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I. Introduction to HACC I/O 
HACC (Hardware/Hybrid Accelerated Cosmology Code) is a N-body cosmology code 
framework where a typical simulation of the universe demands extreme scale simulation 
capabilities. However, a full simulation of HACC requires terabytes of storage and hundreds of 
thousands of processors, far exceeding the computational resources available in the current FF2 
project. Consequently, a smaller benchmark I/O code (GenericIO by Hal Finkel) was created 
which mirrors the I/O calls in HACC without the need to run an entire simulation 
(http://trac.alcf.anl.gov/projects/genericio).  In the benchmark, all the “heavyweight” data is 
handled using POSIX I/O, and the “lightweight” data is handled using collective MPI-IO.  
 
Critical features for HACC’s I/O include:  

• Resiliency for data verification, 
o Checksumming from the application’s memory to the file and vice-versa, 
o Mechanism for retrying I/O operations. 

• Sub-filing, 
o Should avoid penalties in the file system associated with locking and contention.  

• Self-describing file. 
 
A key component of the HACC code suite is the ability to do in situ data analysis. Performing 
data compression and data analysis before the output is dumped to the file system can reduce the 
storage requirements from petabytes to terabytes, Fig. 1.   
 

 

Figure 1 — HACC I/O scheme with HDF5 (hacc_pflops.pdf, 2013). 
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As for I/O strategies, the HACC team [1] found that creating one output file per process resulted 
in the best write bandwidth compared to other methods because it eliminates locking and 
synchronization between processors. However, this method is not used due to several issues: 
 

• File systems are limited in their ability to mange hundreds of thousands of files, 
• In practice, managing hundreds of thousands of files is cumbersome and error-prone, 
• Reading the data back using a different number of processes than the analysis simulation 

requires redistribution and reshuffling of the data, negating the advantage over more 
complex collective I/O strategies. 

 
The default I/O strategy in HACC is to have each process write data into a distinct region 
contained in a single file with a custom, self-describing file format. Each process writes each 
variable contiguously within its assigned region. On supercomputers having dedicated I/O nodes 
(ION), HACC instead uses a single file per ION. The current implementation of HACC provides 
the option of using MPI I/O (collective or non-collective) or POSIX (non-collective) I/O 
routines. Additionally, GenericIO implements checksums by adding it to the end of the data 
array being written. [1] Table 1 gives the performance of GenericIO on Mira at Argonne 
National Laboratory.  
 

 

Table 1 — HACC/GenericIO performance on Mira [1]. 

 

II. Implementation of HACC with HDF5 on the FF2 stack 
As mentioned in Section I, the current I/O implementation in HACC uses either POSIX or MPI-IO. 
Therefore, the first step in getting HACC onto the FF2 stack is to add HDF5 to HACC (see Section II.A).  
A github repository, https://github.com/brtnfld/genericio, was setup to maintain the HDF5 and FF2 
additions to the original code mentioned in Section I. 
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II.A. Introduction of HDF5 into HACC’s I/O Driver 
HDF5 is a self-describing hierarchal file format, so much of the “metadata” used in the current 
implementation of HACC, Section I.B, can be automatically handled by HDF5. Thus, using 
HDF5 greatly reduces the internal bookkeeping and file construction required by HACC when 
compared to using POSIX or MPI-IO.  
 
The use of offsets as pointers to variables (note that these offsets are stored within the HACC 
file) is eliminated in the HDF5 implementation by instead using datasets to store variables. 
Currently there are nine particle variables used in GenericIO: pid, x, y, z, vx, vy, vz, phi and mask. 
The HDF5 implementation stores the variables as datasets in the file’s root group (/), Fig. 2. 
 

 

Figure 2 — Proposed HACC/HDF5 file structure. 

 
Although data is checksummed automatically for FF2, that is not the case for HDF5 files by 
default. However, checksums can be easily implemented in HDF5 by simply computing a 
checksum for the array (assuming no partial writes are taking place) and writing the checksum as 
an attribute of the dataset. The reading program can then read the attribute and do a checksum for 
the array being read.  Since HACC typically accesses the entire array when performing I/O, this 
is acceptable our purposes. 
 
Additionally, simply using the HDF5 object interface’s iteration and inquiry functions, such as 
H5Ovisit, can eliminate additional file metadata containing the number of variables and variable 
names in the current GenericIO file format. 
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II.B. HACC’s HDF5 I/O Driver on the FF2 stack 
A transaction in the FastForward storage stack consists of a set of updates to a container.   
Updates in the form of additions, deletions and modifications are added to a transaction and not 
made directly to a container. Once a transaction is committed, the updates in the transaction are 
applied atomically to the container. 
 
The basic sequence of transaction operations an application typically performs on a container 
that is open for writing is: 

1)   start transaction N 
2)   add updates for container to transaction N 
3)   finish transaction N   
 

One or more processes in the application can participate in a transaction, and there may be 
multiple transactions in progress on a container at any given time.  Transactions are numbered, 
and the application is responsible for assigning transaction numbers while a container is open for 
write. Transactions can be finished in any order, but they are committed in strict numerical 
sequence.  The application controls when a transaction is committed through its assignment of 
transaction numbers in “create transaction / start transaction” calls and the order in which 
transactions are finished, aborted, or explicitly skipped. 
 
The version of the container after transaction N has been committed is N.  An application 
reading this version of the container will see the results from all committed transactions up 
through and including N.  
 
The application can persist a container version, N, causing the data (and metadata) for the 
container contents that are in the BB to be copied to DAOS and atomically committed to 
persistent storage.  
 
The application can request a snapshot of a container version that has been persisted to DAOS.  
This makes a permanent entry in the namespace (using a name supplied by the application) that 
can be used to access that version of the container.  The snapshot is independent of further 
changes to the original container and behaves like any other container from this point forward.  It 
can be opened for write and updated via the transaction mechanism (without affecting the 
contents of the original container), it can be read, and it can be deleted. 
 
Using transactions allows HACC to push large amounts of finished in situ analyzed data to disk 
while an application reader is concurrently accessing the data in the HDF5 files.  
 
Furthermore, HACC does not currently handle Asynchronous I/O (AIO) operations, but there is 
interest in using AIO in FF2 for HACC. AIO can improve performance in applications by 
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overlapping I/O requests with computational calculations or post-processing previously 
completed I/O. With AIO, a task can initiate a number of I/O operations without having to block 
or wait for them to complete. The typical flow of non-blocking AIO is depicted in Figure 3. The 
application initiates a read request and returns immediately. The application then continues to 
perform computations or additional read requests while the past read requests are completed in 
the background.  Once the read response is received, the application can then complete the I/O 
transaction. 
 

 

Figure 3 — Flow of non-blocking asynchronous I/O (AIO). 

 
Support for AIO in HDF5 is implemented by: 

1)   Building a description of the asynchronous operation, 
2)   Shipping that description from a Compute node to an I/O node for execution, 
3)   Generating a request object and inserting it into an Event Stack object that the   
       application provides, while the operation completes on the I/O node. 
 

An Event Stack provides an organizing structure for managing and monitoring the status of 
operations that have been invoked asynchronously. Various Event Stack object APIs allow for 
the management of the Event Stack, completion status, and error information for the 
asynchronous I/O. Note that it is mandatory that the application must not deallocate or modify 
data element buffers used in asynchronous operations until the asynchronous operation has 
completed. Therefore, the application code must finalize the data by staging the I/O tasks 
appropriately before initiating AIO [3]. Since HACC does a large amount of in situ data analysis 
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before writing to disk, it would be useful for HACC to overlap the data analysis with writing the 
finished analysis quantities to disk. 
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