
Use	or	disclosure	of	data	contained	on	this	sheet	is	subject	to	the	restriction	on	the	title	page	and	page	ii	of	this	document.	
Intel	Federal	LLC	Proprietary.	Copyright	©	2017	HDF	Group.	
	
B613306	 18 May 2017 i	

	
	

	
Government	Purpose	Rights	

	
Prime	Contract	No.:	DE-AC52-07NA27344	
LLNL	Subcontract	No.:	B613306	
Subcontractor	Name:		Intel	Federal	LLC,	on	behalf	of	itself,	its	parent	and	
AffiliatesSubcontractor	Address:	4100	Monument	Corner	Dr,	Ste	540,	Fairfax,	VA	22030	
	
The	Government’s	rights	to	use,	modify,	reproduce,	release,	perform,	display,	or	disclose	this	
technical	data	are	restricted	by	the	above	agreement.			
	

Limited	Rights	
	
Prime	Contract	No.:	DE-AC52-07NA27344	
LLNL	Subcontract	No.:	B613306	
Subcontractor	Name:		Intel	Federal	LLC,	on	behalf	of	itself,	its	parent	and	
AffiliatesSubcontractor	Address:	4100	Monument	Corner	Dr,	Ste	540,	Fairfax,	VA	22030	
	
The	Government’s	rights	to	use,	modify,	reproduce,	release,	perform,	display,	or	disclose	this	
technical	data	are	restricted	by	the	above	agreement.			
	

	
Date: 	
18 May, 2017	
	

M8.3 ACME Migration to DAOS	
	

Use	or	disclosure	of	data	contained	on	this	sheet	is	subject	to	the	restriction	on	the	title	page	and	page	ii	of	this	document.	
Intel	Federal	LLC	Proprietary.	Copyright	©	2017	HDF	Group.	
	
B613306	 18 May 2017 ii	

NOTICES

Acknowledgment: This material is based upon work supported by Lawrence Livermore National
Laboratory subcontract B613306.

USG Disclaimer: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

Intel Disclaimer: Intel makes available this document and the information contained herein in
furtherance of extreme-scale storage and I/O research and development. None of the information
contained therein is, or should be construed, as advice. While Intel makes every effort to present
accurate and reliable information, Intel does not guarantee the accuracy, completeness, efficacy,
or timeliness of such information. Use of such information is voluntary, and reliance on it should
only be undertaken after an independent review by qualified experts.

Access to this document is with the understanding that Intel is not engaged in rendering advice or
other professional services. Information in this document may be changed or updated without
notice by Intel.

This document contains copyright information, the terms of which must be observed and
followed.

Reference herein to any specific commercial product, process or service does not constitute or
imply endorsement, recommendation, or favoring by Intel or the US Government.

Intel makes no representations whatsoever about this document or the information contained
herein.

IN NO EVENT SHALL INTEL BE LIABLE TO ANY PARTY FOR ANY DIRECT,
INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THIS
DOCUMENT, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS
INTERRUPTION, OR OTHERWISE, EVEN IF INTEL IS EXPRESSLY ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

	

PIO and DAOS Breitenfeld et al.

Use	or	disclosure	of	data	contained	on	this	sheet	is	subject	to	the	restriction	on	the	title	page	and	page	ii	of	this	document.	
Intel	Federal	LLC	Proprietary.	Copyright	©	2017	HDF	Group.	
	
B613306	 18 May 2017 1	

ACME Migration to DAOS 	
M. Scot Breitenfeld1 and Neil Fortner2

1 brtnfld@hdfgroup.org, 2nfortne2@hdfgroup.org

I.NetCDF	Overview	
	
NetCDF	is	a	set	of	software	libraries	used	to	facilitate	the	creation,	access,	and	sharing	of	array-
oriented	scientific	data	in	self-describing,	machine-independent	data	formats.	The	version	of	
NetCDF	for	this	project	uses	a	DAOS	version	of	HDF5	found	in	the	hdf5_daosm	branch	at		
	

https://bitbucket.hdfgroup.org/users/nfortne2/repos/hdf5_nf/browse.	
	
This	implementation	of	HDF5,	in	comparison	to	the	inaugural	IOD/DAOS	version,	removes	
access	to	the	DAOS	variables	from	the	user	(i.e.	the	read	context	identifier,	the	event	stack	
identifier,	the	transaction	identifier	and	version	number)	by	handled	them	internally	
within	the	HDF5	library.	Therefore,	there	is	no	longer	a	need	for	separate	DOAS	HDF5	APIs,	
which	were	distinguished	by	a	_ff	prefix	in	the	original	implementation	of	HDF5	for	
IOD/DAOS.	This	greatly	simplifies	porting	an	application	which	is	already	using	the	
standard	HDF5	library	to	work	with	DAOS.	The	DAOS	HDF5	APIs	used	by	NetCDF	are,	
	

• H5Acreate	
• H5Awrite	
• H5Aopen	
• H5Aclose	
• H5Aiterate	
• H5Aget_name	
• H5Aget_space	
• H5Aget_type	

• H5Dcreate	
• H5Dopen	
• H5Dwrite	
• H5Dread	
• H5Fopen	
• H5Fcreate	
• H5Gopen	
• H5Gcreate	

• H5Gopen	
• H5Gclose	
• H5Literate	
• H5Oget_info	
• H5Oclose	
• H5Topen	

	

	
	
Furthermore,		this	project	uses	a	unique	DAOS	version	of	NetCDF,	meaning	a	NetCDF	version	
built	using	the	DAOS	HDF5	implementation	mention	above,	found	at	
	

https://hdfgit.hdfgroup.org/scm/ffwd2/NetCDF-c.git.	
	

In	the	initial	implementation	of	DAOS	NetCDF,	the	DAOS	variables	were	exposed	to	the	
calling	program	using	the	alternate,	DAOS	specific,	_ff	prefix	HDF5	APIs.	Furthermore,	in	
the	initial	implementation,	the	NetCDF	APIs	managed	the	transactions	within	NetCDF,	from	
file	creation	to	file	closing.	In	the	current	NetCDF	implementation,	since	DAOS	control	is	

PIO and DAOS Breitenfeld et al.

Use	or	disclosure	of	data	contained	on	this	sheet	is	subject	to	the	restriction	on	the	title	page	and	page	ii	of	this	document.	
Intel	Federal	LLC	Proprietary.	Copyright	©	2017	HDF	Group.	
	
B613306	 18 May 2017 1	

now	shifted	to	within	HDF5,	the	use	of	DAOS	specific	HDF5	APIs	were	replaced	with	
standard	HDF5	APIs,	and	the	DAOS	specific	variables	were	for	the	most	part	removed	from	
NetCDF.	
	
However,	the	current	DAOS	version	of	NetCDF	still	contains	a	modified	DAOS	compatible	
schema.	Namely,	the	original	NetCDF	implementation	of	dimensions	used	the	HDF5	
Dimension	Scale	API	to	add	dimensions	to	variables	(analogous	to	HDF5	datasets).	This	
works	well	as	a	way	to	store	dimensions	with	coordinate	variables	(i.e.	variables	used	as	a	
dimension	scale	for	a	dimension	of	the	same	name)	in	a	way	that	is	intuitive	and	self-
describing	for	applications	that	access	the	file	directly	through	HDF5.	However,	this	
approach	introduces	several	dependencies	between	datasets	and	attributes	that	do	not	fit	
well	with	the	DAOS	transaction	model.	Also,	it	presents	many	special	cases	that	must	be	
handled,	increasing	the	difficulty	of	implementation.	Finally,	there	is	currently	no	DAOS	
implementation	of	the	Dimension	Scale	APIs	and	implementing	them	would	be	difficult	due	
to	the	transaction	model.		
	
Since	this	project	is	not	concerned	about	NetCDF/DAOS	datasets	(containers/files)	being	
accessed	independently	of	the	NetCDF	API,	the	existing	NetCDF	scheme	was	abandoned	to	
simplify	the	implementation.	All	variables	and	dimensions	are	implemented	as	HDF5	
datasets,	all	groups	as	HDF5	groups,	and	all	attributes	as	HDF5	attributes.	All	dimensions	
have	the	string	DIM_	prepended	to	the	name	in	HDF5,	all	variables	have	the	string	VAR_	
prepended,	and	all	attributes	have	the	string	ATT_	prepended.	Variables	have	an	HDF5	
attribute	DIMENSION_LIST,	invisible	to	the	NetCDF	API,	that	stores	references	to	the	
dimensions	for	the	variable.	Dimensions	are	implemented	as	a	scalar	dataset	of	type	
H5T_STD_U64LE,	where	the	value	indicates	the	dimension	length,	or	all	1s	(i.e.	
(uint64_t)(int64_t)-1)	to	indicate	an	unlimited	dimension.	This	implementation	will	avoid	
all	name	conflicts	without	having	to	add	any	special	cases	to	the	code	and	allows	us	to	
remove	code	paths	for	handling	coordinate	variables	as	a	particular	case,	instead	of	
treating	them	like	any	other	variable.		

II.	ACME/PIO	Overview	

The	end	goal	of	implementing	a	DAOS	version	of	NetCDF	is	to	demonstrate	an	application	
which	uses	NetCDF.	The	NetCDF	application	identified	for	this	project	is	software	
associated	with	the	Accelerated	Climate	Modeling	for	Energy	(ACME)	program.	Their	
software	uses	the	package		Parallel I/O (PIO) to perform I/O which, in turn, uses as its backend
the NetCDF file format. PIO uses a large subset (211) of the NetCDF functions (not all of which
need to be DAOS compatible), and a complete list of those functions is given in Appendix A. 	

The PIO performance testing program pioperformance.F90 is an ACME I/O stand-alone driver
program which closely duplicates the I/O pattern from an actual ACME application. Therefore,
this project implemented the program pioperformance.F90 within the DAOS framework via a
DAOS version of PIO. Pioperformance.F90 uses	the	following	PIO	functions,	

PIO and DAOS Breitenfeld et al.

Use	or	disclosure	of	data	contained	on	this	sheet	is	subject	to	the	restriction	on	the	title	page	and	page	ii	of	this	document.	
Intel	Federal	LLC	Proprietary.	Copyright	©	2017	HDF	Group.	
	
B613306	 18 May 2017 2	

• PIO_init	
• PIO_Readdof	
• PIO_CreateFile	
• PIO_InitDecomp	
• PIO_setframe	

• PIO_write_darray	
• PIO_read_darray	
• PIO_freedecomp	
• PIO_OpenFile	
• PIO_CloseFile	

• PIO_def_var	
• PIO_def_dim	
• PIO_def_att	
• PIO_enddef	

	
The	PIO	APIs	in	blue	utilize	DOAS	compatible	NetCDF	APIs.	Since	no	NetCDF	APIs	were	
changed	as	result	of	porting	NetCDF	to	DAOS,	the	actual	code	modifications	in	PIO	were	
minimal.	For	the	most	part,	the	changes	simply	included	the	addition	of	a	call	to	initiating	
DAOS	(H5VLdaosm_init)	and	a	call	for	terminating	DAOS	(H5VLdaosm_term).	
	
The	DAOS	PIO	source	files	and	test	code	can	be	downloaded	from	
	

https://hdfgit.hdfgroup.org/scm/ffwd2/parallelio.git	
	

PIO	expects	as	input	from	the	application	the	partitioned	data	arrays	for	each	process.	
Additionally,	PIO	has	the	option	for	requesting	a	subset	of	the	CN	that	will	perform	the	IO.	
Hence,	PIO	aggregates	the	IO	from	each	process	to	only	a	subset	of	processes	for	IO.	The	IO	
processes	then	use	NetCDF	APIs	to	carry	out	the	IO.		PIO	implements	two	methods	for	
aggregating	the	IO	from	all	the	processes	to	the	subset	of	IO	processes.	In	the	box	method,	
each	compute	task	will	transfer	data	to	one	or	more	of	the	IO	processes.		For	the	subset	
method,	each	IO	process	is	associated	with	a	unique	subset	of	computing	processes	for	
which	each	compute	process	transfers	data	to	only	one	IO	process	[1].	In	general,	the	subset	
method	reduces	the	overall	communication	cost	when	compared	to	the	box	method.	All	the	
demonstrations	use	the	box	method.		
	
Although	PIO	has	the	capability	of	using	a	subset	of	processes	for	IO,	H5VLdaosm_init	
currently	needs	to	be	called	by	all	the	processes	and	not	only	those	processes	involved	in	
IO.	The	automatic	initialization	of	DAOS	happens	when	the	IO	MPI	sub-communicator	is	
created	in	PIO,	and	it	is	finalized	when	this	same	sub-communicator	is	freed	in	PIO.	

III	Demonstration	
	
The	test	program	uses	two	input	files;	the	first	file	contains	namelist	settings	for	the	testing	
parameters	and	the	second	file	contains	the	decomposition	information	from	a	PIO	
program	(e.g.	CESM,	ACME).	Decomposition	files	are	available	at,	
	

https://svn-ccsm-piodecomps.cgd.ucar.edu/trunk.	
	
The format of the decomposition file name is,	
	
piodecomp<NUM_MPI_PROCESSES>tasks<NUM_DIMENSIONS>dims<COUNTER>.dat	

PIO and DAOS Breitenfeld et al.

Use	or	disclosure	of	data	contained	on	this	sheet	is	subject	to	the	restriction	on	the	title	page	and	page	ii	of	this	document.	
Intel	Federal	LLC	Proprietary.	Copyright	©	2017	HDF	Group.	
	
B613306	 18 May 2017 2	

	
where NUM_MPI_TASKS is the number of MPI tasks/ranks (30,	1024,	2048	and	16384	are	
available), NUM_DIMENSIONS is the number of dimensions in the decomposition (typically
corresponding to the variable for which the decomposition was created), and COUNTER is a file
identifier counter. [2]

III.a	Overview	of	Demonstration	
	
The test program pioperformance.F90 reads namelist and then generates test data consisting of
integers, 4-byte reals and 8-byte reals. It then writes the data using DAOS NetCDF via PIO
APIs. It then reads the data back using DAOS PIO, checks for correctness, and outputs the data
rate in reading and writing the data. 	
	

III.b	Summary	of	the	Demonstration	on	May	18th,	2017	

CASE I – This demonstration is for 30 processes, it creates a limited dataset, and uses the
following parameters:

Decomposition File Number of IO tasks Number of variables Number of frames
piodecomp30tasks03dims07.dat 4 6 1
piodecomp30tasks02dims05.dat 8 6 1

Limited datasets have a fixed initial dataset size, and unlimited are extendible datasets and
require chunking implemented in the HDF5/DAOS implementation. The milestone for this
quarter includes implementing chunking for HDF5/DAOS but does not include a DAOS
implementation of H5Sset_extent, which is needed for extending the dimensions of a chunked
dataset, which is needed for multiple frames. Thus, this feature will not be demonstrated in PIO.

Procedure	

(1) Starting a server
orterun -np 1 --report-uri ~/uri.txt daos_server -c 1

(2) Create pool
 orterun -np 1 --ompi-server file:~/uri.txt dmg create
the pool id is stored in environment variable pid.

(3) Run PIO
 orterun -x DD_MASK="all" -x pid="$pid" --ompi-server file:~/uri.txt -hostfile ~/.host_file -n 30 pioperf pioperf.nl

 the input argument for pioperf is the namelist control file.

PIO and DAOS Breitenfeld et al.

Use	or	disclosure	of	data	contained	on	this	sheet	is	subject	to	the	restriction	on	the	title	page	and	page	ii	of	this	document.	
Intel	Federal	LLC	Proprietary.	Copyright	©	2017	HDF	Group.	
	
B613306	 18 May 2017 3	

In the demonstration, both instances of the case I completed successfully and the correctness of
each program was verified.

III.c	Benchmarks	for	PIO	on	boro	
	
As	mentioned	in	Section	I,	this	research	uses	two	versions	of	NetCDF:	(1)	the	“standard”		
version	is	the	unmodified	v4.4.1	of	NetCDF	available	from	Unidata	and	(2)	the	“DAOS”	
version,	which	is	a	modified	v4.4.1	NetCDF	as	discussed	in	Section	I.	There	are	three	
combinations	of	PIO,	NetCDF	and	HDF5	that	were	investigated,	Figure	1,	
	

1. PIOstandard	–	The	PIO	configuration	uses	standard	HDF5	with	the	standard	version	of	
NetCDF.	

2. PIOdaos_disable	–	The	PIO	configuration	uses	standard	HDF5	with	the	DAOS	version	of	
NetCDF,	where	the	DAOS	capabilities	in	NetCDF	are	disabled.	

3. PIOdaos	–	The	PIO	configuration	used	the	DAOS	version	of	HDF5	with	the	DAOS	
capabilities	in	NetCDF	being	enabled.		
	

Thus,	for	both	case	1	and	2,	a	POSIX	file	is	getting	written,	via	HDF5,	to	a	Lustre	backend.		
	

	

Figure	1.	Three	combinations	of	PIO,	NetCDF,	and	HDF5.	

	
All	tests	were	made	on	Intel’s	boro	cluster	to	compare	PIO	with	Lustre	and	DAOS,	and	to	
verify	the	DAOS	PIO	implementation.	The	Lustre	parameters	were	investigated	for	the	30	
processes	case,	Figure	1,	and	accordingly,	a	stripe	count	of	1	with	a	stripe	size	of	2MB	was	
chosen	for	all	the	Lustre	benchmark	results.	The	benchmarks	were	run	ten	times,	and	the	
average	IO	over	all	ten	runs	is	plotted	as	a	symbol	in	the	subsequent	benchmarking	figures.	
The	vertical	line	segment	represents	the	minimum	and	maximum	of	IO	over	the	ten	runs.	

PIO and DAOS Breitenfeld et al.

Use	or	disclosure	of	data	contained	on	this	sheet	is	subject	to	the	restriction	on	the	title	page	and	page	ii	of	this	document.	
Intel	Federal	LLC	Proprietary.	Copyright	©	2017	HDF	Group.	
	
B613306	 18 May 2017 4	

									 	
Figure	2.	Lustre	parameter	Stripe	Size	(a)	and	Stripe	Count	(b)	effects	on	reading	and	write	performance.		

The	first	benchmark	was	with	30	processor	and	using	the	decomposition	file	
piodecomp30tasks03dims07.dat,	Figure	3.	The	modified	DAOS	version	of	netCDF	
outperforms	the	standard	for	both	reading	and	writing.	Furthermore,	the	read	
performance	is	nearly	twice	as	fast	as	the	write	performance.	The	results	show	a	decline	in	
performance	as	the	number	of	IO	tasks	exceeds	20	processes.	This	decrease	is	because	of	
the	decomposition;	if	another	decomposition	file	is	used,	piodecomp30tasks03dims15.dat,	
then	the	distinct	drop	at	a	certain	number	of	processes	is	not	present,	Figure	4.	
	

	 									 	
Figure	3.	Read	(a)	and	write	(b)	performance	of	30	processes	as	a	function	of	IO	tasks,	decomposition	file	

piodecomp30tasks03dims07.dat.		

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

M
B/

s

Stripe Size (MB)

Read, stripe count=1

Write, stripe count=1

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8

M
B/

s

Stripe Count

Read, stripe size=2MB

Write, stripe size=2MB

 50

 100

 150

 200

 250

 300

 350

 400

 1 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M
B/

s

Number of IO Tasks

Read, PIO daos

Read, PIO daos_disable

Read, PIO standard

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 1 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M
B/

s

Number of IO Tasks

Write, PIO daos

Write, PIO daos_disable

Write, PIO standard

(a)	 (b)	

(a)	 (b)	

PIO and DAOS Breitenfeld et al.

Use	or	disclosure	of	data	contained	on	this	sheet	is	subject	to	the	restriction	on	the	title	page	and	page	ii	of	this	document.	
Intel	Federal	LLC	Proprietary.	Copyright	©	2017	HDF	Group.	
	
B613306	 18 May 2017 5	

Figure	4	Read	(a)	and	write	(b)	performance	of	30	processes	as	a	function	of	IO	tasks,	
piodecomp30tasks03dims15.dat	decomposition	file.	

	
The	second	benchmark	was	the	1024	processes	and	used	the	decomposition	file,	
piodecomp1024tasks03dims05.dat.	The	results	show	a	similar	behavior	as	that	found	for	the	
30	processes	case,	but	the	DOAS	implementation	is	on	average	faster	than	the	Lustre	
implementation	for	reading,	Figure	5a,	and	matches	the	Lustre	performance	for	writing,	
Figure	5b.	
	
	
	

	 									 	
Figure	5.	Read	(a)	and	write	(b)	performance	of	1024	processes	as	a	function	of	IO	tasks.		

	
	

	

References	
	
[1] http://ncar.github.io/ParallelIO/decomp.html
[2] https://groups.google.com/forum/#!topic/parallelio/vtvOXP-sjZE

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 1 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M
B/

s

Number of IO Tasks

Read, PIO daos

Read, PIO daos_disable

Read, PIO standard

 0

 50

 100

 150

 200

 1 4 6 8 10 12 14 16 18 20 22 24 26 28 30

M
B/

s

Number of IO Tasks

Write, PIO daos

Write, PIO daos_disable

Write, PIO standard

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8 16 32 64 128 256

M
B/

s

Number of IO Tasks

Read, PIO daos

Read, PIO daos_disable

Read, PIO standard

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16 32 64 128 256

M
B/

s

Number of IO Tasks

Write, PIO daos

Write, PIO daos_disable

Write, PIO standard

(a)	 (b)	

(a)	 (b)	

PIO and DAOS Breitenfeld et al.

Use	or	disclosure	of	data	contained	on	this	sheet	is	subject	to	the	restriction	on	the	title	page	and	page	ii	of	this	document.	
Intel	Federal	LLC	Proprietary.	Copyright	©	2017	HDF	Group.	
	
B613306	 18 May 2017 6	

Appendix	A	

List of NetCDF APIs called by PIO,	

• nc_function	
• 	nc_var_par_access	
• 	nc_put_vara_double	
• 	nc_put_vara_int	
• 	nc_put_vara_float	
• 	nc_get_vara_double	
• 	nc_get_vara_int	
• 	nc_get_vara_float	
• 	nc_open	
• 	nc_open_par	
• 	nc_create_par	
• 	nc_create	
• 	nc_close	
• 	nc_delete	
• 	nc_sync	
• 	nc_get_var1_schar	
• 	nc_get_vars_ulonglong	
• 	nc_get_varm_uchar	
• 	nc_get_varm_schar	
• 	nc_get_vars_short	
• 	nc_get_var_double	
• 	nc_get_var_int	
• 	nc_get_var_ushort	
• 	nc_get_vara_text	
• 	nc_get_var1_float	
• 	nc_get_var1_short	
• 	nc_get_vars_int	
• 	nc_get_var_text	
• 	nc_get_varm_double	
• 	nc_get_vars_schar	
• 	nc_get_vara_ushort	
• 	nc_get_var1_ushort	
• 	nc_get_var_float	
• 	nc_get_vars_uchar	
• 	nc_get_var	
• 	nc_get_var1_longlong	
• 	nc_get_vars_ushort	
• 	nc_get_var_long	
• 	nc_get_var1_double	
• 	nc_get_vara_uint	
• 	nc_get_vars_longlong	
• 	nc_get_var_longlong	
• 	nc_get_vara_short	
• 	nc_get_vara_long	
• 	nc_get_var1_int	
• 	nc_get_var1_ulonglong	

• 	nc_get_var_uchar	
• 	nc_get_vara_uchar	
• 	nc_get_vars_float	
• 	nc_get_vars_long	
• 	nc_get_var1	
• 	nc_get_var_uint	
• 	nc_get_vara	
• 	nc_get_vara_schar	
• 	nc_get_var1_uint	
• 	nc_get_vars_uint	
• 	nc_get_varm_text	
• 	nc_get_var1_text	
• 	nc_get_varm_int	
• 	nc_get_varm_uint	
• 	nc_get_varm	
• 	nc_get_vars_double	
• 	nc_get_vara_longlong	
• 	nc_get_var_ulonglong	
• 	nc_get_vara_ulonglong	
• 	nc_get_var_short	
• 	nc_get_varm_float	
• 	nc_get_var1_long	
• 	nc_get_varm_long	
• 	nc_get_varm_ushort	
• 	nc_get_varm_longlong	
• 	nc_get_vars_text	
• 	nc_get_var1_uchar	
• 	nc_get_vars	
• 	nc_get_varm_short	
• 	nc_get_varm_ulonglong	
• 	nc_get_var_schar	
• 	nc_inq	
• 	nc_inq_dimname	
• 	nc_put_att_short	
• 	nc_rename_dim	
• 	nc_get_att_double	
• 	nc_set_fill	
• 	nc_def_var	
• 	nc_def_var_deflate	
• 	nc_put_att_double	
• 	nc_inq_dim	
• 	nc_get_att_uchar	
• 	nc_inq_var_fill	
• 	nc_inq_attid	
• 	nc_inq_vartype	
• 	nc_put_att_schar	

• 	nc_inq_vardimid	
• 	nc_get_att_ushort	
• 	nc_inq_varid	
• 	nc_inq_attlen	
• 	nc_inq_atttype	
• 	nc_rename_var	
• 	nc_inq_natts	
• 	nc_put_att_ulonglong	
• 	nc_inq_var	
• 	nc_rename_att	
• 	nc_put_att_ushort	
• 	nc_inq_dimid	
• 	nc_put_att_text	
• 	nc_get_att_uint	
• 	nc_inq_format	
• 	nc_get_att_long	
• 	nc_inq_attname	
• 	nc_inq_att	
• 	nc_put_att_long	
• 	nc_inq_unlimdim	
• 	nc_get_att_float	
• 	nc_inq_ndims	
• 	nc_put_att_int	
• 	nc_inq_nvars	
• 	nc_enddef	
• 	nc_put_att_uchar	
• 	nc_put_att_longlong	
• 	nc_inq_varnatts	
• 	nc_get_att_ubyte	
• 	nc_get_att_text	
• 	nc_del_att	
• 	nc_inq_dimlen	
• 	nc_get_att_schar	
• 	nc_get_att_ulonglong	
• 	nc_inq_varndims	
• 	nc_inq_varname	
• 	nc_def_dim	
• 	nc_put_att_uint	
• 	nc_get_att_short	
• 	nc_redef	
• 	nc_put_att_ubyte	
• 	nc_get_att_int	
• 	nc_get_att_longlong	
• 	nc_put_att_float	
• 	nc_inq_var_deflate	
• 	nc_inq_var_szip	

PIO and DAOS Breitenfeld et al.

Use	or	disclosure	of	data	contained	on	this	sheet	is	subject	to	the	restriction	on	the	title	page	and	page	ii	of	this	document.	
Intel	Federal	LLC	Proprietary.	Copyright	©	2017	HDF	Group.	
	
B613306	 18 May 2017 2	

• 	nc_def_var_fletcher32	
• 	nc_inq_var_fletcher32	
• 	nc_def_var_chunking	
• 	nc_inq_var_chunking	
• 	nc_def_var_fill	
• 	nc_def_var_endian	
• 	nc_inq_var_endian	
• 	nc_set_chunk_cache	
• 	nc_get_chunk_cache	
• 	nc_set_var_chunk_cache	
• 	nc_get_var_chunk_cache	
• 	nc_put_vars_uchar	
• 	nc_put_vars_ushort	
• 	nc_put_vars_ulonglong	
• 	nc_put_varm	
• 	nc_put_vars_uint	
• 	nc_put_varm_uchar	
• 	nc_put_var_ushort	
• 	nc_put_var1_longlong	
• 	nc_put_vara_uchar	
• 	nc_put_varm_short	
• 	nc_put_var1_long	
• 	nc_put_vars_long	
• 	nc_put_var_short	
• 	nc_put_var1_ushort	

• 	nc_put_vara_text	
• 	nc_put_varm_text	
• 	nc_put_varm_ushort	
• 	nc_put_var_ulonglong	
• 	nc_put_var_int	
• 	nc_put_var_longlong	
• 	nc_put_var_schar	
• 	nc_put_var_uint	
• 	nc_put_var	
• 	nc_put_vara_ushort	
• 	nc_put_vars_short	
• 	nc_put_vara_uint	
• 	nc_put_vara_schar	
• 	nc_put_varm_ulonglong	
• 	nc_put_var1_uchar	
• 	nc_put_varm_int	
• 	nc_put_vars_schar	
• 	nc_put_var1	
• 	nc_put_var1_float	
• 	nc_put_varm_float	
• 	nc_put_var1_text	
• 	nc_put_vars_text	
• 	nc_put_varm_long	
• 	nc_put_vars_double	
• 	nc_put_vara_longlong	

• 	nc_put_var_double	
• 	nc_put_var_float	
• 	nc_put_var1_ulonglong	
• 	nc_put_varm_uint	
• 	nc_put_var1_uint	
• 	nc_put_var1_int	
• 	nc_put_vars_float	
• 	nc_put_vara_short	
• 	nc_put_var1_schar	
• 	nc_put_vara_ulonglong	
• 	nc_put_varm_double	
• 	nc_put_vara	
• 	nc_put_vara_long	
• 	nc_put_var1_double	
• 	nc_put_varm_schar	
• 	nc_put_var_text	
• 	nc_put_vars_int	
• 	nc_put_var1_short	
• 	nc_put_vars_longlong	
• 	nc_put_vars	
• 	nc_put_var_uchar	
• 	nc_put_var_long	
• 	nc_put_varm_longlong	

	
	

