects 

recursively linked to from it are used to construct the view), a HDF5 dataset ID 

(indicating the just the dataset and its elements are used to construct the view), or an 

existing view object ID (indicating that the view’s contents are used to construct the new 
view).  Some combinations of container and query IDs may result in a view with nothing 

selected (such as passing a query on link names when using a dataset ID for a container 

ID, etc.). 

View IDs returned from this routine must be released with H5Vclose.  

The return value from H5Vcreate is negative on failure and a non-negative view object ID 

on success. 

H5Vget_counts() – Query aspects of a view object: 

herr_t H5Vget_counts(hid_t view_id, hsize_t *attr_count, hsize_t 

*obj_count, hsize_t *elem_region_count); 

The H5Vget_counts routine queries various aspects of a view object, given by view_id.  

The number of attributes, objects and dataset element regions in the view is returned in 

the attr_count, obj_count and elem_region_count parameters, respectively. 

The return value from H5Vget_counts is negative on failure and non-negative on success. 

H5Vget_attrs() – Query attributes within a view object: 

herr_t H5Vget_attrs(hid_t view_id, hsize_t start, hsize_t count, hid_t 

attr_id[]); 

The H5Vget_attrs routine retrieves attributes from a view object, given by view_id.  

Attributes within the view are uniquely enumerated internally to the view object, and the 

count attributes returned from this routine begin at offset start in that enumeration and 

are placed in the array of IDs given by attr_id. 

Attribute IDs returned in attr_id must be released with H5Aclose. 

The return value from H5Vget_attrs is negative on failure and non-negative on success. 

H5Vget_objs() – Query objects within a view object: 

herr_t H5Vget_objs(hid_t view_id, hsize_t start, hsize_t count, hid_t 

obj_id[]); 

The H5Vget_objs routine retrieves objects from a view object, given by view_id.  Objects 

within the view are uniquely enumerated internally to the view object, and the count 

objects returned from this routine begin at offset start in that enumeration and are 

placed in the array of IDs given by obj_id. 

Object IDs returned in obj_id must be released with H5Oclose. 



The information on this page is subject to the use and disclosure restrictions provided on the cover page to this 
document. Copyright 2014, The HDF Group.     

B599860-SS 43    6/20/2013 

The return value from H5Vget_objs is negative on failure and non-negative on success. 

H5Vget_elem_regions() – Query data element regions within a view object: 

herr_t H5Vget_elem_regions(hid_t view_id, hsize_t start, hsize_t count, 

hid_t dataset_id[], hid_t dataspace_id[]); 

The H5Vget_elem_regions routine retrieves dataset and dataspace (with selection) pairs 

from a view object, given by view_id.  Data element regions within the view are uniquely 

enumerated internally to the view object, and the count regions returned from this 

routine begin at offset start in that enumeration and are placed in the array of IDs given 

by dataset_id and dataspace_id.  Both dataset_id and dataspace_id must be large 

enough to hold at least count IDs. 

Each dataspace ID returned from this routine corresponds to the dataset ID at the same 

offset as the dataspace ID.  Each dataspace returned by this routine has a selection 

defined, which corresponds to the elements from the dataset that are included in the 

view. 

Dataset and dataspace IDs returned in dataset_id and dataspace_id must be released 

with H5Dclose and H5Sclose, respectively. 

The return value from H5Vget_elem_regions is negative on failure and non-negative on 
success. 

H5Vclose() – Close a view object: 

herr_t H5Vclose(hid_t view_id); 

The H5Vclose terminates access to a view object, given by view_id. 

The return value from H5Vclose is negative on failure and non-negative on success. 

Index Objects: 

H5Xcreate() – Create a new index object in a container: 

hid_t H5Xcreate(hid_t container_id, hid_t query_id); 

hid_t H5Xcreate_ff(hid_t container_id, hid_t query_id, uint64_t 

transaction_number, hid_t event_queue_id); 

The H5Xcreate routine creates a new index object in a container, given by container_id, 

using the query given by query_id to determine what aspect of the container to index.  

The H5Xcreate_ff routine is identical in functionality, but allows for asynchronous 

operation and inclusion in a transaction. 

Indices created in a container are not populated with information until H5Xupdate is 

called. 

Index IDs returned from this routine must be released with H5Xclose.  

The return value from H5Xcreate is negative on failure and a non-negative index object 

ID on success. 
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H5Xopen() – Open an index object in a container: 

hid_t H5Xopen(hid_t container_id, hsize_t offset); 

hid_t H5Xopen_ff(hid_t container_id, hsize_t offset, hid_t event_queue_id); 

The H5Xopen routine opens an existing index object in a container, given by 

container_id, using the offset given by offset to determine which index within the 

container to open.  The H5Xopen_ff routine is identical in functionality, but allows for 
asynchronous operation. 

Index IDs returned from this routine must be released with H5Xclose.  

The return value from H5Xopen is negative on failure and a non-negative index object ID 

on success. 

H5Xget_count() – Determine the number of index objects in a container: 

herr_t H5Xget_count(hid_t container_id, hsize_t *index_count); 

herr_t H5Xget_count_ff(hid_t container_id, hsize_t *index_count, hid_t 

event_queue_id); 

The H5Xget_count routine returns the number of index objects in a container, given by 

container_id, in the index_count parameter.  The H5Xget_count_ff routine is identical 

in functionality, but allows for asynchronous operation. 

The return value from H5Xget_count is negative on failure and non-negative on success. 

H5Xget_query() – Retrieve the query for an index object: 

herr_t H5Xget_query(hid_t index_id, hid_t *query_id); 

The H5Xget_query routine returns the query for an index object, given by index_id, in 

the query_id parameter. 

Query IDs returned from this routine must be released with H5Qclose.  

The return value from H5Xget_query is negative on failure and non-negative on success. 

H5Xupdate() – Update an index object: 

herr_t H5Xupdate(hid_t index_id); 

herr_t H5Xupdate_ff(hid_t index_id, uint64_t transaction_number, hid_t 

event_queue_id); 

The H5Xupdate routine updates the information tracked by an index object, given by 

index_id, for use in future queries on the container. The H5Xupdate_ff routine is 

identical in functionality, but allows for asynchronous operation and inclusion in a 

transaction. 

Index objects track the version of the container they were last updated with, and if the 

version of the last update does not match the current version of the container, they may 

be ignored when queries are executed on the container to create view objects. 



The information on this page is subject to the use and disclosure restrictions provided on the cover page to this 
document. Copyright 2014, The HDF Group.     

B599860-SS 45    6/20/2013 

The return value from H5Xupdate is negative on failure and non-negative on success. 

H5Xclose() – Close an index object: 

herr_t H5Xclose(hid_t index_id); 

The H5Xclose terminates access to a index object, given by index_id. 

The return value from H5Xclose is negative on failure and non-negative on success. 

Open Issues 
Some of the existing HDF5 routines that are extended above don’t need a transaction ID 

(e.g. routines which only read information from the container, like H5Lexists) and so 

might need to be modified differently (they would be “generically” modified to take an 

event queue identifier, but not a transaction number parameter). 

During our internal design discussions, we have considered having a mechanism for 

tagging objects in some way so that they are prefetched/persisted/removed together.  It 

also seems more likely that an application would want to prefetch/persist/remove objects 

at the IOD layer instead of transactions. We are considering use cases for these 

behaviors and may include them in the full design for transactions, next quarter. 

Risks & Unknowns 
As the changes to the HDF5 library are dependent on capabilities added to multiple lower 

layers of the software stack (the function shipper, IOD and DAOS layers), it is likely that 
changes at those layers will ripple up through the HDF5 API and cause additional work at 

this layer.  On the other hand, we can always mitigate the effect of changes at lower 

levels by abstracting those capabilities and implementing support within the HDF5 library 

for features missing or different below it. 

Conversely, the demands of the applications that use the HDF5 API may pull the features 
and interface in unexpected directions as well, in order to provide the necessary 

capabilities for the application to efficiently and effectively store its data.  These two 

forces must be balanced over the course of the project, hopefully producing a high quality 

storage stack that is useful to applications at the exascale. 


