

LLNS Subcontract No. B599860

Subcontractor Name Intel Federal LLC

Subcontractor Address
2200 Mission College Blvd.

Santa Clara, CA 95052

NOTICE: THIS MANUSCRIPT HAS BEEN AUTHORED BY THE HDF GROUP UNDER INTEL’S SUBCONTRACT WITH

LAWRENCE LIVERMORE NATIONAL SECURITY, LLC WHO IS THE OPERATOR AND MANAGER OF LAWRENCE

LIVERMORE NATIONAL LABORATORY UNDER CONTRACT NO. DE-AC52-07NA27344 WITH THE U.S.
DEPARTMENT OF ENERGY. THE UNITED STATES GOVERNMENT RETAINS AND THE PUBLISHER, BY ACCEPTING

THE ARTICLE OF PUBLICATION, ACKNOWLEDGES THAT THE UNITED STATES GOVERNMENT RETAINS A NON-

EXCLUSIVE, PAID-UP, IRREVOCABLE, WORLD-WIDE LICENSE TO PUBLISH OR REPRODUCE THE PUBLISHED

FORM OF THIS MANUSCRIPT, OR ALLOW OTHERS TO DO SO, FOR UNITED STATES GOVERNMENT PURPOSES.
THE VIEWS AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO NOT NECESSARILY REFLECT THOSE OF THE

UNITED STATES GOVERNMENT OR LAWRENCE LIVERMORE NATIONAL SECURITY, LLC.

© 2014 The HDF Group

Date:
March 4, 2013 Design Document – HDF5 IOD VOL

FOR EXTREME-SCALE COMPUTING
RESEARCH AND DEVELOPMENT (FAST
FORWARD) STORAGE AND I/O

i

Table of Contents

Introduction ... 1

Definitions ... 1

Changes from Solution Architecture .. 1

Specification .. 1

Components of the Stack ... 2
1.1 The HDF5 Library and the Client Side IOD VOL .. 2
1.2 The Function Shipper... 2
1.3 The Server FS Module .. 3
1.4 The Asynchronous Engine .. 3
1.5 IOD Library .. 3

Prototype of the IOD VOL Plugin .. 3
1.6 Initialize the Stack .. 3
1.7 Create a File/Container ... 4
1.8 Create a Group ... 5
1.9 Create a Dataset... 6
1.10 Writing to a dataset ... 6

Open Issues.. 7

Risks & Unknowns ... 7

Revision History

Date Revision Author

Feb. 04, 2013 1.0 Mohamad Chaarawi, The HDF

Group

Feb. 05, 2013 2.0 Mohamad Chaarawi, The HDF

Group

Feb. 20, 2013 3.0 Mohamad Chaarawi, The HDF
Group

Mar. 2, 2013 4.0
Format figures to fit correctly.

Wordsmithing and expanding open issues

section

Mohamad Chaarawi, Jerome
Soumagne, Ruth Aydt, Quincey

Koziol The HDF Group

Mar.-4, 2013 5.0

More wordsmithing, accept older changes

Mohamad Chaarawi, Jerome

Soumagne, Ruth Aydt, Quincey

Koziol The HDF Group

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group.

B599860-SS 1 12/12/12

Introduction
The design of the HDF5 IOD VOL Plugin is described in this document. The application will
call the HDF5 library while running on the system’s compute nodes (CNs). Using the VOL

architecture, the IOD VOL plugin will use a function shipper (FS) to forward the VOL calls

to a server component running on the I/O nodes (IONs). At that point, the VOL calls are

translated into I/O Dispatcher (IOD) API calls and executed at the IONs. The IOD will be
responsible for storing the data on distributed storage using DAOS. Note that the IOD

does not migrate the data right away to the DAOS library, but uses a local Burst Buffer

and a log file system (PLFS) on temporary storage for better performance and defensive

I/O.

Definitions

CN = Compute Node

EFF = Exascale FastForward

FS = Function Shipper

IOD = I/O Dispatcher

ION = I/O Node

VOL = Virtual Object Layer

Changes from Solution Architecture
There are currently no changes from the Solution Architecture descriptions.

Specification
The HDF5 VOL intercepts all HDF5 calls that would potentially touch the storage and
routes them to an internal or user-developed plugin. This allows for HDF5 objects to be

stored in different file formats or storage abstractions that are hidden from the

application, allowing the application to continue using the same HDF5 API and data model

while benefiting from new storage methods and architectures.

Developing an IOD plugin at the HDF5 VOL level would be the ideal approach, because

the VOL abstraction is high enough to provide metadata information to the plugins about

the objects and raw data. The overall architecture of the HDF5 library with the addition of

the IOD plugin will look like this:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group.

B599860-SS 2 12/12/12

Components of the Stack
The EFF storage software stack contains several components essential to the proper
functioning and performance of the application I/O. The scope of this RFC is from the

HDF5 library to the high level IOD API routines. This means that we will not discuss here

how IOD implements its API internally or its interaction with the DAOS library and

underlying distributed storage.

1.1 The HDF5 Library and the Client Side IOD VOL

The application that is running on the CNs of the Exascale system uses the HDF5 library

for I/O and selects the IOD VOL plugin for storing its data. The VOL layer in the HDF5
library captures HDF5 API calls that modify data on disk and routes them through the

IOD plugin. The IOD plugin at the application (client) side will make use of the Function

Shipper [2] to forward the VOL operations to the IONs (server side).

1.2 The Function Shipper

The Function Shipper (FS) is an RPC mechanism that forwards the VOL calls made at CNs

on the client side to the IONs, where the FS server is located. The function shipper

extends the IOFSL package [3], a general forwarding framework developed at Argonne

National Lab. The FS is general enough to allow its users to ship any type of operation
and has a framework for extending the operations it supports. The FS API is

asynchronous, which supports the asynchronous functionality needed in this project. The

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group.

B599860-SS 3 12/12/12

asynchronous request objects received from FS operations are stored and tracked in the

IOD VOL plugin described above.

1.3 The Server FS Module

A server FS module must operate at the IOD nodes to receive operations from clients.

The module can be considered a server-side component of the IOD VOL plugin that is

responsible for translating VOL operations into IOD API calls. Each VOL operation maps to
one or more IOD API calls. Those VOL operations are inserted into an asynchronous

engine running on the ION, possibly with a dependency on another VOL operation

indicated by the client-side VOL plugin.

1.4 The Asynchronous Engine

One of the new features proposed in this EFF project is the addition of asynchronous

operations to the HDF5 library. Asynchronous HDF5 operations will return immediately to

the application, and the application may test or wait for their completion. Both raw data
as well as metadata operations can be asynchronous. The semantics for asynchronous

operations are detailed in the “HDF5 asynchronous I/O, data integrity and data layout

extensions” design document.

1.5 IOD Library

IOD daemons running on the IONs respond to requests from the function shipper’s

server-side IOD VOL plugin, which will issue IOD API calls through tasks enqueued in the

asynchronous engine. The IOD API and functionality are well defined for us, and we can
assume an implementation would be available for us to use at this point, where the scope

of this document ends.

Prototype of the IOD VOL Plugin
This section delves into some technical details on how the IOD VOL plugin is
implemented, showing pseudo-code and flow diagrams of how selected HDF5 operations

are implemented. Operations shown in this document are limited to object creates and

dataset writes and will be expanded to include other HDF5 routines in the future. New

functionality proposed in this research will expand the VOL interface, so we will use an
incremental approach to implementing the IOD VOL plugin.

1.6 Initialize the EFF Stack

The first step is to initialize the entire software stack by calling a new routine named
EFF_init(). This routine establishes communication between the CNs and the IONs

through the function shipper, in addition to initializing the HDF5 and IOD packages.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group.

B599860-SS 4 12/12/12

1.7 Create a File/Container

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group.

B599860-SS 5 12/12/12

1.8 Create a Group

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group.

B599860-SS 6 12/12/12

1.9 Create a Dataset

1.10 Writing to a dataset

The main challenge in writing data elements to an HDF5 dataset is translating the

memory and file space information from the HDF5 API call to actual locations in memory
and the container respectively. Using the HDF5 memory datatype and space selection we

can construct an array of {offset, length} pairs that represents the data in memory. The

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, The HDF Group.

B599860-SS 7 12/12/12

selection in the file space then needs to be mapped into a hyperslab IOD struct, which

consists of four arrays of length equal to the object dimension and includes the start,

count, stride, and block parameters of where the data needs to be written.

The IOD VOL plugin on the client will handle any type conversion needed before sending

data over to the IONs.

Open Issues
The current prototype assumes all HDF5 metadata operations are asynchronous and

independent. We will add an option to allow the application indicate whether such

operations are independent or collective. The collective mode could provide a

performance benefit depending on how all the ranks in an application access data.

The issue we encountered in case of collective metadata access is that a fully
asynchronous model will be hard to implement. A single rank has to talk to the function

shipper server to issue the IOD operations, then broadcast the result to all other ranks so

they can go and access the objects. The collective communication in that case will cause

other ranks to wait on the leader rank for information, which limits the asynchronous
capability.

A different approach to solve this problem is to have all ranks talk asynchronously to the

function shipper server to create object, for example. We can use the IOD KV store

objects to manage access to the container. The first process to update a KV store object
would be the leader which would create the object while other are polling on the KV

store. This might not seem efficient (translates as locks on a file system), but certain

applications may benefit from the full asynchrony that would be achieved at the client

side. However, the main limitation from the IOD library in that case, is that objects that

are created during a transaction need to be committed before being accessed, which
might not suit most applications.

Risks & Unknowns
As the changes to the HDF5 library are dependent on capabilities added to multiple lower
layers of the software stack (the function shipper, IOD and DAOS layers), it is likely that

changes at those layers will ripple up through the HDF5 API and cause additional work

and modifications at the VOL layer.

Conversely, the demands of the applications that use the HDF5 API may pull the features

and interface in unexpected directions as well, in order to provide the necessary
capabilities for the application to efficiently and effectively store its data. These two

forces must be balanced over the course of the project.

