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Abstract—Exascale I/O initiatives will require new and fully
integrated I/O models which are capable of providing straight-
forward functionality, fault tolerance and efficiency. One solu-
tion is the Distributed Asynchronous Object Storage (DAOS)
technology, which is primarily designed to handle the next
generation NVRAM and NVMe technologies envisioned for
providing a high bandwidth/IOPS storage tier close to the
compute nodes in an HPC system. In conjunction with DAOS,
the HDF5 library, an I/O library for scientific applications,
will support end-to-end data integrity, fault tolerance, object
mapping, index building and querying. This paper details the
implementation and performance of the HDF5 library built
over DAOS by using three representative scientific application
codes.

Index Terms—I/O Software Stack, Storage, Resilience, Ex-
ascale, Parallel File System, High Performance Computing,
DAOS, HDF5

1. Introduction

Scientists, engineers and application developers may
soon need to address the I/O challenges of computing
on future exaflop machines. Economic realities drive the
architecture, performance, and reliability of the hardware
that will comprise an exascale I/O system [1]. Moreover,
I/O researchers [2] have highlighted significant weaknesses
in the current I/O stacks that will need to be addressed in
order to enable the development of systems that measurably
demonstrate all of the properties required of an exascale
I/O system. Possible poor filesystem performance at exas-
cale has lead to the introduction of new or augmented file
systems [3]. It is also anticipated that failure will be the
norm [1] and the I/O system as a whole will have to handle
it as transparently as possible, all while providing efficient,
sustained, scalable and predictable I/O performance. The
enormous quantities of data, and especially of application
metadata, envisaged at exascale will become intractable if
there can be no assurance of consistency in the face of all
possible recoverable failures and if there can be no assurance
of error detection in the face of all possible failures.

Furthermore, HPC applications developers and scientists
need to be able to think about their simulation models at
higher levels of abstraction if they are to be free to work

effectively on problems of the size and complexity that be-
come possible at exascale. This, in turn, puts pressure on I/O
APIs to become more expressive by describing high-level
data objects, their properties and relationships. Additionally,
HPC developers and scientists must be able to interact with,
explore and debug their simulation models. The I/O APIs
should, therefore, support index building and traversal, and
be integrated with a high level interpreted language such
as Python to permit ad-hoc programmed queries. Currently,
high-level HPC I/O libraries support relatively static data
models and provide little or no support for efficient ad-hoc
querying and analysis.

To provide a high degree of flexibility and portability
to the user, the HDF5 library [4] [5] organizes data into a
hierarchical tree that is composed of groups, datasets and at-
tributes. Groups and datasets are linked and defined by a link
name; attributes are attached to these objects and defined by
a name and value. Datasets store the actual data and may be
contiguously mapped from an application memory to a file,
or stored in more complex patterns to ease further access and
analysis of the data. This paper discusses an effort to port
applications using HDF5 to use an exascale transactional
I/O stack. Section 2 gives an overview of the envisioned
exascale I/O systems and the challenges associated with
them. Section 3 discusses a new transactional storage I/O
stack implementation via HDF5, and Section 4 gives the
strategies involved in porting scientific applications to the
proposed storage I/O stack and gives numerous benchmarks
for each application.

2. Exascale I/O Challenges

One possible approach for application I/O at exascale is
to become object oriented. Meaning, rather than reading and
writing files, applications will instantiate and persist rich dis-
tributed data structures using a transactional mechanism [6].
As concurrency increases by orders of magnitude, program-
ming styles will be forced to become more asynchronous [7]
and I/O APIs will have to take a lesson from HPC communi-
cations libraries, by using non-blocking operations to initiate
I/O. I/O subsystems that impose unnecessary serialization on
applications (e.g., by providing over-ambitious guarantees
on the resolution of conflicting operations) simply may
not scale. It could, therefore, become the responsibility of



the I/O system to provide, rather than impose, appropriate
scalable mechanisms to resolve such conflicts. It is then the
responsibility of the application to use those mechanisms
correctly.

Components and subsystems in the numbers that will
be deployed at exascale mean that failures are unavoidable
and relatively frequent. Recovery must be designed into
the I/O stack from the ground up and applications must
be provided with APIs that enable them to recover cleanly
and quickly when failures cannot be handled transparently.
This mandates a transactional I/O model such that applica-
tions can be guaranteed their persistent data models remain
consistent in the face of all possible failures. Recovery
should also guarantee consistency for redundant object data
and filesystem metadata whether such mechanisms are im-
plemented within the filesystem or in middleware. Such
behavior can be achieved by confining the object namespace
within containers that appear in the filesystem namespace
as single files. Higher levels of the I/O stack will see these
containers as private scalable object stores, driving the need
for a new standard low-level I/O API to replace POSIX
for these containers. This provides a common foundation
for alternative middleware stacks and high-level I/O models,
suitable to different application domains.

2.1. Exascale System I/O Architecture

The economics and performance tradeoffs between disk
and solid state persistent storage or NVRAM determine
much of the exascale system architecture. NVRAM is re-
quired to address performance issues but cannot scale eco-
nomically to the volumes of data anticipated. Conversely,
disks can address the volume of data but not the economical
aspects of the performance requirements.

Economics dictates a HPC cluster, Fig. 1, with hundreds
of thousands of compute nodes interconnected with a scal-
able, high-speed, low-latency fabric where all (or a subset)
of the nodes, called storage nodes, have direct access to
byte-addressable persistent memory and optionally block-
based NVMe storage as well. A storage node can export over
the network one or more object, each of which corresponds
to a fixed-size partition of its directly accessible storage. The
goal of the HPC cluster is to have both fault tolerance and
concurrency mechanisms. A storage node can host multiple
objects within the limits of the available storage capacity.

2.2. Exascale Compute Cluster

Typically, I/O nodes (ION) will run Linux and have
direct access to the global shared filesystem. Each ION will
serve a different set of compute nodes (CN) to ensure I/O
communications between CNs and IONs exit the exascale
network as fast as possible. The NVRAM on the IONs will
provide a key-value store for use as a pre-staging cache and
a hot storage tier to handle peak I/O load and defensive
I/O. Write data captured by the hot storage tier, will be
repackaged by a layout optimizer according to expected
usage into objects sized to match the bandwidth and latency

Figure 1. Vision for exascale storage.

properties of the storage tier targeted on the shared global
filesystem. These storage objects will then be written in
redundant groups using erasure codes or mirroring as ap-
propriate. Object placement will be dynamic and responsive
to server load to ensure servers remain evenly balanced and
throughput is maximized.

CN or ION failure will be handled transparently by
restarting the application from the last accessible checkpoint.
In the case of CN failure, or if the NVRAM subsystem
used for the hot storage tier is highly available and reliable
(i.e., fully redundant and accessible via multiple paths) this
will only require rollback to the last checkpoint stored in
the hot storage tier. Otherwise the application will have to
restart from the last checkpoint saved to the global shared
filesystem.

3. A New I/O Software Stack

New HDF5 object storage APIs were developed to add
support for end-to-end data integrity, fault tolerance, object
mapping, index building and query. The new I/O APIs are
implemented in the HDF5 library and provide a layer over
the lower level object storage APIs. The top of the stack
features a new version of HDF5, which directly interfaces
with DAOS, Distributed Asynchronous Object Storage, and
provides scalable, transactional object storage containers for
encapsulating entire exascale datasets and their metadata,
Fig. 2.

The DAOS storage system itself builds on existing tech-
niques [8] [9] and middleware such as Argobots [10] for
fast user-level threading and Mercury [11] for low-latency
messaging and high-bandwidth data transfers. The essence
of the DAOS storage model is a key-array object providing
efficient storage for both structured (fixed-size array element
addressed by index) and unstructured (variable length data
stored in first array index) data, Fig. 3. The object key is a
2-level key:

1) Distribution Key (dkey) determines the placement.
A user groups data under a single dkey to hint
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Figure 3. DAOS object model.

locality and colocation of that data on a single
target;

2) Attribute Key (akey) identifies an array of values.

An array value is an arbitrary blob with an arbitrary size
(from 1-byte to many GBs).

Many object schemas (replication/erasure code,
static/dynamic striping and others) are provided to achieve
high availability and scalability. The schema framework
is flexible and easily expandable to allow for new custom
schema types in the future. The actual object layout is
generated on open. The object class is extracted from the
object identifier to determine the schema of the object to be
opened. End-to-end integrity is assured by protecting both
object data and metadata with checksums during network
transfer and storage.

3.1. I/O Transaction Model

The primary goal of the DAOS transaction model is to
guarantee data model consistency with highly concurrent
workloads. Applications should be able to safely update the
dataset in-place and rollback to a known consistent state on
failure.

DAOS also introduces the concept of a container which
represents an object address space inside a pool. A container
is the basic unit of atomicity and versioning. Any time a
container is opened, a handle for that container is returned
to the user. All object operations are explicitly tagged by
the caller with both the container handle and a transaction

identifier called an epoch. Operations submitted against the
same epoch and container handle are applied atomically to
a container on a successful commit.

The DAOS transactional model allows applications to
concurrently update a DAOS container through different
transactional contexts by utilizing different container han-
dles. All operations submitted with the same epoch (trans-
action number) and container handle are guaranteed to be
atomically committed or aborted. Several applications or
processes/threads within an application may independently
open and access a container through different handles.
DAOS tracks all I/O submitted with both the epoch state
and the container handle.

This all or nothing semantic eliminates the possibility
of partially integrated updates on a container handle. On
a successful commit, an epoch is guaranteed to be im-
mutable, durable and consistent. Unused committed and
aborted epochs for a container may be aggregated to reclaim
space utilized by overlapping writes and reduce metadata
complexity. The user is responsible though for conflicts
(for example updating overlapping extents of an array in
the same epoch), as DAOS will not have information at
aggregation time to resolve such conflicts.

DAOS uses the concept of transactions, where one or
more processes in the calling program can participate in
a transaction, and there may be multiple transactions in
progress in a container at any given time. Transactions are
numbered, and the calling program is responsible for assign-
ing transaction numbers in the DAOS stack. Updates in the
form of additions, deletions and modifications are added to
a transaction and not made directly to a container. Once a
transaction is committed, the updates in the transaction are
applied atomically to the container.

The basic HDF5 sequence of transaction operations on
a container for opening and writing is:

1) start transaction N;
2) update the container;
3) finish transaction N.

Transactions can be finished in any order, but they are
committed in strict numerical sequence. The application
controls when a transaction is committed through its assign-
ment of transaction numbers in “create transaction / start
transaction” calls and the order in which transactions are
finished, aborted, or explicitly skipped.

The version of the container after transaction N has been
committed is N. An application reading this version of the
container will see the results from all committed transactions
up through and including N.

The application can persist a container version, N, caus-
ing the data (and metadata) for the container contents that
are in hot storage to be copied to DAOS and atomically
committed to persistent storage.

The application can request a snapshot of a container
version that has been persisted to DAOS. This makes a
permanent entry in the namespace (using a name supplied by
the application) that can be used to access that version of the
container. The snapshot is independent of further changes to



the original container and behaves like any other container
from this point forward. It can be opened for write and
updated via the transaction mechanism (without affecting
the contents of the original container), it can be read, and it
can be deleted.

3.2. HDF5 DAOS Implementation

HDF5 provides a set of user-level object abstractions
for organizing, saving, and accessing application data in a
storage container, such as groups for creating a hierarchy
of objects and datasets for storing multi-dimensional data.
The HDF5 binary file format is no longer used in DAOS.
Instead, each HDF5 object is now represented as a set of
Key-value objects used to store HDF5 metadata, replacing
binary trees that index byte streams. A version of the HDF5
library that supports a Virtual Object Layer (VOL) was used
for DAOS. For this work, a specialized HDF5 DAOS VOL
plug-in interfaces to DAOS replaced the traditional HDF5
storage-to-byte-stream binary format with storage-to-DAOS
objects.

Caching and prefetching is handled by DAOS, rather
than by the HDF5 library, with the HDF5/DAOS VOL server
translating an application’s directives for HDF5 objects into
directives for DAOS. Whereas HDF5 traditionally provided
knobs for controlling cache size and policy, and then tried to
“do the right thing” with respect to maintaining cached data,
DAOS relies on explicit user directives, with the expectation
that written data may be analyzed by another job before
being evicted from the hot storage tier. In addition to the
changes “beneath” the existing HDF5 API, the DAOS HDF5
version supports features seen as critical to future exascale
storage needs: asynchronous operations, end-to-end integrity
checking, and data movement operations that enable I/O
to a hot storage tier. Additionally, DAOS HDF5 handles
DAOS transactions logistics internally (i.e., the schema dis-
cussed in Section 3.1), resulting instantly in the capability
to improve fault tolerance of data storage and allow near
real-time analysis for producer/consumer workloads. Finally,
the DAOS HDF5 version has exascale capabilities that are
targeted to both current and future users that include both
query/view/index APIs to enable and accelerate data analysis
and a map object that augments the group and dataset
objects.

4. Application I/O Strategies

This section discusses the strategies involved in port-
ing scientific applications to DAOS. Section 4.1 discusses
porting the application CLAMR to use HDF5 DAOS and
gives an overview of the usability and capabilities from
the perspective of a typical application code. The second
application Legion, Section 4.2, demonstrates using DAOS
in a data-centric programming model. The last two appli-
cations NetCDF-4 and PIO, Section 4.3, are higher-level
I/O libraries built on top of HDF5 and show the utilization
of a higher level of abstraction to simplify an application’s

interaction with HDF5 and DAOS, which in turn should ease
the transition to DAOS.

A small Intel DAOS prototype cluster, Boro, was used
for all development and benchmarks described in Sec-
tions 4.1-4.3. Boro consists of Intel Xeon Processor E5-
2699 v3 with two CPUs per node. The DRAM (Kingston
KVR21R15S4/8) is being used in place of the NVRAM
(Fig. 1) and the final storage stage uses Seagate Constella-
tion ES.3 ST1000NM0033 HDD. Boro uses InfiniBand as
its network backbone.

Before presenting the applications that were evaluated
and ported to utilize the new I/O software stack, it is worth
mentioning that both the DAOS library and the HDF5 DAOS
backend are still in a prototyping phase. The primary goal of
this research was to prove that utilizing the new I/O stack
is doable and easy once a middleware library is properly
designed on top of DAOS. Tuning for optimal performance
in both HDF5 and DAOS was not done as part of this work.
Therefore it is unknown how the following issues would
effect the performance.

• All the applications, except CLAMR, utilizing
DAOS did not use HDF5 chunking layout for dataset
storage. Thus, only a single DAOS server with one
service thread for I/O is utilized because in this
case an HDF5 dataset is mapped to one DAOS
object distribution. This undoubtedly will result in
a bottleneck once the number of I/Os are increased.

• Communication to the DAOS server uses libfabric
with TCP over InfiniBand, whereas communication
to the Lustre server is done over InfiniBand verbs.

• Lustre servers use spinning disks for storage, but
DAOS used a tmpfs file system over DRAM (since
NVRAM is not available for this cluster).

• The MPI-I/O driver that HDF5 uses on Lustre will
aggregate small I/Os at the client side before submit-
ting I/O to the Lustre servers. No such aggregation
is available yet in the HDF5 DAOS plugin nor at
the DAOS client, which is something that will be
explored in the future.

4.1. CLAMR Application

CLAMR (Cell-Based Adaptive Mesh Refinement) is a
testbed application for hybrid algorithm development using
MPI and OpenCL GPU code [12]. CLAMR does not use
one output file per process due to several issues:

• File systems are limited in their ability to manage
hundreds of thousands of files;

• In practice, managing hundreds of thousands of files
is cumbersome and error-prone;

• Reading the data back using a different number
of processes than the analysis simulation requires
redistribution and reshuffling of the data, negating
the advantage over more sophisticated collective I/O
strategies.

Thus, the I/O strategy for CLAMR is to create one output
file per time step and to store each time step in an HDF5 file.
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Since HDF5 is a self-describing hierarchal file format, the
“metadata” is automatically handled by HDF5. Thus, using
HDF5 significantly reduces the internal bookkeeping and file
construction required by CLAMR when compared to using
POSIX or MPI-IO. The HDF5 implementation organizes the
stored variables into datasets and uses groups to hold the
datasets themselves, Fig. 4.

Only a call to initialize DAOS was added to CLAMR’s
HDF5 implementation to utilize DAOS. This DAOS initial-
ization requires a pool id which is passed to CLAMR by
setting the environment variable pid. The pool id is obtained
by starting the DAOS server:

$ orterun -np 1 --report-uri ˜/uri.txt daos_server -c 1

where c is the number of DAOS server threads, and
then creating the pool and assigning the pool id to a shell
environment variable:

$ export pid=$(orterun -np 1 --ompi-server \
file:˜/uri.txt dmg create)

The first benchmark tested CLAMR for problem sizes
ranging from 27 to 210 grid points by powers of 2, with
the number of processors varying from 1 to 512 by powers
of 2. For the initial run, a stripe count of four and a stripe
size of 4 MB was used. The time to write the checkpoint
files substantially increase as the number of processors is
increased.

To gain a better understanding of what performance
factors could be tuned, the Lustre parameters were varied
for a fixed problem size of 211 grid points. The Lustre
parameters started at a default stripe count of 1 with a
stripe size of 1 MB, as well as the case of a stripe count
of 4 and stripe size of 1 MB. The results were compared
to the first case of a stripe count of 4 and stripe size of
4 MB. The obtained results lead to the conclusion that the
Lustre parameters had a slight effect on performance, with
the default stripe count of 1 and stripe size of 1 MB resulted
in the best throughput.

Finally, different HDF5 chunking layout parameters us-
ing the default Lustre settings of a stripe count of 1 and
stripe size of 1 MB were investigated. A variety of chunk
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sizes from 28 to 218 by powers of 2 were tested across
different problem sizes to obtain the optimal chunk size for
the given problem size. The results show an improvement in
CLAMR’s performance when using the optimal chunk size
in comparison to the nonchunked I/O performance, Fig. 5.

These results show that chunking had little positive
effect on the performance of CLAMR checkpoint writing,
with the result being marginally faster in a few cases and
on par with or significantly worse than unchunked I/O
performance in the other cases. When the chunk size of
8192 was used with 32 processors on the 512 problem size, a
performance increase of 20% is observed, however no chunk
size was able to replicate this performance improvement for
the other sets of parameters.

CLAMR write performance was then assessed using the



0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

16 32 64 128 256

Ti
m

e
D

A
O

S
-C

hu
nk

ed
/T

im
e

D
A

O
S

Number of Processes

Problem Size
512

1024
2048

Figure 7. Comparison of chunked and unchunked CLAMR write per-
formance on DAOS. Unchunked CLAMR I/O used one DAOS server;
Chunked CLAMR I/O used eight DAOS servers across eight different
nodes. Values above one represent chunked CLAMR I/O performing worse
than unchunked CLAMR I/O.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

16 32 64 128 256

Ti
m

e
D

A
O

S
-C

hu
nk

ed
/T

im
e

Lu
st

re

Number of Processes

Problem Size
512

1024
2048

Figure 8. Comparison of chunked CLAMR I/O on DAOS to unchunked
CLAMR I/O on Lustre. Values above one represent chunked CLAMR I/O
on DAOS performing worse than unchunked CLAMR I/O on Lustre.

DAOS stack both with and without the use of chunking. Us-
ing the previous data gathered for CLAMR’s performance in
writing checkpoint files to a Lustre filesystem, a comparison
was drawn, showing that DAOS without chunking performs
twice as well on average as compared to Lustre (up to nearly
three times as well in specific cases) when the number of
processors is sufficiently large, Fig. 6. In order to assess
the performance impact that chunking has, 8 DAOS servers
were started across 8 different nodes and a variety of chunk
sizes ranging from 29 to 221 were tested. When chunking
is enabled, DAOS performance can exceed the unchunked
performance by approximately 25–50%, depending on the
number of processors used and the appropriateness of the
chunk size chosen for the given problem size, Fig. 7. When
the number of processors used is large enough, this in turn
leads to a consistent 50–75% increase in performance as

compared to Lustre unchunked I/O, Fig. 8.

4.2. Legion Parallel Programming System

Legion [13] is a high-level data-centric and task-based
application runtime. Legion’s primary data model is based
on Logical Regions which are the cross product of an N -
dimensional index space and a multi-variable field space.
Logical regions are distinct from the physical regions (mem-
ories) that underlie the logical region and provide the phys-
ical instantiation of the data. The data model also provides
a method of coloring the index space and/or the field space,
which can be used to partition an index space or slice the
field space of the logical region. The runtime can then use
this coloring and a partitioning applied to the logical region
to manage a distributed instance of the logical region.

Legion is currently capable of attaching to HDF5 files
using the low-level Realm runtime on which Legion is built.
Realm maps HDF5 files (or groups) to memory objects
within the runtime using a Direct Memory Access (DMA)
mechanism to collect updates to individual datasets in an
HDF5 file. As part of demonstrating Legion’s use of HDF5
on the DAOS storage stack, an example application is cre-
ated that demonstrates the capabilities of the storage stack.
Tester_io1 is a straightforward tour of the HDF5-DAOS
features from a simple Legion code and is designed to run
the Legion runtime on multiple compute nodes, talking to
multiple I/O and storage server nodes.

In the current implementation of HDF5 on top of DAOS,
transactions and the event stack are handled internally in
the HDF5 library, and consequently, no extra parameters
needed to be added to the original HDF5 APIs. Therefore,
the number of changes from the original Legion and HDF5
implementation was minimal. One new HDF5 API call,
H5VLdaosm_init, was introduced into Legion, which
initializes the VOL plugin by connecting to the DAOS server
pool and registering the driver with the HDF5 library. This
function is called only once by all the processes within
Legion.

The Legion benchmark relies on the low-level net-
working layer gasnet [14] for network-independent, high-
performance communication primitives. The mpiexec
command in the gasnet wrapper script gasnetrun_ibv
needed to be updated to include DAOS specific parameters.
The command for running tester_io on 3 nodes with
131072 elements and 256 shards is:

$ GASNET_BACKTRACE=1 GASNET_USE_XRC=0 \
GASNET_MASTERIP=’...’ GASNET_SPAWN=-L \
gasnetrun_ibv -n 3 tester_io -n 131072 -s 256

As was the case with CLAMR, the pool id is passed to
Legion through the environment variable pid.

The non-bulk synchronous ability of DAOS via the trans-
action and epoch model of DAOS was demonstrated bu us-
ing Tester_io. Fig. 9 shows the typical workload for the

1. Tester_io is part of Legion’s Github repository and can be found
in the source tree at test/hdf attach subregion parallel



Figure 9. Time-series of the I/O phases (write and read) associated with
each shard’s global data structure being persisted for HDF5 with DAOS,
highlighting Legion’s ability to perform independent I/O phases associated
with each shard of global data for DAOS.

read/write phase for different shards in Tester_io. Addi-
tionally, Fig. 9 highlights Legion’s capability of scheduling
different phases of tasks based on explicit dependencies and,
consequently, allows for reading tasks to run concurrently
with writing tasks on the same logical region [15].

Tester_io was used to study the effects of the number
of MPI processes as a function of the number of Legion
subregions, where the size of the problem was fixed for the
number of elements of 229. The number of DAOS servers
was one and the number of Legion MPI processes was
4, 8 and 15 where each compute node executed only one
MPI process, and each node could run 74 tasks. The higher
number of process made a large difference when the number
of subregions increased to greater than 256 for both reading
and writing, Fig. 10 and Fig. 11.

The performance of Legion using DAOS and Lustre is
presented in Fig. 12 for 15 MPI processes and where the
number of elements is 230. The slowdown in DAOS and
the big performance hit when compared with Lustre in this
case was expected, since the Legion tester code generates a
large number of I/O calls, and the HDF5 implementation
in Legion did not use chunking layout for the Datasets.
This results in all the I/O calls being serialized at the
DAOS server to one service thread, whereas the Lustre
server utilizes many threads to handle the incoming I/Os.
Furthermore, as mentioned earlier, the network interface
used by DAOS on this cluster was libfabric over TCP which
is slower compared to InfiniBand verbs utilized by Lustre.
We also noticed that the tmpfs file system was returning
out of space errors for larger problem sizes, even when
space was available, after a certain number of memory
allocations triggered by the large number of I/O operations
from the client. All those issues will be addressed in future
development of both DAOS and the HDF5 DAOS backend.
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Figure 11. DAOS write performances as the number of MPI processes is
increased from 4 to 15 processes for a different number of subregions.
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Figure 12. DAOS read and write performance in comparison to Lustre.
DAOS uses a single service thread while Lustre uses multiple threads on
multiple servers.



Figure 13. HDF5 schema for NetCDF/DAOS.

4.3. High-level I/O Stack Libraries

There is a desire to support legacy libraries on the DAOS
stack that already make use of HDF5. The objective is to
have mid-level code completely manage DAOS, isolating
the application code from the I/O stack.

4.3.1. DAOS NetCDF Implementation. NetCDF [16] is
a set of software libraries used to facilitate the creation,
access, and sharing of array-oriented scientific data in self-
describing, machine-independent data formats. A new set
of DAOS NetCDF APIs were derived from the original
NetCDF APIs, maintaining most of the original function-
ality.

The non-DAOS version of NetCDF added dimensions to
variables by the use of HDF5 Dimension Scale APIs. Storing
dimensions with coordinate variables (variables used as a di-
mension scale for a dimension of the same name) is intuitive
and is self-describing for applications that access the file
directly through HDF5. However, this approach introduces
several dependencies between datasets and attributes that do
not fit well with the DAOS transaction model. In addition,
it introduces many special cases that must be handled,
increasing the difficulty of implementation. Finally, there is
currently no DAOS implementation of the Dimension Scale
APIs and implementing them would be difficult due to the
transaction model.

Since backward compatibility with NetCDF’s file for-
mat was not of a concern (i.e., having NetCDF/DAOS
datasets/containers/files being accessed independently of the
NetCDF/DAOS API) the existing NetCDF4 schema for
HDF5 was abandoned in order to simplify the implemen-
tation. All variables and dimensions were implemented as
HDF5 datasets, all groups as HDF5 groups, and all attributes
as HDF5 attributes. As a convention, all dimensions have
the string DIM prepended to the name in HDF5, all vari-
ables have the string VAR prepended, and all attributes
have the string ATT prepended. Variables have an HDF5
attribute DIMENSION LIST, invisible to the NetCDF API,
that stores references to the dimensions for the variable, Fig.

13. Dimensions are implemented as a scalar dataset of type
H5T STD U64LE, where the value indicates the dimension
length or all 1s (i.e. (uint64_t)(int64_t)-1) to in-
dicate an unlimited dimension. This implementation avoids
all name conflicts without having to add any special cases
to the code, and also allows the removal of code paths for
handling coordinate variables as a special case, instead of
treating them like any other variable. All the NetCDF APIs
that use this new schema were appended with a “_ff” in
their names. Other DAOS additions to NetCDF included:

• Support for unlimited dimensions, but only for col-
lective access and only for the slowest changing
dimension;

• “Links” from variables to their dimensions, allowing
the variables to be queried about their dimensions.

4.3.2. DAOS Parallel I/O (PIO) Implementation. A com-
mon application library which uses NetCDF is the soft-
ware associated with the Accelerated Climate Modeling
for Energy (ACME) [17]program. ACME uses the package
Parallel I/O (PIO) [18] to perform I/O which, in turn, uses as
its backend the NetCDF file format. Since the global DAOS
stack variables are isolated from both PIO and NetCDF, PIO
APIs simply use the DAOS “_ff” NetCDF APIs mentioned
in Section 4.3.1. The transaction number is automatically
initialized and incremented as needed within HDF5. Similar
to the NetCDF convention, all new DAOS PIO C APIs are
indicated by appending a “_ff” to the function names.

PIO expects as input from the application the partitioned
data arrays for each process. Additionally, PIO has the
option for requesting a subset of the CN that will perform
the I/O. Hence, PIO aggregates the I/O from each process to
only a subset of processes for I/O. The I/O processes then
use NetCDF APIs to carry out the I/O. PIO implements two
methods for aggregating the I/O from all the processes to the
subset of I/O processes. In the box method, each compute
task will transfer data to one or more of the I/O processes.
For the subset method, each I/O process is associated with a
unique subset of compute processes for which each compute
process transfers data to only one I/O process [19]. In gen-
eral, the subset method reduces the overall communication
cost when compared to the box method.

Additionally, since PIO has the capability of using a sub-
set of processes for I/O, H5VLdaosm_init (i.e., a DAOS
HDF5 API used to start the DAOS stack) uses the MPI sub-
communicator group so that only those processes involved
in I/O will initialize the DAOS stack. This initialization of
the DAOS stack happens automatically when the I/O MPI
sub-communicator is created in PIO and it is finalized when
this same sub-communicator is freed in PIO.

PIO’s testing program pioperformance.F90 uses
two input files; the first file contains namelist settings for
the testing parameters and the second file contains the de-
composition information from a PIO program (e.g. CESM,
ACME). The test program reads namelist and then generates
test data consisting of integers, 4-byte reals and 8-byte reals.
It then writes the data using DAOS NetCDF via PIO APIs



Figure 14. Three combinations of PIO, NetCDF and HDF5.

and then reads the data back using DAOS PIO, checks for
correctness, and outputs the data rate in reading and writing
the data.

There are two versions of NetCDF: (1) the “standard”
version is the unmodified v4.4.1 of NetCDF available from
Unidata and (2) the “DAOS” version, which is a modified
v4.4.1 of NetCDF, as previously discussed. Three combi-
nations of PIO, NetCDF and HDF5 are investigated, Fig.
14:

1) PIOstandard—The PIO configuration uses standard
HDF5 with the standard version of NetCDF;

2) PIOdaos disable—The PIO configuration uses stan-
dard HDF5 with the DAOS version of NetCDF,
where the DAOS capabilities in NetCDF are dis-
abled;

3) PIOdaos—The PIO configuration uses the DAOS
version of HDF5, and the DAOS capabilities in
NetCDF are enabled.

Thus, for both case 1 and 2, a POSIX file is getting written,
via HDF5, to a Lustre backend.

All tests were made on Boro to compare PIO with Lustre
and DAOS, and to verify the DAOS PIO implementation.
An investigation of the Lustre parameters resulted in a stripe
count of 1 with a stripe size of 2MB being used for all
the Lustre benchmark results. The symbol in the figures is
obtained by running the benchmarks ten times and averaging
the I/O times over those ten runs. The vertical line segment
represents the minimum and maximum of I/O over the ten
runs.

The benchmark used 1024 processes and the decompo-
sition file, piodecomp1024tasks03dims05.dat. The
modified DAOS version of NetCDF outperforms the stan-
dard NetCDF version for both reading (Fig. 15), and writing
(Fig. 16). Moreover, the DOAS implementation is on aver-
age faster than the Lustre implementation for reading and
matches Lustre complete times for writing.

5. Conclusions

The increase from petascale to exascale for storage and
I/O requires a new approach to the architecture because it is
not possible to just scale prior systems. As shown, DAOS is
primarily designed for these next generation systems which
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Figure 15. Read performance comparison between Lustre and DAOS for
1024 processes.
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Figure 16. Nearly identical DAOS and Lustre write performance for 1024
processes.

use NVRAM and NVMe storage technology as a means
to provide a high bandwidth storage tier very close to the
compute node.

This research highlights the challenges and issues when
porting existing applications codes to a transaction model for
I/O. The transition to using DAOS for application and mid-
dleware developers is made easier by using HDF5, which
hides the DAOS schema within HDF5. Although this paper
focuses on HDF5 and DAOS, other I/O libraries such as
MPI-I/O and POSIX I/O will also be supported on top of
DAOS in the future.

The performance of DAOS in comparison to Lustre
from a diverse set of applications was highlighted. Although
the comparison was not justified due to the significant
differences in the hardware and software stack, in similar
workloads DAOS completed either faster or equivalent to
Lustre. Other cases highlight the importance of leveraging
multiple DAOS server processes and threads to avoid the
bottleneck at the server side when performing large number
of I/Os from the client without any aggregation, and pro-



vided ground for improving both the DAOS implementation
and the HDF5 plugin for DAOS, as both are still in the
prototyping phase.
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