
Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2019 HDF Group.

B613306 16 June 2016

Government Purpose Rights

Prime Contract No.: DE-AC52-07NA27344
LLNL Subcontract No.: B613306
Subcontractor Name: Intel Federal LLC, on behalf of itself, its parent and
AffiliatesSubcontractor Address: 4100 Monument Corner Dr, Ste 540, Fairfax, VA 22030

The Government’s rights to use, modify, reproduce, release, perform, display, or disclose this
technical data are restricted by the above agreement.

Limited Rights

Prime Contract No.: DE-AC52-07NA27344
LLNL Subcontract No.: B613306
Subcontractor Name: Intel Federal LLC, on behalf of itself, its parent and
AffiliatesSubcontractor Address: 4100 Monument Corner Dr, Ste 540, Fairfax, VA 22030

The Government’s rights to use, modify, reproduce, release, perform, display, or disclose this
technical data are restricted by the above agreement.

Date:
16 June 2016

M4.2 ACME Migration to FFIO Stack

i

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2019 HDF Group.

B613306 16 June 2016

NOTICES

Acknowledgment: This material is based upon work supported by Lawrence Livermore National

Laboratory subcontract B613306.

USG Disclaimer: This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government nor any agency thereof, nor

any of their employees, makes any warranty, express or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the United

States Government or any agency thereof.

Intel Disclaimer: Intel makes available this document and the information contained herein in

furtherance of extreme-scale storage and I/O research and development. None of the information

contained therein is, or should be construed, as advice. While Intel makes every effort to present

accurate and reliable information, Intel does not guarantee the accuracy, completeness, efficacy,

or timeliness of such information. Use of such information is voluntary, and reliance on it should

only be undertaken after an independent review by qualified experts.

Access to this document is with the understanding that Intel is not engaged in rendering advice or

other professional services. Information in this document may be changed or updated without

notice by Intel.

This document contains copyright information, the terms of which must be observed and

followed.

Reference herein to any specific commercial product, process or service does not constitute or

imply endorsement, recommendation, or favoring by Intel or the US Government.

Intel makes no representations whatsoever about this document or the information contained

herein.

IN NO EVENT SHALL INTEL BE LIABLE TO ANY PARTY FOR ANY DIRECT,

INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THIS

DOCUMENT, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS

INTERRUPTION, OR OTHERWISE, EVEN IF INTEL IS EXPRESSLY ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

ii

NetCDF-4 and FF2 Breitenfeld et al.

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2019 HDF Group.

B613306 16 June 2016

ACME Migration to FFIO Stack
M. Scot Breitenfeld1, Neil Fortner2

1 brtnfld@hdfgroup.org, 2nfortne2@hdfgroup.org

Nomenclature

BB Burst Buffer

CN Compute Node

DAOS Distributed Application Object Storage

EFF Exascale FastForward

ION I/O Node

I. NetCDF-4 Overview

NetCDF is a set of software libraries used to facilitate the creation, access, and sharing of array-
oriented scientific data in self-describing, machine-independent data formats. This project uses
the EFF version of netCDF, meaning a netCDF version built using the EFF HDF5 implementation,
found at

https://hdfgit.hdfgroup.org/scm/ffwd2/netcdf-c.git

II. ACME/PIO Overview

The end goal of implementing an EFF version of netCDF is to demonstrate an application
which uses netCDF. The netCDF application identified for this quarter is software
associated with the Accelerated Climate Modeling for Energy (ACME) program. Their
software uses the package Parallel I/O (PIO) to perform I/O which, in turn, uses as its backend

the netCDF file format. PIO uses a large subset (211) of the netCDF functions (not all of which

would need EFF versions), and complete list of those functions is given in Appendix A.

The PIO performance testing program pioperformance.F90 is an ACME I/O stand-alone driver

program which closely duplicates the I/O pattern from an actual ACME application. Therefore,

this project will implement the program pioperformance.F90 within the EFF stack framework

via an EFF version of PIO. Pioperformance.F90 uses the following PIO functions,

1

mailto:brtnfld@hdfgroup.org
mailto:nfortne2@hdfgroup.org
http://www.unidata.ucar.edu/software/netcdf/
https://svn.hdfgroup.uiuc.edu/hdf5/features/hdf5_ff/
https://hdfgit.hdfgroup.org/scm/ffwd2/netcdf-c.git
http://climatemodeling.science.energy.gov/projects/accelerated-climate-modeling-energy
http://ncar.github.io/ParallelIO/
https://hdfgit.hdfgroup.org/projects/FFWD2/repos/parallelio/browse/tests/performance/pioperformance.F90

NetCDF-4 and FF2 Breitenfeld et al.

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2019 HDF Group.

B613306 16 June 2016

 PIO_init
 PIO_Readdof
 PIO_CreateFile
 PIO_InitDecomp
 PIO_setframe

 PIO_write_darray
 PIO_read_darray
 PIO_freedecomp
 PIO_OpenFile
 PIO_CloseFile

 PIO_def_var
 PIO_def_dim
 PIO_def_att
 PIO_enddef

The PIO APIs in blue utilize EFF netCDF APIs and therefore have an EFF equivalent API. All
new EFF PIO C APIs are indicated by appending a “_ff” to the C function names. The Fortran
EFF PIO APIs are implemented by overloading the current Fortran PIO APIs. For example,
pio_write_darray would be,

where the last four arguments are optional EFF parameters. If these optional parameters
are not present, then PIO well automatically default to the non-EFF netCDF APIs.

The EFF PIO source files and test code can be downloaded from

https://hdfgit.hdfgroup.org/scm/ffwd2/parallelio.git

PIO expects as input from the application the partitioned data arrays for each process.
Additionally, PIO has the option for requesting a subset of the CN that will perform the IO.
Hence, PIO aggregates the IO from each process to only a subset of processes for IO. The IO
processes then uses netCDF APIs to carry out the IO. PIO implements two methods for
aggregating the IO from all the processes to the subset of IO processes. In the box method,
each compute task will transfer data to one or more of the IO processes. For the the subset
method, each IO process is associated with a unique subset of compute processes for which
each compute process transfers data to only one IO process [1]. In general, the subset
method reduces the overall communication cost when compared to the box method. All the
demonstrations use the box method.

Additionally, since PIO has the capability of using a subset of processes for IO, EFF_init (an
EFF HDF5 API used to start the EFF stack) was extended to handle a MPI sub-
communicator group. Hence, in the current EFF PIO implementation, only those processes
involved in IO will initialize the EFF stack. This initialization of the EFF stack happens
automatically when the IO MPI sub-communicator is created in PIO and it is finalized when
this same sub-communicator is freed in PIO.

II.a. Updates to the EFF NetCDF schema

Additional NetCDF EFF APIs not implemented last quarter, but needed by PIO were:

 nc_sync
 nc_put_vara_double
 nc_get_vara_double

2

https://hdfgit.hdfgroup.org/scm/ffwd2/parallelio.git

NetCDF-4 and FF2 Breitenfeld et al.

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2019 HDF Group.

B613306 16 June 2016

Firstly, in the initial implementation of EFF NetCDF, the only EFF stack variables exposed to
the calling program were the transaction and version number. Additionally, the EFF stack
variables were globally accessible by the inclusion of nc_h5ff.h in the application. In the
current implementation, the global EFF stack variables are passed as arguments to the
NetCDF and PIO APIs. The current NetCDF implementation allows access to all the EFF
stack variables,

 Read context identifier,
 Version number,

 Event stack identifier,
 Transaction identifier

from PIO. Furthermore, the Fortran PIO APIs are overloaded by having the EFF stack
variables being optional arguments, eliminating the need to have additional Fortran EFF
PIO APIs.

Secondly, in the initial implementation, the NetCDF APIs managed the transactions

internally, from creation to closing, with no control of the stack given to the calling
program. In the current implementation, stack control is now shifted to within PIO. This
allows for a PIO API to call multiple NetCDF APIs and to use the same or different
transactions depending on which set of NetCDF calls are made within the PIO API. The
transaction number is initialized in the application code and is then automatically
incremented as needed within the EFF PIO APIs. Hence, transaction management is handle
in the PIO library, but it is still accessible to the application.

Exposing the event stack identifier allows the application to use asynchronous I/O.

To do this, the application creates an event stack and passes it to an operation that can be
asynchronous. At the point in the future when the application needs that operation to be
finished, it can use H5ESwait or H5ESwait_all to block until it is completed. Even if no event
stack is passed to some metadata operations, NetCDF will use an internal event stack to
issue asynchronous operations that can run concurrently, improving performance. In this
case, NetCDF will wait on all operations before returning.

Other improvements to NetCDF include:

 Support for unlimited dimensions (supported only with collective access, and only
for the slowest changing dimension)

 "Links" from variables to their dimensions, allowing the variables to be queried
about their dimensions

 Support for multiple server processes and nodes
 Fixed several bugs, including some that affect mainline NetCDF4 (these have been or

will soon be forwarded to NetCDF4 developers)

3

NetCDF-4 and FF2 Breitenfeld et al.

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2019 HDF Group.

B613306 16 June 2016

III Demonstration Example

The test program uses two input files; the first file contains namelist settings for the testing
parameters and the second file contains the decomposition information from a PIO
program (e.g. CESM, ACME). Decomposition files are available at,

https://svn-ccsm-piodecomps.cgd.ucar.edu/trunk.

The format of the decomposition file name is,

piodecomp<NUM_MPI_PROCESSES>tasks<NUM_DIMENSIONS>dims<COUNTER>.dat

where NUM_MPI_TASKS is the number of MPI tasks/ranks (30, 1024, 2048 and 16384 are
available), NUM_DIMENSIONS is the number of dimensions in the decomposition (typically

corresponding to the variable for which the decomposition was created), and COUNTER is a file

identifier counter. [2]

III.a Initial benchmarks for PIO on boro

Several testing runs were made on Intel’s boro cluster in order to verify the EFF PIO
implementation, and a sampling of those test’s data rates are presented in Figures 1-4.
Furthermore, for qualitative purposes, the performance of a standard implementation of
PIO is also presented for 30 and 1024 processes runs on Blue Waters at NCSA at the
University of Illinois at Urbana-Champaign.

Figure 1 – 30 process data rates for various numbers of IO tasks for boro (a) and Blue Waters at NCSA (b).

(a) (b)

4

https://svn-ccsm-piodecomps.cgd.ucar.edu/trunk
https://bluewaters.ncsa.illinois.edu/

NetCDF-4 and FF2 Breitenfeld et al.

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2019 HDF Group.

B613306 16 June 2016

Figure 2 – 1024 process data rates for various numbers of IO tasks for boro (a) and Blue Waters at NCSA (b).

Figure 3 – 2048 process data rates for various numbers of IO tasks for boro.

Figure 4 –Effect of the number of EFF servers on the data rate for 8 PIO IO tasks.

(a) (b)

5

NetCDF-4 and FF2 Breitenfeld et al.

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2019 HDF Group.

B613306 16 June 2016

III.b Overview of Demonstration

The test program pioperformance.F90 reads namelist and then generates test data consisting of

integers, 4-byte reals and 8-byte reals. It then writes the data using EFF netCDF via PIO APIs. It

then reads the data back using EFF PIO, checks for correctness, and outputs the data rate in

reading and writing the data.

III.c Summary of the Demonstration on June 16th, 2016

CASE I – This demonstration is for 30 processes, it creates a limited dataset, and uses the

following parameters:

Decomposition File Number of IO tasks Number of variables Number of frames

piodecomp30tasks03dims07.dat 8 3 1

CASE II – This demonstration is for 30 processes, creates an unlimited dataset, and uses the

following parameters:

Decomposition File Number of IO tasks Number of variables Number of frames

piodecomp30tasks03dims07.dat 16 1 3

The steps for starting the servers were as follows,

(1) Clean-up any files created by previous runs:

 cleanup-all.sh; ssh boro-9 /scratch/ESSIO/opt/sbin/cleanup-all.sh;

 (2) Start two servers

 mpirun -n 2 --hostfile host_srv ./h5ff_server

6

NetCDF-4 and FF2 Breitenfeld et al.

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2019 HDF Group.

B613306 16 June 2016

Once the servers are started, then the PIO application can be run,

 mpirun -n 30 --hostfile hosts -iface ib0 pioperf pioperf.nl.30.caseII

where the “hosts” file is the list of nodes on boro to use, option -iface instructs MPI to use

InfiniBand, and the input argument for pioperf is the namelist control file. In the demonstration,

both cases I and II completed successfully and the correctness of each program was verified.

References

[1] http://ncar.github.io/ParallelIO/decomp.html

[2] https://groups.google.com/forum/#!topic/parallelio/vtvOXP-sjZE

Appendix A

List of NetCDF APIs called by PIO,

 nc_function

 nc_var_par_access

 nc_put_vara_double

 nc_put_vara_int

 nc_put_vara_float

 nc_get_vara_double

 nc_get_vara_int

 nc_get_vara_float

 nc_open

 nc_open_par

 nc_create_par

 nc_create

 nc_close

 nc_delete

 nc_sync

 nc_get_var1_schar

 nc_get_vars_ulonglong

 nc_get_varm_uchar

 nc_get_varm_schar

 nc_get_vars_short

 nc_get_var_double

 nc_get_var_int

 nc_get_var_ushort

 nc_get_vara_text

 nc_get_var1_float

 nc_get_var1_short

 nc_get_vars_int

 nc_get_var_text

 nc_get_varm_double

 nc_get_vars_schar

 nc_get_vara_ushort

 nc_get_var1_ushort

 nc_get_var_float

 nc_get_vars_uchar

 nc_get_var

 nc_get_var1_longlong

 nc_get_vars_ushort

 nc_get_var_long

 nc_get_var1_double

 nc_get_vara_uint

 nc_get_vars_longlong

 nc_get_var_longlong

 nc_get_vara_short

 nc_get_vara_long

 nc_get_var1_int

 nc_get_var1_ulonglong

 nc_get_var_uchar

 nc_get_vara_uchar

 nc_get_vars_float

 nc_get_vars_long

 nc_get_var1

 nc_get_var_uint

 nc_get_vara

 nc_get_vara_schar

 nc_get_var1_uint

 nc_get_vars_uint

 nc_get_varm_text

 nc_get_var1_text

 nc_get_varm_int

 nc_get_varm_uint

 nc_get_varm

 nc_get_vars_double

 nc_get_vara_longlong

 nc_get_var_ulonglong

 nc_get_vara_ulonglong

 nc_get_var_short

 nc_get_varm_float

 nc_get_var1_long

 nc_get_varm_long

 nc_get_varm_ushort

 nc_get_varm_longlong

 nc_get_vars_text

 nc_get_var1_uchar

 nc_get_vars

 nc_get_varm_short

 nc_get_varm_ulonglong

 nc_get_var_schar

 nc_inq

 nc_inq_dimname

 nc_put_att_short

 nc_rename_dim

7

NetCDF-4 and FF2 Breitenfeld et al.

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2019 HDF Group.

B613306 16 June 2016

 nc_get_att_double

 nc_set_fill

 nc_def_var

 nc_def_var_deflate

 nc_put_att_double

 nc_inq_dim

 nc_get_att_uchar

 nc_inq_var_fill

 nc_inq_attid

 nc_inq_vartype

 nc_put_att_schar

 nc_inq_vardimid

 nc_get_att_ushort

 nc_inq_varid

 nc_inq_attlen

 nc_inq_atttype

 nc_rename_var

 nc_inq_natts

 nc_put_att_ulonglong

 nc_inq_var

 nc_rename_att

 nc_put_att_ushort

 nc_inq_dimid

 nc_put_att_text

 nc_get_att_uint

 nc_inq_format

 nc_get_att_long

 nc_inq_attname

 nc_inq_att

 nc_put_att_long

 nc_inq_unlimdim

 nc_get_att_float

 nc_inq_ndims

 nc_put_att_int

 nc_inq_nvars

 nc_enddef

 nc_put_att_uchar

 nc_put_att_longlong

 nc_inq_varnatts

 nc_get_att_ubyte

 nc_get_att_text

 nc_del_att

 nc_inq_dimlen

 nc_get_att_schar

 nc_get_att_ulonglong

 nc_inq_varndims

 nc_inq_varname

 nc_def_dim

 nc_put_att_uint

 nc_get_att_short

 nc_redef

 nc_put_att_ubyte

 nc_get_att_int

 nc_get_att_longlong

 nc_put_att_float

 nc_inq_var_deflate

 nc_inq_var_szip

 nc_def_var_fletcher32

 nc_inq_var_fletcher32

 nc_def_var_chunking

 nc_inq_var_chunking

 nc_def_var_fill

 nc_def_var_endian

 nc_inq_var_endian

 nc_set_chunk_cache

 nc_get_chunk_cache

 nc_set_var_chunk_cache

 nc_get_var_chunk_cache

 nc_put_vars_uchar

 nc_put_vars_ushort

 nc_put_vars_ulonglong

 nc_put_varm

 nc_put_vars_uint

 nc_put_varm_uchar

 nc_put_var_ushort

 nc_put_var1_longlong

 nc_put_vara_uchar

 nc_put_varm_short

 nc_put_var1_long

 nc_put_vars_long

 nc_put_var_short

 nc_put_var1_ushort

 nc_put_vara_text

 nc_put_varm_text

 nc_put_varm_ushort

 nc_put_var_ulonglong

 nc_put_var_int

 nc_put_var_longlong

 nc_put_var_schar

 nc_put_var_uint

 nc_put_var

 nc_put_vara_ushort

 nc_put_vars_short

 nc_put_vara_uint

 nc_put_vara_schar

 nc_put_varm_ulonglong

 nc_put_var1_uchar

 nc_put_varm_int

 nc_put_vars_schar

 nc_put_var1

 nc_put_var1_float

 nc_put_varm_float

 nc_put_var1_text

 nc_put_vars_text

 nc_put_varm_long

 nc_put_vars_double

 nc_put_vara_longlong

 nc_put_var_double

 nc_put_var_float

 nc_put_var1_ulonglong

 nc_put_varm_uint

 nc_put_var1_uint

 nc_put_var1_int

 nc_put_vars_float

 nc_put_vara_short

 nc_put_var1_schar

 nc_put_vara_ulonglong

 nc_put_varm_double

 nc_put_vara

 nc_put_vara_long

 nc_put_var1_double

 nc_put_varm_schar

 nc_put_var_text

 nc_put_vars_int

 nc_put_var1_short

 nc_put_vars_longlong

 nc_put_vars

 nc_put_var_uchar

 nc_put_var_long

 nc_put_varm_longlong

8

