
Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2015 HDF Group

B613306 i 21 December 2015

Government Purpose Rights

Prime Contract No.: DE-AC52-07NA27344
LLNL Subcontract No.: B613306
Subcontractor Name: Intel Federal LLC, on behalf of itself, its parent and Affiliates
Subcontractor Address: 4100 Monument Corner Dr, Ste 540, Fairfax, VA 22030

The Government’s rights to use, modify, reproduce, release, perform, display, or disclose this technical data
are restricted by the above agreement.

Limited Rights

Prime Contract No.: DE-AC52-07NA27344
LLNL Subcontract No.: B613306
Subcontractor Name: Intel Federal LLC, on behalf of itself, its parent and Affiliates
Subcontractor Address: 4100 Monument Corner Dr, Ste 540, Fairfax, VA 22030

The Government’s rights to use, modify, reproduce, release, perform, display, or disclose this technical data
are restricted by the above agreement.

Date:
21 December 2015

Summary of HACC with HDF5 and the Fast
Forward Storage Stack

Extreme Scale Storage and I/O RND

M. Scot Breitenfeld1 and Quincey Koziol2

1 brtnfld@hdfgroup.org, 2koziol@hdfgroup.org

mailto:brtnfld@hdfgroup.org
mailto:koziol@hdfgroup.org

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2015 HDF Group

B613306 ii 21 December 2015

NOTICES

Acknowledgment: This material is based upon work supported by Lawrence Livermore National
Laboratory subcontract B613306.

USG Disclaimer: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

Intel Disclaimer: Intel makes available this document and the information contained herein in
furtherance of extreme-scale storage and I/O research and development. None of the
information contained therein is, or should be construed, as advice. While Intel makes every
effort to present accurate and reliable information, Intel does not guarantee the accuracy,
completeness, efficacy, or timeliness of such information. Use of such information is voluntary,
and reliance on it should only be undertaken after an independent review by qualified experts.

Access to this document is with the understanding that Intel is not engaged in rendering advice
or other professional services. Information in this document may be changed or updated
without notice by Intel.

This document contains copyright information, the terms of which must be observed and
followed.

Reference herein to any specific commercial product, process or service does not constitute or
imply endorsement, recommendation, or favoring by Intel or the US Government.

Intel makes no representations whatsoever about this document or the information contained
herein.

IN NO EVENT SHALL INTEL BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL OR
OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THIS DOCUMENT, INCLUDING, WITHOUT
LIMITATION, ANY LOST PROFITS, BUSINESS INTERRUPTION, OR OTHERWISE, EVEN IF INTEL IS
EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2015 HDF Group

B613306 1 21 December 2015

Nomenclature

BB Burst Buffer

CN Compute Node

DAOS Distributed Application Object Storage

FF2 Exascale FastForward

IOD I/O Dispatcher

ION I/O Node

VDS Virtual DataSet

AIO Asynchronous I/O

I. Introduction to HACC I/O
HACC (Hardware/Hybrid Accelerated Cosmology Code) is a N-body cosmology code framework where a
typical simulation of the universe demands extreme scale simulation capabilities. However, a full
simulation of HACC requires terabytes of storage and hundreds of thousands of processors, far
exceeding the computational resources available in the current FF2 project. Consequently, a smaller
benchmark I/O code (GenericIO by Hal Finkel) was created which mirrors the I/O calls in HACC without

the need to run an entire simulation (http://trac.alcf.anl.gov/projects/genericio). In the benchmark,
all the “heavyweight” data is handled using POSIX I/O, and the “lightweight” data is handled using
collective MPI-IO.

Critical features for HACC’s I/O include:

 Resiliency for data verification,
o Checksumming from the application’s memory to the file and vice-versa,
o Mechanism for retrying I/O operations.

 Sub-filing,
o Should avoid penalties in the file system associated with locking and contention.

 Self-describing file.

A key component of the HACC code suite is the ability to do in situ data analysis. Performing data
compression and data analysis before the output is dumped to the file system can reduce the storage
requirements from petabytes to terabytes, Fig. 1.

http://trac.alcf.anl.gov/projects/genericio

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2015 HDF Group

B613306 2 21 December 2015

Figure 1 — HACC I/O scheme with HDF5 (hacc_pflops.pdf, 2013).

As for I/O strategies, the HACC team [1] found that creating one output file per process resulted in the
best write bandwidth compared to other methods because it eliminates locking and synchronization
between processors. However, this method is not used due to several issues:

 File systems are limited in their ability to manage hundreds of thousands of files,

 In practice, managing hundreds of thousands of files is cumbersome and error-prone,

 Reading the data back using a different number of processes than the analysis simulation
requires redistribution and reshuffling of the data, negating the advantage over more complex
collective I/O strategies.

The default I/O strategy in HACC is to have each process write data into a distinct region within in a
single file using a custom, self-describing file format. Each process writes each variable contiguously
within its assigned region. On supercomputers having dedicated I/O nodes (ION), HACC instead uses a
single file per ION. The current implementation of HACC provides the option of using MPI I/O (collective
or non-collective) or POSIX (non-collective) I/O routines. Additionally, GenericIO implements cyclic
redundancy code (CRC) by adding it to the end of the data array being written. [1] Table 1 gives the
performance of GenericIO on Mira at Argonne National Laboratory.

Table 1 — HACC/GenericIO performance on Mira [1].

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2015 HDF Group

B613306 3 21 December 2015

II. Implementation of HACC with HDF5 on the FF stack
As mentioned in Section I, the current I/O implementation in HACC uses either POSIX or MPI-IO.
Therefore, the first step in getting HACC onto the FF stack is to add HDF5 to HACC’s GenericIO
framework (see Section II.A). A github repository, https://github.com/brtnfld/genericio, was setup to
maintain the HDF5 and FF additions to the original code mentioned in Section I. The HDF5
implementation (without the FF additions) is located in the “hdf” branch and the HDF5 + FF
implementation is in the “EFF” branch. The original master code provided by the HACC team is located in
the “master” branch. The code consists of two programs, a program for writing
(GenericIOBenchmarkWrite.cxx) and a program for reading (GenericIOBenchmarkRead.cxx). The
program GenericIO.cxx contains generic functions to handle either reading or writing the data in POSIX,
MPI-IO, or HDF5.

II.A. Introduction of HDF5 into HACC’s I/O Driver
HDF5 is a self-describing hierarchal file format, so much of the “metadata” used in the current
implementation of HACC, Section I.B, can automatically be handled by HDF5. Thus, using HDF5 greatly
reduces the internal bookkeeping and file construction required by HACC when compared to using
POSIX or MPI-IO.

The use of offsets as pointers to variables (note that these offsets are stored within the HACC file) is
eliminated in the HDF5 implementation by instead using datasets to store variables. Currently there are
nine particle variables used in GenericIO programs: pid, x, y, z, vx, vy, vz, phi and mask. The HDF5
implementation stores the variables as datasets in the file’s root group (/), Fig. 2.

https://github.com/brtnfld/genericio

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2015 HDF Group

B613306 4 21 December 2015

Figure 2 — Proposed HACC/HDF5 file structure.

Attributes at the root level store time step information, such as the time stamp and notes about the
simulation parameters. Additional attributes can easily be added if needed. All the datasets are stored
under the ‘variable’ group (nine total for this demonstration).

Associated with each variable’s dataset is the cyclic-redundancy check (CRC). The CRC uses the High-
Performance CRC64 Library from Argonne National Laboratory. A CRC is computed for each variable,
and each processor computes the CRC for the portion of the array residing on that process. Although the
FF stack automatically performs a checksum from the ION to the disk, this is not the case for HDF5 files
by default. However, as mentioned earlier, the CRC can easily be implemented within the HDF5 file by
simply computing a CRC for the array (assuming no partial writes are taking place) and writing the CRC
as a dataset. The reading program can then read the dataset, compute the CRC for the read data and
perform a comparison to the values stored in the CRC dataset. The implied restriction is that the layout
of the array among the processors is the same for both the writing and the reading of the arrays.
Insuring a matching CRC for data written and data being read is important when creating raw binary files
because the file can be transferred to a machine with a different endianness. Therefore, checks have to
be made to ensure the endianness conversions were implemented correctly. In HDF5 however, the
library will convert and verify the byte-order automatically, so the use of the CRC may no longer be
necessary. Additionally, using HDF5 object interface’s iteration and inquiry functions, such as H5Ovisit,
can eliminate additional file metadata currently stored in the raw GenericIO file format. For the
demonstration, the code had a set number of variables, so these inquiry functions were not used, but
can be added in the future.

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2015 HDF Group

B613306 5 21 December 2015

II.B. HACC’s HDF5 I/O Driver on the FF2 stack
A transaction in the FastForward storage stack consists of a set of updates to a container. Updates in
the form of additions, deletions and modifications are added to a transaction and not made directly to a
container. Once a transaction is committed, the updates in the transaction are applied atomically to the
container.

The basic sequence of transaction operations an application typically performs on a container that is
open for writing is:

1) start transaction N
2) add updates for container to transaction N
3) finish transaction N

One or more processes in the application can participate in a transaction, and there may be multiple
transactions in progress on a container at any given time. Transactions are numbered, and the
application is responsible for assigning transaction numbers while a container is open for write.
Transactions can be finished in any order, but they are committed in strict numerical sequence. The
application controls when a transaction is committed through its assignment of transaction numbers in
“create transaction / start transaction” calls and the order in which transactions are finished, aborted, or
explicitly skipped.

The version of the container after transaction N has been committed is N. An application reading this
version of the container will see the results from all committed transactions up through and including N.

The application can persist a container version, N, causing the data (and metadata) for the container
contents that are in the BB to be copied to DAOS and atomically committed to persistent storage.

The application can request a snapshot of a container version that has been persisted to DAOS. This
makes a permanent entry in the namespace (using a name supplied by the application) that can be used
to access that version of the container. The snapshot is independent of further changes to the original
container and behaves like any other container from this point forward. It can be opened for write and
updated via the transaction mechanism (without affecting the contents of the original container), it can
be read, and it can be deleted.

Summary of the Demonstration on December 17th, 2015

The key objectives of the demonstration were to show (1) HACC running on the FF stack with HDF5, and
(2) complete checking of the data integrity, including writing from the ION layer, all the way to reading
in the array with a separate program. The CRC check was implemented according to the convention
summarized in “Section II.A. Introduction of HDF5 into HACC’s I/O Driver”, line (1) in the figure
below. The checksum, line (2), from the ION to the server was handled by the data transfer property list,
dxpl, set by H5Pset_dxpl_checksum. The dxpl was then used by H5Dwrite_ff to validate the writes from
the ION to the disk.

(1)

(2)
(3)

Use or disclosure of data contained on this sheet is subject to the restriction on the title page and page ii of this document.
Intel Federal LLC Proprietary. Copyright © 2015 HDF Group

B613306 6 21 December 2015

The first demonstration ran on two processors and was for a problem size of 128 elements. The write
program, GenericIOBenchmarkWrite.cxx, was run first and verified the checksum of the stack during the
writing process, it then wrote the CRC values to datasets. The second program,
GenericIOBenchmarkRead.cxx, read the HDF5 file and verified the correctness of the CRC. Both tests
passed.

The second demonstration again ran on two processors and was for a problem size of 128 elements.
However, HDF5 disabled data integrity checks stored at the IOD for the write in order to test if the
transfer checksum would capture the corruption. The corruption was injected for the "x" variable
dataset, and it was shown that the server could detect the corruption.

A retry after a data corruption was detected was not demonstrated simply because the retry
implementation will happen at the new DAOS layer. The HDF5 layer can simulate a “pseudo” error and
retry at the DAOS layer, but this would just use an HDF5 property to simulate a retry at the IOD+DAOS
layer and would not be a true demonstration of the error handling at the DAOS layer. The retry
requirement should be demonstrated in the new DAOS layer. Furthermore, HACC/HDF5 should not have
to be concerned with error correction and retry as those functions should be transparent to the
application.

Bibliography

[1] Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere, Katrin Heitmann, David Daniel, Patricia
Fasel, Vitali Morozov, George Zagaris, Tom Peterka, Venkatram Vishwanath, Zarija Lukic, Saba Sehrish,
Wei-keng Liao. “HACC: Simulating Sky Surveys on State-of-the-Art Supercomputing Architectures” New
Astronomy, Volume 42, January 2016, Pages 49–65.

[2] “Design and Implementation of the FastForward Features in HDF5: FOR EXTREME-SCALE
COMPUTING RESEARCH AND DEVELOPMENT (FAST FORWARD) STORAGE AND I/O”. Excerpts from The
HDF Group.

	Nomenclature
	I. Introduction to HACC I/O
	II. Implementation of HACC with HDF5 on the FF stack
	II.A. Introduction of HDF5 into HACC’s I/O Driver
	II.B. HACC’s HDF5 I/O Driver on the FF2 stack
	Summary of the Demonstration on December 17th, 2015
	Bibliography

