
Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document. 
Intel Federal LLC Proprietary. Copyright © 2016 Intel Federal LLC, The HDF Group. 
 
B613306 i   25 March 2016 

 
 

 
Government Purpose Rights 

 
Prime Contract No.: DE-AC52-07NA27344 
LLNL Subcontract No.: B613306 
Subcontractor Name:  Intel Federal LLC, on behalf of itself, its parent and Affiliates 
Subcontractor Address: 4100 Monument Corner Dr, Ste 540, Fairfax, VA 22030 
 
The Government’s rights to use, modify, reproduce, release, perform, display, or disclose this technical data 
are restricted by the above agreement.   

 
Limited Rights 

 
Prime Contract No.: DE-AC52-07NA27344 
LLNL Subcontract No.: B613306 
Subcontractor Name:  Intel Federal LLC, on behalf of itself, its parent and Affiliates 
Subcontractor Address: 4100 Monument Corner Dr, Ste 540, Fairfax, VA 22030 
 
The Government’s rights to use, modify, reproduce, release, perform, display, or disclose this technical data 
are restricted by the above agreement.   

 
 
  

 
Date:  
25 March 2016 
 

M3.1 Legion on the Exascale 
FastForward I/O Stack 
Extreme Scale Storage and I/O RND 



Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document. 
Intel Federal LLC Proprietary. Copyright © 2016 Intel Federal LLC, The HDF Group. 
 
B613306 ii   25 March 2016 

NOTICES 
 
Acknowledgment: This material is based upon work supported by Lawrence Livermore National 
Laboratory subcontract B613306. 
 
USG Disclaimer: This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product, or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government or any agency 
thereof. The views and opinions of authors expressed herein do not necessarily state or reflect 
those of the United States Government or any agency thereof. 
 
Intel Disclaimer: Intel makes available this document and the information contained herein in 
furtherance of extreme-scale storage and I/O research and development. None of the 
information contained therein is, or should be construed, as advice. While Intel makes every 
effort to present accurate and reliable information, Intel does not guarantee the accuracy, 
completeness, efficacy, or timeliness of such information. Use of such information is voluntary, 
and reliance on it should only be undertaken after an independent review by qualified experts. 
 
Access to this document is with the understanding that Intel is not engaged in rendering advice 
or other professional services. Information in this document may be changed or updated 
without notice by Intel. 
 
This document contains copyright information, the terms of which must be observed and 
followed. 
 
Reference herein to any specific commercial product, process or service does not constitute or 
imply endorsement, recommendation, or favoring by Intel or the US Government. 
 
Intel makes no representations whatsoever about this document or the information contained 
herein.  
 
IN NO EVENT SHALL INTEL BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL OR 
OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THIS DOCUMENT, INCLUDING, WITHOUT 
LIMITATION, ANY LOST PROFITS, BUSINESS INTERRUPTION, OR OTHERWISE, EVEN IF INTEL IS 
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 
 
 



Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document. 
Intel Federal LLC Proprietary. Copyright © 2016 Intel Federal LLC, The HDF Group. 
 
B613306 1    25 March 2016 

Legion on the Exascale FastForward I/O Stack 

Introduction 
Legion is a high-level data-centric and task-based application runtime which is intended for use 
with HPC and distributed systems. HDF5 is a scientific data format and library used to store data 
in an organized, self-describing, and high-performance manner. Legion is currently capable of 
attaching to HDF5 files using the low-level Realm runtime on which Legion is built. Realm maps 
HDF5 files (or groups) to regions (memory objects) within the runtime using a DMA mechanism 
to collect updates to individual datasets in an HDF5 file.  

The FastForward I/O stack is a high performance parallel file system meant to enable apps to 
scale to next generation systems while providing an interface for versioning and snapshotting. 
The interface layer for the current version of FastForward is called IOD, while the interface for 
the version in development is called DAOS-M.  

HDF5 has been implemented on top of IOD, with many extensions to the HDF5 interface to 
expose transactions, read contexts, and other new FastForward I/O features not covered in this 
document. We plan to implement HDF5 on top of DAOS-M when it is available. This document 
describes attempts to port Legion to HDF5 on top of IOD, and discusses plans for 
implementation on HDF5/DAOS-M. 

Virtual Datasets 
Virtual dataset support is a new feature that was recently added to HDF5. A virtual dataset (VDS) 
does not store any data directly, rather, it stores data in a set of source datasets. Source datasets 
are created like any other source dataset, and the virtual dataset is created with a set of mappings 
between regions in the virtual dataset and regions in the source dataset. I/O requests to the VDS 
are then translated into a set of I/O requests to the source datasets whose mappings overlap with 
the requested region in the VDS. 

Virtual datasets map closely to Legion's data model, so we decided to add VDS support to 
Legion as part of this work. This meant we needed to add support for VDS to the IOD 
implementation of HDF5. This ended up taking a significant amount of work, and we had to 
impose the limitation that source datasets must reside in the same container as the virtual dataset, 
due to restrictions with IOD that are described below. 

Details on FastForward I/O 
 
In IOD and DAOS-M, the analog for the traditional file is called a “container”, which consists of 
a collection of key-value store and byte array objects. In IOD, all processes are required to open 
a container collectively, whereas in DAOS-M, this requirement will be relaxed to allow 
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containers to be opened independently. When an application wants to write to a container, it 
must first start a transaction (through the HDF5 API). To do this, the application supplies the 
version number for the transaction it is starting. This version number is global and must be 
consistent across processes, so the application must coordinate distribution of version numbers to 
compute processes, or ensure that processes share a transaction. When finished writing, the 
application commits the transaction. When an application wants to read data from a container, it 
similarly provides a version number and requests a read context on the container. This version 
number uses the same sequence of values as those for transactions, and so committing 
transactions determines which versions are visible for a read context. Any committed 
transactions with a version lower or equal to the version of the read context will be visible, while 
transactions above that value aren't. Finally, IOD does not allow reading from a read context 
when any lower transactions have not been committed. DAOS-M, however, will not have this 
limitation. 

Implementation on IOD 

General Approach 
In order to port Legion onto the FastForward stack, we decided to extend the existing 
Legion+HDF5 implementation to handle both normal HDF5 and FastForward HDF5. The 
primary interface for this is a new function, attach_hdf5_ff, which mirrors the existing 
attach_hdf5 function, but instead instructs Legion to use the FastForward interface and thereby 
create the file as an IOD container. Subsequent requests to the HDF5 layer check if it is a 
FastForward file, and uses the new HDF5/FastForward API calls if so. 

In the initial implementation, all processes opened the same transaction and read context, with 
the transaction version number being one higher than the read context version. In order to be able 
to read back data that was written, all processes were required to collectively call another 
function, commit_update_hdf5_ff, which committed the transaction, opened it as a read context, 
and started a new transaction with a version number one greater than the previous. 

Resolved Issues 
One issue that came up during testing involved the threadsafety of HDF5/FastForward when 
compiled with the threadsafe option. Threadsafety in HDF5 is implemented with a simple global 
lock protecting the entire library. Since HDF5/FastForward can be run with both the client and 
server process in a single process (co-resident mode), and the server can make HDF5 calls when 
the client needs to wait for a response, it must drop the threadsafe lock to allow the server to 
proceed and avoid deadlock. This causes concurrency issues when multiple client threads are 
making HDF5 calls, as other threads can enter the library while one is waiting, and the HDF5 
library is not designed to allow internal concurrency. It is therefore necessary to implement a 
secondary lock at the Legion level to prevent concurrent access to HDF5. While Legion actually 
already attempted to do this for the standard HDF5 implementation, it uses read-write locks and 
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only requests a read lock for some operations, allowing multiple “read” operations into the 
HDF5 library at the same time, which is not supported. 

Unresolved Issues 
The original implementation with IOD used a global transaction model and required a collective 
management of container versions at the application level to increment the version numbers so 
data written could be read back. This caused problems with the Legion port because we could 
not find an easy way to have Legion execute the call to increment the versions exactly once in 
each process.  

The next implementation relied on assigning each task a unique index within the index space, 
using this index to generate a unique transaction version for each task. It was assumed that each 
task would make the same number of write calls. When reading, the task would acquire a read 
context for the highest version number that had been committed, as calculated using the number 
of tasks and the highest task index. Unfortunately, we could not find a way to generate these task 
indices. 

The final implementation relies on the fact that each subregion in Legion is uniquely assigned to 
a single process, with all I/O for that subregion going through that process. It partitioned the 
version number space, with each process keeping an independent stream of version numbers 
within the partition so the versions did not need to be coordinated between processes. It was 
believed that IOD could read from any version that had been committed, but it turned out that 
IOD and the older version of DAOS require that all previous versions be committed. 
Consequently, this implementation could not work since processes with rank greater than 0 
would never be able to acquire read contexts unless the other processes used their entire version 
number partition. 

Another issue involves the implementation of VDS on HDF5/FastForward. IOD's requirement 
that all container opens be collective causes problems when attempting to access a source dataset 
located in another IOD container. The client would have to either broadcast a message to all 
other clients to participate in the collective open, or all clients would have to always keep all of 
the containers for source datasets open. Either option would hurt performance significantly. 
Since the container open limitation is planned to be addressed with DAOS-M, we decided on, for 
now, requiring source datasets to reside in the same container as the virtual dataset. This requires 
“fooling” Legion into thinking it's opening a file when it's really opening a group, and resulted in 
making adjustments to the file set-up routines in the Legion examples. We will remove these 
workarounds in the next version. 
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Plan with the upcoming DAOS-M 
The new DAOS stack should improve our ability to implement Legion on top of the FastForward 
stack due to several planned features. We will first present the DAOS storage and transaction 
model and then study how Legion could support this new storage paradigm.  

DAOS Storage Model 

 

The figure above represents the fundamental abstractions of the DAOS storage model. A pool 
can host multiple transactional object stores called DAOS containers. Each container is a private 
object address space, which can be atomically modified and snapshotted independently of the 
other containers sharing the same pool. DAOS objects in a container are identified by a unique 
object address and are effectively key-value stores with two-level key (distribution and attribute 
keys) and supporting partial or atomic values.  

DAOS Pool Handles 
A pool is only accessible to authenticated and authorized applications. Security is enforced when 
connecting to the pool. To establish a pool connection, a client process calls the pool connect 
method with the pool UUID, the pool service address, and the requested capabilities. Upon 
successful connection to the pool, a pool handle is granted to the job. There is no restriction on 
the number of jobs that can connect to the pool. 

The pool handle must be shared with any process of the job that requires access to the pool. This 
is achieved by calling local2global() on the pool handle to extract and dump all information 
relative to the pool handle to a buffer that can then be transferred to peer processes via the 
application communication middleware (e.g. MPI). Upon reception of the buffer, the peer 
processes must call global2local() to generate a local copy of the pool handle. 

The workflow scheduler is responsible for reporting job failures to DAOS. DAOS will then 
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revoke the pool handle granted to the failed job and reclaim all resources (e.g. container handles) 
associated with this pool handle. 

DAOS Container Handles 
Access to a container is controlled by the container handle. To acquire a valid handle, an 
application process must open the container and pass the security checks (user/group 
permission, …). The container open operation must reference a valid pool handle. All container 
handles are attached to a parent pool handle and are stored persistently in the container metadata. 

The opening process may share this handle with some or all peer processes of the same job.  To 
do so, the same mechanism as for the pool handle is used. local2global() produces a buffer that 
can be transferred and consumed by global2local() to generate a local copy of the container 
handle. This mechanism is similar to the openg() POSIX extension. It is also worth noting that 
the local2global() and global2local() operations do not involve any communication with the 
storage system which, as a consequence, does not track the process group membership. 

A set of processes sharing the same container handle is called a process group.  One process may 
belong to multiple process groups corresponding to one or more containers. A container can be 
opened by multiple process groups at the same time, regardless of their open mode. 

A container handle is revoked, either on explicit container close or on parent pool handle 
revocation by the system resource manager. In the latter case, the pool handle granted to the job 
is invalidated which also revokes all container handles associated with this pool handle. The 
explicit container close operation must be called by a single member of the process group and is 
effective immediately. In other words, no reference count is maintained on the container handle 
by the storage system and a close request from any member will invalidate the handle for the 
whole process group. 

DAOS Operations 
As mentioned in the storage model section, DAOS objects are effectively key-value (KV) stores 
with locality feature. The key is split into a distribution key and an attribute key. All entries 
under the same distribution key are guaranteed to be collocated on the same target. Enumeration 
of the attribute keys is provided. The value can be either atomic (i.e. value replaced on write) or 
a byte array (i.e. arbitrary extent read/(over)write). DAOS objects support the following 
operations: lookup values associated with a list of keys, update/insert KV pairs, punch KV pairs, 
enumeration of distribution keys as well as all attribute keys under a given distribution key. 
Atomic values are fully overwritten on updates whereas byte-array values support partial updates 
(i.e. extent read/write with arbitrary alignment). 

All DAOS operations are non-blocking and associated with an event. The result of the operation 
execution (called event completion) is returned asynchronously through an event queue that can 
be polled at any time. Upon successful completion of a DAOS operation, the result of the update 
is immediately globally visible by all container handles. That said, it is not guaranteed to be 
persistent yet and might be buffered on the server. Therefore, the flush operation is provided to 
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wait for all previously executed operations to become persistent. This assures that all caches are 
properly drained and updates are stored persistently. 

In the future, DAOS operations might be buffered on the client side and submitted to servers 
asynchronously. Another level of flushing (likely through a different DAOS operation) will then 
be required to push all changes from a client to the servers. This feature is not in the scope of 
ESSIO and not considered in this design. 

DAOS Transactions 
The primary goal of the DAOS transaction model is to provide a high degree of concurrency and 
control over durability of the application data and metadata. Applications should be able to 
safely update the dataset in-place and rollback to a known, consistent state on failure. 
Each DAOS I/O operation is associated with an explicit, caller-selected transaction identifier 
called epoch. This effectively means that the DAOS transactions are exported to the top-level 
API, which is responsible for grouping together updates to move the data model from one 
consistent state to another. This approach is very different from traditional database management 
systems, object stores and file systems that rely on transparent transactions to guarantee internal 
consistency. 
 
All processes submitting I/O operations with the same container handle effectively participate in 
the same transaction scope. This means that updates are associated with both a container handle 
and an epoch number. This allows DAOS to independently rollback changes submitted by 
different container handles. 

To modify a container, a process group must first declare its intent to change the container by 
obtaining an epoch hold. This operation must be performed by a single member of the process 
group and can take a minimal held epoch as input parameter. On successful execution, the handle 
lowest held epoch (i.e., LHE) is returned to the caller. The process group is now expected to 
commit every epoch greater than or equal to the LHE. 

Once an epoch hold is obtained, the process group can submit changes against the any epoch 
higher or equal to the LHE. Once all updates up to a given epoch have been submitted and 
flushed, the process group can commit this epoch. Epoch commit is performed by any member 
of a process group, to atomically make all updates submitted by the process group, in all epochs 
up to the commit epoch, durable. By committing, the process group guarantees that all updates in 
the transaction have been applied to its satisfaction. On successful commit, the handle highest 
committed epoch (i.e. HCE) is increased to the committed epoch and the LHE to the handle 
HCE + 1. It is the responsibility of the programming model, library or user to determine if all 
members of the process group have contributed changes prior to commit. 

All operations submitted by a process group tagged with an epoch smaller or equal to the HCE 
are guaranteed to be applied and durable. On the other hand, operations tagged with epoch 
greater than the handle HCE are automatically rolled back on failure.  



Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document. 
Intel Federal LLC Proprietary. Copyright © 2016 Intel Federal LLC, The HDF Group. 
 
B613306 7    25 March 2016 

A hold can be released at any time, which causes the container handle to become quiescent. On 
close, the hold is automatically released, if not already. This causes uncommitted updates 
submitted by this process group to all future epochs to be discarded. A member of the process 
group can also invoke the discard operation directly, to discard all its updates submitted in a 
given range of uncommitted epochs. 

DAOS also tracks and exports the smallest and highest HCE across all the container handles. The 
highest globally committed epoch (HGCE) is the smallest HCE across all the container handles 
and is guaranteed to have immutable data. The highest partially committed epoch (HPCE) is the 
highest HCE. Epoch hold is guaranteed to return a LHE strictly higher than the HPCE. 

Moreover, any container handle is granted a default read reference on the current HGCE. This 
reference, called the handle lowest referenced epoch (i.e., LRE), guarantees that the current 
HGCE, as well as any future globally-committed epochs, remain readable and thus cannot be 
aggregated. The handle LRE can be moved forward to a newer globally-committed epoch 
through an explicit call to epoch slip. A process group can snapshot any epoch smaller than its 
HCE and greater or equal to its LRE. A snapshot is a persistent reference that isn’t associated 
with any container handle. The snapshotted epoch is guaranteed to be readable by any handle 
until the snapshot is explicitly destroyed. 

At the container level, the container metadata tracks the lowest globally referenced epoch 
(LGRE), equal to the smallest LRE across all container handles. Epoch aggregation is triggered 
each time the container LGRE is moved forward (as a consequence of slip or container close). 
When all container handles are closed, the container LGRE is equal to the container HGCE, 
which is then the only available unnamed container version. 

As a summary, the typical flow of a DAOS transaction is the following: 

1. Open the container 
2. Obtain an epoch hold 
3. Submit I/O operations against an epoch >= LHE 
4. Flush all the operations 
5. Commit the epoch, the HCE is set to the committed epoch and the LHE is increased to 

HCE+1 
6. Goto 3 if more updates must be submitted 
7. Release the epoch hold 
8. Close the container 

The following variables are associated with each container handle and tracked persistently by the 
storage system: 

· LHE: lowest epoch held by this handle. The handle is expected to submit I/O operations 
for and to commit all epochs >= LHE. The LHE is increased automatically on commit to 
HCE+1 and can be obtained/released at any time with the hold operation. 

· HCE: highest epoch committed by this handle. Any changes submitted by this container 
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handle with an epoch <= HCE are guaranteed to be durable. On the other hand, any 
updates submitted with an epoch > HCE are automatically rolled back on failure of the 
container handle. The HCE is increased on successful commit. 

· LRE: lowest epoch referenced by this handle. Any epoch >= LRE can be read. The LRE 
is moved forward with the slip operation. 

Furthermore, the following global variables are maintained by the storage system and may be 
queried at any time: 

· HPCE: the highest partially committed epoch, equal to max({HCE}h)  

· HGCE: the highest globally committed epoch, equal to min({min({LHE}h) - 1, HPCE). 
This epoch is guaranteed to have immutable data. 

· LGRE: the lower globally referenced epoch, equal to min({LRE}h, epochs below the 
LGRE with no named snapshots can be aggregated. 

The figure below represents the container with three active handles. 

 

Conflict Resolution & Concurrency Control 
While DAOS epochs can be used to support Atomicity, Consistency and Durability guarantees, 
the Isolation property is considered beyond the scope of the DAOS transaction model. No 
mechanism to detect and resolve conflicts among different transactions as well as within a 
transaction is provided or imposed. The top-level API is thus responsible for implementing its 
own concurrency control strategy (e.g., two-phase locking, timestamp ordering, etc.) depending 
on its own needs. DAOS provides some functionality to facilitate the development of conflict 
detection and resolution mechanisms on top of its transaction model: 
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· Middleware layered over DAOS can execute code on the DAOS target. This provides a 
way to run the concurrency control mechanism where the data is located. 

· Changes submitted against any epoch can be enumerated, provided that the epoch has not 
been aggregated. This allows the development of an optimistic approach where conflict 
detection is delayed until its end, without blocking any operations. The transaction can 
then be discarded if it does not meet the serializability or recoverability rules. 

That been said, DAOS still provides some basic I/O ordering guarantees. I/O operations 
submitted with different epoch numbers from the same or different process groups are 
guaranteed to be applied in epoch order, regardless of execution order. Concurrency control 
mechanism that might be implemented on top of DAOS are strongly encouraged to serialize 
conflicting updates by using different epoch numbers in order to guarantee proper ordering. 
Therefore, conflicting I/O operations submitted by two different container handles to the same 
epoch is considered a programmatic error and will fail at I/O execution time. As for conflicting 
I/O operations inside the same epoch submitted with the same container handle, the only 
guarantee is that an I/O started after the successful completion of another one won’t be reordered. 
This means that concurrent overlapping I/O operations are not guaranteed to be properly 
serialized and will generate non-deterministic results.  

Legion Use Case 
Let’s now see how Legion could leverage the DAOS epoch model. In this proposal, we are 
making two assumptions: 

· The Legion scheduler always serializes the execution of conflicting tasks (i.e. 
overlapping updates). In other words, record overwrite can happen from two tasks 
running at the same time. For atomic value, the record associated with a given key is not 
updated concurrently. As for byte array value, no overlapping extents are submitted 
concurrently. 

· The commit operation in DAOS has a very low latency and is several orders of 
magnitude shorter than the latency of the flush operation. This will be measured and 
verify with the DAOS prototype. 

When the legion framework starts, the top-level task can connect to the DAOS pool and pass the 
pool handle (either the global buffer or just the pool handle UUID) on-demand to the low level 
runtime (e.g. when attaching to a region). Alternatively, the workflow scheduler could connect to 
the pool on behalf of Legion and pass the pool handle as an argument or environment variable to 
the Legion runtime. 

Legion can open the container from one or multiple runtime processes. This operation grants a 
private container handle to the runtime process and also returns the current value of HPCE. A 
read-only operation on this container could then read with an epoch number equal to the HPCE 
and eventually refresh its knowledge of the HPCE though a DAOS query whenever required (e.g. 
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notification from other processes). 

To modify the container, the legion runtime process must obtain an epoch hold. This operation 
returns a LHE which is guaranteed to be higher than the current HPCE (typically HPCE+1). The 
legion runtime process can then read from the LHE and submit new updates against this epoch or 
the next ones. To complete any write operations, the runtime should flush and commit its updates 
and then close its container handle. This guarantees that any subsequent operations will have full 
visibility of previously committed operations even if the operations are scheduled on a different 
process than the process which previously committed operations to the container. Indeed, any 
new container handle should return an HPCE greater than or equal to the HCE of the already 
completed tasks. 

When two tasks want to communicate through the storage system, the producer task must first 
flush and commit its changes. Once notified, the consumer can query the current HPCE (or the 
legion framework can pass the epoch number from the writer to the reader) and read from this 
epoch. If the consumer wants to submit new changes resulting from the data generated by the 
producer, it must then use an epoch number higher than the HPCE. 

If one task fails, the Legion scheduler should close the container handle on behalf of the failed 
task. DAOS will roll-back any uncommitted updates submitted by this task and will report 
completion of the close operation. Once the close has completed, the Legion scheduler can 
restart the failed task. 

If the whole Legion runtime fails, the workflow scheduler informs DAOS and revokes the pool 
handle. This automatically closes all container handles allocated to the Legion tasks and rolls 
back any uncommitted updates. 

In Conclusion 
Implementation of Legion on top of IOD proved to be difficult due primarily to a conflict 
between Legion’s highly decentralized task execution model and IOD’s strict global version 
number scheme. We could not find a reasonable way to either generate a globally consistent set 
of version numbers for each task, or have all tasks coordinate operations on a sequence of shared 
version numbers. We have outlined enhancements to DAOS-M that should allow us to 
implement Legion on top of the Exascale FastForward I/O stack by adding flexibility in 
transaction number sequencing and allowing independent container opening. These 
improvements should also aid implementation of other highly decoupled parallel applications on 
top of FastForward. 


