

LLNS Subcontract No. B599860

Subcontractor Name Intel Federal LLC

Subcontractor Address
2200 Mission College Blvd.

Santa Clara, CA 95052

NOTICE: THIS MANUSCRIPT HAS BEEN AUTHORED BY INTEL UNDER ITS SUBCONTRACT WITH LAWRENCE
LIVERMORE NATIONAL SECURITY, LLC WHO IS THE OPERATOR AND MANAGER OF LAWRENCE LIVERMORE

NATIONAL LABORATORY UNDER CONTRACT NO. DE-AC52-07NA27344 WITH THE U.S. DEPARTMENT OF

ENERGY. THE UNITED STATES GOVERNMENT RETAINS AND THE PUBLISHER, BY ACCEPTING THE ARTICLE OF
PUBLICATION, ACKNOWLEDGES THAT THE UNITED STATES GOVERNMENT RETAINS A NON-EXCLUSIVE, PAID-

UP, IRREVOCABLE, WORLD-WIDE LICENSE TO PUBLISH OR REPRODUCE THE PUBLISHED FORM OF THIS

MANUSCRIPT, OR ALLOW OTHERS TO DO SO, FOR UNITED STATES GOVERNMENT PURPOSES. THE VIEWS
AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO NOT NECESSARILY REFLECT THOSE OF THE UNITED

STATES GOVERNMENT OR LAWRENCE LIVERMORE NATIONAL SECURITY, LLC.

Date:
June 05, 2013 DAOS Server Collectives Design

FOR EXTREME-SCALE COMPUTING
RESEARCH AND DEVELOPMENT (FAST
FORWARD) STORAGE AND I/O

© 2014 Intel Corporation

i

Table of Contents

Introduction ... 1

Definitions .. 1

Changes from Solution Architecture .. 2

Specification ... 2
The API .. 2

Collective Service ... 2

Broadcast to a Group .. 4

Service Callbacks: Request Propagation .. 6

Service Callbacks: Reply Aggregation ... 7

Broadcast Completion ... 7

Error Handling ... 8

Abort Requests .. 9

The Protocol .. 9
Populate Group Membership .. 11

Build Spanning Trees .. 13

Broadcast Message ... 20

Reply Aggregation .. 23

Buffer Management .. 24

Group Lifespan... 26

Design Notes .. 26

API and Protocol Additions and Changes ... 27

Open Issues ... 27

Risks & Unknowns.. 28

Revision History

Date Revision Author

June 05, 2013 1.0 Isaac Huang

May 01, 2014 2.0 Isaac Huang

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 1 1 May 2014

Introduction
Server collectives enable any server in a cluster to initiate an RPC that is executed on an
arbitrary subset of its peers and complete with a result computed across them all. This

mechanism must be scalable, adding at worst O(log n) overhead with increasing server

cluster size, and robust, providing deterministic results in the face of failures of all sorts.

Server collectives will be used to implement capability distribution, collective commit and
container layout replication across container shards. It may also be used to implement

global notifications such as client eviction and permit more scalable client health

monitoring and connection establishment.

Definitions
Server collectives allow a function to be executed over a set of entities called a group, for

example a set of OSTs. A group member is identified by (tag, node), where node

identifies a server and tag identifies an entity on the server, e.g. an OST. There can be

multiple members on a single member node, for example (ost0, oss0), (ost1, oss0), and

(ost2, oss0).

In addition, the following definitions are used throughout the rest of this document:

 LNet: the Lustre Networking stack. The server collective module calls the

LNet API to send and receive point-to-point messages.

 NID: address of an end-point in a Lustre network, comprised of an address
within its network and a network ID separated by a ‘@’, for example

192.168.10.124@o2ib0. The NID is represented by C type lnet_nid_t.

 LNET_MAX_PAYLOAD: maximum payload size of a single LNet message,

usually 1M bytes but never less than 1M.

 Upper layer services/protocols: users of the server collectives API, which

invoke the collective service to broadcast messages and aggregate replies.

For example, DAOS service daemons.

 Collective message: either a message broadcasted by root node and
forwarded downstream by member nodes, or a reply message forwarded

upstream from leaf nodes back to the root.

 Remote Memory Access (RMA) descriptor: a handle to an area in local

memory that can be passed over the network so that peers can read from or

write to it. The local memory area can be discontiguous.

 Member node rank: an integer of range [0, # total nodes in a group), which

identifies a member node within a group of nodes. Rank is relative to group. A

node can have different ranks for different groups it belongs to. Rank is used

internally to identify member nodes and not exposed to users of the
collectives API.

mailto:192.168.10.124@o2ib0

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 2 1 May 2014

Changes from Solution Architecture
No change has been made, but there are some unclear issues in the original Solution
Architecture that need to be clarified:

 Server collectives are reliable in the sense that: A collective communication

either fails, or succeeds with guaranteed delivery to all participants.

 The presence of LNet routers between server nodes is out of scope: There’s
no strong use case for the need of LNet routers between server nodes.

 Server collectives don’t guarantee order. Broadcast messages may be

delivered and processed out-of-order on member nodes.

 It’s required that the size of a broadcast message can’t exceed 4K bytes. Bulk

data must be passed in the form of RMA descriptors. See Buffer Management
for details.

Specification
The API

This section gives a brief overview of the server collectives API. The next section The

Protocol describes how the API and callback functions registered through the API are

involved in the complete process of a collective.

All API function names are prefixed by “scoll_” which stands for server collectives.

Collective Service

A collective service is registered with server collective, and is responsible for handling

incoming requests and aggregating replies and forwarding aggregated back to root node.

There can be multiple collective services on a node.

A collective service is registered with the scoll_service_register() API, which specifies a

service ID and a set of service callback functions. Details on the callback functions will

come later. Service IDs are statically assigned and agreed upon globally.

A collective service is unregistered with the scoll_service_unregister() API.

Entity, Target, and Group

A request is broadcast to a set of entities, called a group. An entity is a 128-bit tag that

identifies an object on a node. A target is a node that consists of one or more entities.

A group is associated with a collective service, which handles broadcasts over the group.
Therefore service ID, target NID, and entity tag together identify a unique object globally.

For example, (OSS, 10.0.0.1@tcp, 1) and (MDS, 10.0.0.1@tcp, 1) identifies two different

objects, even though the target and entity parts are the same.

Regular Group

A regular group can be created by API:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 3 1 May 2014

int

scoll_group_create (scoll_service_id_t srvid, const char *name,

 const scoll_target_t *targets, int cnt,

 scoll_tree_type_t tree, bool populate_now,

 scoll_create_group_cb_t cb, const void *private);

This API initiates group creation process, which involves all group members to establish

group states. The completion of group creation is reported asynchronously by the
scoll_create_group_cb_t callback, where a group handle is returned. The group handle

contains the name and private pointer given here.

Note that a target in the targets array points to all entities on that target, please see

scoll_target_t.

There are two ways to create a group: immediate, or delayed, as specified by the

boolean parameter 'populate_now':

 When it's delayed, the scoll_create_group_cb_t callback is called immediately

from within scoll_group_create(), without actually populating the group states
on all member nodes. Later when user does the 1st broadcast over this

delayed group, the group creation parameters are piggybacked into the

broadcast and the group states population on all member nodes happens

together with the 1st broadcast request. Note that in subsequent broadcasts,

group creation parameters are not piggybacked since the parameters have
already been propagated during the 1st broadcast.

 When it's immediate, the server collective does a broadcast to all member

nodes to have group states populated, and calls the scoll_create_group_cb_t

callback only after the broadcast has completed successfully. The user can't
do a broadcast over the group until the group handle is returned when the

group population process completes.

In both cases, the completion is notified by the scoll_create_group_cb_t callback, so the

API semantics are the same. Here's some hints about which one to use:

 Immediate group is the only choice if the group is too large to be piggybacked

on the broadcast, or the broadcast is too large to have sufficient room left for

piggybacking data.

 Delayed group is the choice if the user wants to send a broadcast asap, i.e.

the user doesn't want to wait for the immediate group creation to complete.

Out-of-band Group

Sometimes there already exists a global ID that identifies a set of entities. For example, a

Lustre FID globally identifies a set of storage objects. Such IDs can be directly used as

group identifiers, where the membership has been established by a mechanism out of the
control of server collective, hence the name out-of-band groups.

An OOB group can be created by API:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 4 1 May 2014

scoll_group_t *

scoll_oob_group_create (scoll_service_id_t srvid, const char *name,

 scoll_oobgrp_id_t oobid,

 scoll_tree_type_t tree, const void *private);

OOB group creation is a local operation, since the membership has already been

established out-of-band. Therefore a group handle is returned directly from this function,

rather than from an asynchronous callback as in scoll_group_create().

The advantages of OOB groups are:

 The creation is local and synchronous. No networking operation is involved.

 Group membership is not propagated over the network to all members.

But the service associated with the group must have registered the scoll_oobgrp_cb_t()
callback, which is responsible for mapping OOB group ID into an array of group targets

(each of which points to entities on that target).

The group handle returned can be used later in other server collective APIs. Note that

there's no difference between an OOB group handle and a regular group handle.

Broadcast to a Group

Once we have a group handle, we can broadcast a request over the group identified by

the handle.

Create Broadcast Request

A request is created by API:

scoll_request_t *

scoll_bcast_new (scoll_group_t *pub_group, const void *buf, int len,

 const lnet_kiov_t *bulk_iovs, int niov, unsigned int flags,

 cfs_duration_t service_timeout, const void *private);

The request payload is specified by buf and len, so for now it must be contiguous. An API

to support fragmented payload can be added should the need arise. A request handle is

returned for later use.

The request payload and bulk buffers, if any, can be freed only when the request has
completed, i.e. once the scoll_post_reply_cb_t callback is called.

4.2. Prepare Reply Buffers

A request is broadcast to a group using spanning tree for scalability. Before a request can

be sent, the root node must post buffers to receive replies from its child nodes.

To learn about who the child nodes are, use the following APIs:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 5 1 May 2014

- int scoll_get_nchildren (scoll_group_t *group);

- int scoll_get_childtree_nodes (scoll_group_t *group, int child);

- int scoll_get_childtree_entities (scoll_group_t *group, int child);

The total number of child nodes is returned by calling scoll_get_nchildren(). The return

can be 0, i.e. if the current node is a leaf node in the group. Each child node is identified

by an integer index, of range [0, scoll_get_nchildren()). This index is passed to the rest

of the APIs to query about a child node:

- scoll_get_childtree_nodes() returns total number of nodes in the tree rooted at

the child, including the child node itself.

- scoll_get_childtree_entities() returns the total number of entities in the tree

rooted at the child, including entities on the child node itself.

With these information, a service can figure out the number of replies expected, and the

max size of each. Then for each child node, a reply buffer must be posted by calling API:

int

scoll_reply_buffer_post (int child, const void *buf, size_t len,

 scoll_request_t *pub_req, void *private);

An API to support fragmented reply buffers can be added should the need arise. A reply

buffer can be freed once the corresponding scoll_incoming_reply_cb_t callback is called.

Send Broadcast

Once reply buffers have been posted, a request can be broadcast by calling API:

int

scoll_bcast_send (scoll_request_t *pub_req);

Bulk Data

To include bulk data in a broadcast:

- Root node specifies bulk data when calling scoll_bcast_new(). Bulk data is given

in the form of a kernel IO vector array. If bulk data is contiguous, just pass a

one-entry array. Pass NULL if there's no bulk data.

- In scoll_pre_request_cb_t() callback, a service must check the srq_bulk_len field
of the incoming scoll_request_t. If it's positive, then the request carries bulk data

with it. In this case, the service must prepare buffer to receive bulk data. IO

vectors for the bulk buffer must be saved in the srq_bulk_iovs and srq_bulk_niov

fields before the service returns from scoll_pre_request_cb_t().

- In scoll_incoming_request_cb_t() callback, a service can read bulk data, if any.
Note that services can't modify bulk data, because the bulk buffer is being passed

down to child nodes. If a service has to modify bulk data received, then it must

make a copy first and modify the copy. Note that this is different from request

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 6 1 May 2014

buffer. Service callbacks can freely modify request data, because the server

collective makes a copy to be forwarded to child nodes before the buffer is

passed to the service.

- In scoll_post_reply_cb_t() callback, the bulk buffer and its IO vector array,

allocated in scoll_pre_request_cb_t(), can be freed. The service must not free the

buffer or its IO vector array any earlier, because child nodes could still be reading

from it.

Bulk data is propagated in a same spanning tree as the request data.

Request Time Out

The server collective expires requests waiting for replies, based on:

- Spanning tree depth

- Estimated network RTT

- Estimated request processing time

The estimated request processing time must be supplied by users in one of following

ways:

- On the root node it's supplied as the service_timeout parameter to

scoll_bcast_new().

- On non-root nodes, the scoll_pre_request_cb_t() callback can set it in the

scoll_request_t::srq_service_timeout

If the request processing time is insignificant compared to the network latency, it can be
set to 0, or simply ignored in the scoll_pre_request_cb_t() callback.

When a request has expired, i.e. not all replies have arrived in time, for each reply that

hasn't arrived yet the request gets a scoll_incoming_reply_cb_t() callback with -

ETIMEDOUT status. The scoll_post_reply_cb_t() callback will also be called. Note that in
this case, the service should send a reply to parent node, because some replies may have

arrived before the time out.

Service Callbacks: Request Propagation

Once root node sends a request, server collective propagates the request message over
the target group organized in a spanning tree. On each node, the request is handled by

the registered callback functions of the service associated with the target group.

Once a request arrives at a node, server collective invokes the registered

scoll_pre_request_cb_t callback:

typedef int (*scoll_pre_request_cb_t)(scoll_request_t *request);

A collective service should do two things in this callback:

- Do sanity checks on the message and return error immediately if the message

appears corrupted.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 7 1 May 2014

- If the message looks good, post reply buffers for child nodes, if any. The process

is the same as how the root node posts reply buffers, please see 4.2.

Once scoll_pre_request_cb_t returns successfully, the server collective proceeds with two
tasks in parallel:

- Propagate the message down the spanning tree to child nodes, if any.

- Call the service callback scoll_incoming_request_cb_t().

Note that the scoll_incoming_request_cb_t() is called only once regardless of the number
of entities targeted on the node. The parameter 'target' points to all entities targeted by

the broadcast request.

In the scoll_incoming_request_cb_t(), a service should initiate the processing as

requested in the request. Once it has processed the request, create a reply.

However, the local replies should not be forwarded back to the root node yet.

Service Callbacks: Reply Aggregation

On a leaf node, once all local replies have completed, a collective service should

aggregate them into an aggregated reply, and forward it back to the parent node by:

int

scoll_reply (scoll_request_t *user_req, const void *buf, size_t len);

On an internal node, for each reply from a child node, the callback

scoll_incoming_reply_cb_t() is called once:

typedef void (*scoll_incoming_reply_cb_t)(scoll_reply_t *reply);

Once all replies have been received, the server collective notifies a service by calling its

callback scoll_post_reply_cb_t:

typedef void (*scoll_post_reply_cb_t)(scoll_request_t *request);

In this callback, a service should aggregate all replies and forward the aggregated reply
to parent node by:

int

scoll_reply (scoll_request_t *user_req, const void *buf, size_t len);

Note that on leaf nodes, the scoll_post_reply_cb_t() is also called even though there is no
child reply expected. This simplifies collective service - no matter whether a node is a leaf

or not, it should always aggregate replies and call scoll_reply() in the

scoll_post_reply_cb_t() callback.

Broadcast Completion

On a non-root node, a broadcast is complete when reply has been sent to parent node.
This is notified by the service callback scoll_reply_out_cb_t(). Once this callback returns

the request handle is no longer valid and should not be used any more.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 8 1 May 2014

On the root node, a broadcast is complete when all replies have been received, i.e. in the

scoll_post_reply_cb_t() callback. Once this callback returns the request handle is no

longer valid and should not be used any more. This is also when the root can examine
the replies for results of the broadcast.

Error Handling

Errors during the life time of a collective request are handled differently according to the

time they happen.

Errors before scoll_pre_request_cb_t callback is called

Since no service callback has been called yet, the service knows nothing about the

request where the error has happened. Such errors are handled completely in server

collective layer, and the service will get no callback about the request.

Server collecitve reports the error back to the parent node. On the parent node, the

service callback scoll_incoming_reply_cb_t will be called to inform the service about the

error. From this point on, it's up to the service how to deal with the error. The server

collective will not propagate the error further. The error is reported in the srp_status and
srp_error_type fields of the scoll_reply_t.

Error returned from scoll_pre_request_cb_t callback

If the scoll_pre_request_cb_t callback returns error for a request, server collective

handles it in the same way as in 8.1. In addition, the request will be aborted, so:

- The service will not get any more callback on the request.

- The request handle passed to scoll_pre_request_cb_t cannot be used any more.

- The request will not be forwarded to any child node.

Errors after scoll_pre_request_cb_t has returned

Such errors are reported to the service by the scoll_incoming_reply_cb_t callback.
Service collective will not propagate them. It's up to the service how to deal with them.

For example, if server collective fails to propagate a request to a child node A, it calls the

scoll_incoming_reply_cb_t callback (scoll_reply_t::srp_src == A) to inform upper layer

service about the error. Now the service knows that reply from A will never come, but
replies from other nodes may still arrive. When all other replies have arrived, the service

should create an aggregated reply and send it to the parent node. The aggregated reply

should include the error on A. It's up to the service how to represent and aggregate

errors if there are multiple errors.

Bulk errors

If a request contains bulk data and error has happened fetching the bulk data from

parent node, the error is reported to user by setting the srq_bulk_status field of the

scoll_request_t to an error code and calling the scoll_incoming_request_cb_t() callback.

In this case:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 9 1 May 2014

- scoll_incoming_reply_cb_t() will be called with errors, to notify that valid replies

will not arrive.

- The bulk buffer returned from scoll_pre_request_cb_t() callback does not contain
valid data.

- Server collective reports the error to parent node, so user services should not call

scoll_reply().

Abort Requests

When a service wishes to stop, the first thing to do is to make sure no more incoming

requests will be accepted, by simply returning an error from the scoll_pre_request_cb_t

callback. Then server collective drops all new requests and reports error back to parent

nodes.

If there's still active requests, they can be aborted by calling:

void scoll_bcast_abort (scoll_request_t *pub_req);

The service must wait for all pending callbacks before buffers associated with the aborted

request can be freed.

The Protocol

A typical server collective communication is executed in a server group in the following

steps:

1. Server service on root node explicitly creates a group over all members. Or

alternatively, group membership may have been established from an out-of-

band mechanism, in which case the group ID is determined by the out-of-

band mechanism. Spanning tree topology is determined by server collective

module on root node, and propagated to member nodes.

2. Server service on the root node broadcasts a message to a server group,

specified as a group ID.

a. The server collective module finds out group membership by looking

up the group ID in its group table, and builds a spanning tree over all
group member nodes with itself being the root node of the tree. The

mapping from group ID to group members must have been established

either explicitly or out-of-band, i.e. outside the control of the server

collective module.

b. The message is forwarded down the tree, together with a collective

header that specifies group ID and service ID among other things.

3. When receiving a broadcast message, a member node:

a. Finds out group membership from the group ID included in message

header. The member node may not need to build a complete spanning
tree from group membership. It’d suffice to know which nodes are its

immediate children. Also, perform sanity checks on message header,

e.g. service ID must have been registered locally.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 10 1 May 2014

b. Server collective module calls the pre_request_handler() callback

function registered by server service as identified by service ID in the

message header. Typically in this callback function, server services
should:

i. Perform sanity checks on the message.

ii. Perform any required pre-processing before the message can

be forwarded to the child nodes. For example, read bulk data
from parent node and prepare RMA descriptor to be forwarded

to the children.

iii. Decide how to aggregate replies from child nodes, and prepare

reply buffers.

c. Once pre_request_handler() has returned, and server collective

module can proceed with the following two steps in parallel:

i. Forward the broadcast message to child nodes. Note that

pre_request_handler() may have modified the message, e.g.
to include a new RMA descriptor.

ii. For each member entity on this node, call

incoming_request_handler() of the corresponding service to

execute the request on this member entity.

4. Upper layer services on all member nodes reply by calling scoll_reply().
Replies are aggregated and forwarded up the tree. On each node when a

reply message is received, server collective module calls the

incoming_reply_handler() callback registered by server service. In this reply

handler callback, server service could:

a. Aggregate the current reply with the ones already received.

Once all replies are received on a node, i.e. all members that belong to the

subtree rooted at the current node have replied, the server collective module calls

the post_reply_handler() of the server service to signal that all replies have now
arrived. In this call back, server service could:

a. Perform any required post-processing before the reply can be sent

back to the parent node.

b. Return an aggregated reply message to the server collective module.

The server collective module then forwards the aggregated reply to the
parent node.

A server service may choose to process replies one by one as they arrive in the

incoming_reply_handler(), or process them all in one go in the

post_reply_handler(). It’s up to the service, but the incoming_reply_handler()
may allow more overlap between communication and computation.

5. Root node receives aggregated replies and delivers it to upper layer by the

post_reply_handler() callback. The callback invocation marks the completion

of the collective communication.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 11 1 May 2014

6. Group states on member nodes are destroyed when the root node destroys

the group or when the root node has died or rebooted.

Note:

 Steps 2 and 3 are separate steps here only for clarity. In implementation,

they can be combined in the request processing – there’s no need to

distinguish root node from other member nodes. Similarly, steps 4 and 5

should be combined in reply processing in the implementation.

 A node can belong to multiple groups, where it may or may not be the root.

 A group ID only maps to a set of members, and does not tell where the root

node is. The group ID together with a root node determines a spanning tree,

so there could be multiple trees over a same group. This can be useful when
more than one servers in a group wish to broadcast messages.

 Only the root can broadcast message down the tree.

 Message is delivered to upper layer on all member nodes, i.e. there’s no

dedicated forwarding node that only forwards messages and has no upper
layer services running on it.

 A member node must aggregate replies from upper layer service on itself

together with replies from its immediate children.

Populate Group Membership

Collectives are executed on all members of a group, specified by a unique group ID.
Groups consist of an ordered list of members and all members must agree on group

membership and order, and on an algorithm that generates spanning trees for the group

rooted in any arbitrary member. Any member can therefore determine its children and

parent given the root node index.

The group ID consists of a unique index and a cryptographic checksum computed over

the group members to ensure that the same group ID cannot be used for groups with

different memberships. Every node in a server cluster maintains a group table indexed by

group ID. Entries in this table may be created in either of the following two ways:

 Implicit group join through out-of-band mechanisms, i.e. external to the

server collectives module.

 Explicit group creation collective to populate group membership information

from the root node to all member nodes.

Group Join Out-of-band

Often the server services already know about the group they belong to, through some

out-of-band mechanism, i.e. out of the control of the server collective module. For

example, servers already know about all the storage targets for a certain Lustre FID, so

the FID can serve as a part of out-of-band group ID. Since such groups are populated
out-of-band, their membership can also change out-of-band. Messages over out-of-band

groups should all carry a digest of the membership computed at the root when the

message is created, in order to detect membership changes.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 12 1 May 2014

Out-of-band groups are created when a message to the group is first sent (on the root

node) or received (on any member node):

1. Server services register with the collective module by calling
scoll_service_register(), and supply a callback function oob_group_handler(). This

callback function returns a list of group members from an out-of-band group ID.

2. When a server wishes to broadcast a message over an out-of-band group, it calls

scoll_bcast(group_id, request, flags), and it’d become the root node of the
spanning tree that covers the group. An out-of-band group ID consists of two

parts: service ID, and service group ID

3. In scoll_bcast(), the collective module checks whether it knows about group_id or

not. If group_id is unknown, i.e. the group has not been created yet, it calls the
out-of-band group callback routine oob_group_handler() of the service whose ID

can be extracted from out-of-band group ID, registered in step 1. The callback

returns a list of members, and then the collective module creates the group states

and builds a spanning tree covering the member nodes. A digest of group
membership is computed and included in the message header. Then the message

is broadcasted down the tree.

4. When a message for an out-of-band group is received, the collective module calls

the oob_group_handler() routine to get group membership, in a same way as

step 3. Then it checks group membership against the group digest in the message
header. If the digest doesn’t match, the group membership must have changed

and the message is dropped, i.e. not forwarded down the tree. At last the

message is forwarded down the tree. Therefore, group states for an out-of-band

group are created as the first broadcast message are sent on the root and
forwarded down by members.

Note that:

 A server service registers oob_group_handler() callback only if it supports

out-of-band groups.

 Out-of-band group ID consists of the service ID so that member nodes can

figure out which oob_group_handler() to call among all registered services.

The rest of the out-of-band group ID is opaque to the server collective

module and meaningful only to the corresponding oob_group_handler().

 An out-of-band group ID only determines the membership, i.e. an array of
(tag, NID) for all members, but not the spanning tree. The tree is determined

by group ID, root node, and a well-known algorithm to build the tree. Any

node in an out-of-band group can become the root node of a spanning tree if

it wishes to send a message to the group.

 Although server collectives can detect membership changes of out-of-band

groups by using digests, services should try to make sure that the mapping

from out-of-band group ID to member list doesn’t change when there’s

ongoing broadcast over the group. Otherwise network resources will be
wasted as the broadcast would fail in the middle of mapping changes.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 13 1 May 2014

Explicit Group Creation

When only the root node knows about all the members initially, it needs to propagate this

information to all members before it can obtain a group ID and broadcast any message
over it.

The root node of a group initiates the creation of the group. Group creation is a collective

process where all group members participate. The ID of the group consists of a digest of

the ordered list of group members.

The explicit group creation is essentially a broadcast message that contains group

membership information in its payload. Member nodes look into the message for list of

group members, in contrast with out-of-band group join, where member nodes rely on

server service callback to find out this information by an out-of-band mechanism.

The API to create group explicitly is scoll_group_create(members,

completion_callback()). The completion_callback() is invoked when the root node has

received aggregated replies from all its children. The ID of the group is returned in this

callback.

Build New Group from Existing Groups

After some groups have been created, new groups can be built from operations on

existing groups. For example, a server may want to broadcast to the intersection of two

existing groups.

At this point, we see group subset to be most useful group operation. In the future when
need arises, more group operations can be added, e.g. group intersection.

Group Subset

After a group has been created, sometimes a server would want to broadcast over only a

subset of this group. For example, a server may want to broadcast to all OSS servers
which are still alive, i.e. the subset of live nodes among all known OSS servers.

Group subset is specified by the root when it is broadcasting over the sub-group. The

specification consists of the ID of the parent group, and a subset specification. Currently

we plan to support only one type of subset specification: all nodes that are currently alive
according to the server discovery module, in the form of a digest that all nodes must

agree upon.

In the future, if necessary, more types of subset specification may be added, e.g. all odd

or even members.

Build Spanning Trees

Spanning trees are used to propagate messages between nodes. Therefore, in the

discussion of spanning trees, member entities on a same server node are irrelevant –

spanning trees cover member nodes, not the member entities. In this section, member

refers to a member node, and group refers to the group of nodes that a collective group
of member entities belong to.

Group membership can be represented by a simple NID array: lnet_nid_t members[N]. A

node’s rank within the group is said to be its index into the members[N] array.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 14 1 May 2014

As described earlier, the members[N] array can be established by an out-of-band

mechanism or by an explicit group creation process. Once all member nodes have agreed

upon the group membership, they can participant in group broadcasts, i.e. forwarding
broadcast messages downstream to immediate children and aggregating replies from all

descendants and sending aggregated copies upstream to parents.

With a copy of the members[N] array and rank of root node and a well-known algorithm

to build a spanning tree, there’s enough information on every node to build a complete
tree that covers the whole group, but it is often not necessary to do so.

There’s no single tree shape that is universally optimal for all network configurations and

different server services, and the optimal choice can be platform dependent. Therefore

the building of spanning tree should be made a pluggable function – it should be made as
simple as implementing a few new functions in order to add a new spanning tree

topology. Initially we plan to implement k-nomial tree and k-ary tree.

Binomial Tree

Binomial tree is commonly used in MPI collective implementations for its scalability at
broadcasting small messages. Here’s an example of broadcasting a message over a 4-

degree binomial tree of 16 nodes:

Figure 1: Binomial Tree

In each step of the broadcast, all nodes that currently have a copy of the message

forward it to one of their children:

0

2 8 4

12 10 9 6 5

7 11

3

1

13 14

15

Step 1

Step 2

Step 3

Step 4

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 15 1 May 2014

1. Node 0 forwards the message to node 8, since node 0 is the originator of the

broadcast (also root the spanning tree), i.e. the only one who has a copy of

the message at the beginning. Now 2 nodes have copies of the message.

2. Nodes 0 and 8 forward to nodes 4 and 12 respectively. Now 4 nodes have

copies of the message.

3. Nodes 0, 8, 4, and 12 forward to nodes 2, 10, 6, and 14 respectively. Now 8

nodes have copies of the message.

4. Nodes 0, 8, 4, 12, 2, 10, 6, and 14 forward to nodes 1, 9, 5, 13, 3, 11, 7, and

15 respectively. Now all the 16 nodes have copies of the message, and the

broadcast completes. Note that all leaf nodes receive a copy of the message

at the final step. Now node 0 the root has received replies from all its
descendants and the reply aggregation completes.

Aggregation of replies happens in the reverse order of the broadcast. In each step, all

nodes that have received replies from all its descendants forward an aggregated copy of

the replies to their immediate parents:

1. Nodes 1, 3, 5, 7, 9, 11, 13, and 15 send their replies to nodes 0, 2, 4, 6, 8,

10, 12, 14 respectively, i.e. all leaf nodes send replies to their parents.

2. Nodes 2, 6, 10, and 14 aggregate their replies with replies from descendants

and send the aggregated replies to nodes 0, 4, 8, and 12 respectively.

3. Nodes 4 and 12 aggregate their replies with replies from descendants and
send the aggregated replies to nodes 0 and 8 respectively.

4. Node 8 aggregates its own reply with replies from its descendants and sends

the aggregated reply to node 0.

Tree Representation

The tree can be completely represented by the members[N] array, with tree topology

encoded into the ranks in the following way:

1. My rank is R.

2. Parent: My parent’s rank P equals my rank R with the least significant 1 bit
cleared. If P equals R, then I’m the root. For example, the parent of node 8

(binary 1000) is node 0 (binary 0000, i.e. least significant 1 bit of 1000

cleared); the parent of node 15 (binary 1111) is node 14 (binary 1110, i.e.

least significant 1 bit of 1111 cleared).

3. Sub-tree rooted at me: the degree K of the sub-tree rooted at myself is
log2(R-P), and the size of the sub-tree is 2**K=R-P. For example, the sub-

tree rooted at node 12 has degree log2(12-8)=2, and size 2**2=12-8=4. The

sub-tree rooted at node 7 has degree log2(7-6)=0 and size 2**0=7-6=1,

thus node 7 is a leaf node – all nodes with odd ranks are leaf nodes, and vice
versa. Root node needs special handling as there’s no P.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 16 1 May 2014

4. Immediate children: each node has K children, with ranks R+2**e where e is

from 0 to K-1. For example, node 12 has degree K=log2(12-8)=2, so it has 2

children 13 and 14, i.e. 12+2**0 and 12+2**1.

Partial Tree

When N is not a power of two, there are not enough nodes to fill up a complete binomial

tree. In such cases a partial tree is built from a full tree with nodes that don’t exist

removed. Here’s an example of a partial 4-degree tree of 14 nodes:

Figure 2: Partial Binomial Tree

As shown in the graph above, nodes with ranks 14 and 15 are removed, shown in dashed

lines, because there are only 14 entries in the members array. The topology algorithms

need to be amended to take into account partial trees:

1. Sub-tree rooted at me: let D=R+(R-P)-1=2R-P-1, i.e. the biggest rank among

my descendants if N were power of two. If D<N, then my sub-tree size is still

R-P, i.e. the sub-tree is full; otherwise the sub-tree size is R-P-(D-N+1)=N-R,

i.e. with D-N+1 nodes excluded from an otherwise full sub-tree. For example,
the sub-tree at node 8 has size N-R=14-8=6, because D (15) >= N (14).

2. Immediate children: nodes of ranks R+2**e where e is from 0 to K-1 AND

R+2**e < N. For example, node 12 has children 13 only, and 14 is excluded

because 14 is NOT less than the total number of nodes.

Note that node 12 can skip step 3 and go directly from step 2 to step 4, since there’s

nothing to do for step 3.

0

2 8 4

12 10 9 6 5

7 11

3

1

13

Step 1

Step 2

Step 3

Step 4

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 17 1 May 2014

K-nomial Tree

Let o be the time to inject a message into the network, i.e. the time between successive

sends on a node, let l be the time for the network to deliver a message from sender to
receiver, and k the degree of the tree (i.e. k = log(N)). From Figure 1 we can see that in

a binomial tree, the time for a message to reach a leaf node on level x (root has level 0,

the leftmost leaf has level k) is x*l+(k-x)*o = k*o + (l-o)*x. Therefore:

1. When l equals o, the message reaches all leaf nodes at a same time, i.e. k*l.

2. When l is less than o, the message reaches leaf nodes from the left to the right,

i.e. deepest leaf gets the message the first.

3. When l is greater than o, the message reaches leaf nodes from the right to the

left, i.e. deepest leaf gets the message the last.

The case 1 is where binomial tree works best – all nodes who have received the message

keep forwarding it until it hits all leaf nodes at a same time, thus no one is idle while

waiting for others to propagate the message. This is the most ideal situation for binomial

tree.

Case 2 may happen when there’s additional gap between successive sends, e.g. back

pressure from congestion control or another application completing for outgoing

bandwidth. We don’t consider it to be a valid case for us as we give broadcast messages

high priority, e.g. by using priority queue and pre-allocation of resources, and when

there’s congestion control back pressure the latency l should increase too due to the
congestion.

In case 3, the root becomes idle while nodes on the left-side sub-trees are still

propagating the message, and as a consequence the latency for the broadcast to

complete becomes higher. Therefore we want a tree that is shallower and wider than the
binomial tree, yet it should have the unbalanced structure like the binomial tree to keep

all nodes busy. This is exactly a generic k-nomial tree with k greater than two.

Here’s a comparison of a binomial tree and a quadnomial tree, both of 16 nodes:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 18 1 May 2014

Figure 3: Binomial vs Quadnomial

In the quadnomial tree, there are two less levels and the root node has two more
children.

Tree Representation

This is actually a generalised version of the binomial tree algorithm.

The tree can be completely represented by the members[N] array, with tree topology

encoded into the ranks in the following way:

1. My rank is R.

2. Parent: My parent’s rank P equals my rank R with the least significant non-

zero bit cleared from the base-K representation of R. If P equals R, then I’m

the root. For example, node 14’s rank in base-4 is 32, with the 1st bit cleared
we get 30 which is 12 in base 10, so its parent is node 12; node 12’s rank in

base-4 is 30, with 2nd bit cleared we get 0 which is the parent’s rank.

3. Sub-tree rooted at me: the degree D of the sub-tree rooted at myself is the

integer floor of logK(R-P), and the size of the sub-tree is K**D. For example,
the sub-tree rooted at node 12 has degree log4(12-0)=1, and size 4**1=4.

The sub-tree rooted at node 7 has degree log4(7-4)=0 and size 4**0=1, thus

node 7 is a leaf node. Root node needs special handling as there’s no P.

4. Immediate children: each node has D*(K-1) children, with ranks R+K**e * p
where e is from 0 to D - 1 and p is from 1 to K-1. For example, node 12 has

degree D=log4(12-0)=1, so it has D*(K-1)=1*(4-1)=3 children 13 and 14

and 15, i.e. 12 + 4**0 * 1, 12 + 4**0 * 2, and 12 + 4**0 * 3.

Complete K-ary Tree

Compared with K-nomial trees, the main drawback of K-ary trees is that once a parent
sends the data to the children, it is idle and has to wait until the data propagates to the

leaf node. However, in a K-ary tree the load of broadcasting messages is evenly

distributed – all nodes but the leaves send exactly K times, while in a K-nomial tree the

root always has most immediate children and consequently most work to do. Therefore
the K-ary tree can be a better choice for server services that are not sensitive to latency,

for example a service which initiates a broadcast and then goes on doing other things

without blocking for completion.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 19 1 May 2014

Once the members of a group are known, a complete K-ary tree can be built by following

a set of simple rules:

1. Each node in the tree is populated with K immediate children as long as
there’s enough nodes left in the group

2. Nodes in level L are populated before any node in level L+1 or higher are

populated, i.e. the tree depth is kept at the minimum by populating nodes

one level at a time.

3. On a same level, nodes to the left are populated first, for maximum space

efficiency.

An example of a complete 3-ary tree of 12 nodes:

Figure 4: Complete 3-ary Tree

Note that node 3 has only two children since there’re not enough nodes in the group to

keep the tree full.

Tree Representation

There’s no need to send a tree structure to all nodes from the root. Instead, the K-ary
spanning tree can be represented by a simple array: lnet_nid_t members[N], and the

branching factor K.

When a group is created, the root node builds this array with itself being members[0] –

the index in the array is said to be the rank of the corresponding node in the tree, so root
is always rank 0. Then the root node sends this array and the branching factor to all

member nodes. Any member node can calculate information about topology by the

following formulas, with R being the rank of the node itself:

 Parent rank: (R – 1) / K

 Children ranks: C[K] = R x K + [1, K], as long as the resulting rank is less than
N.

 Size of sub-tree rooted at R, by the recursive tree_size() routine: tree_size(R) =

1 + tree_size(C[0]) + tree_size(C[1]) + … tree_size(C[K - 1]).

It’s possible to build a member array such that the corresponding tree topology matches
the network topology, e.g. nodes in a same cabinet are directly connected in the tree. All

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 20 1 May 2014

such topology information is known to DAOS services – it’s to be determined how this

information is passed down to the server collective module, and how to build better trees

based on the information.

Choose Spanning Tree

The choice of what spanning tree (i.e. both type and options, e.g. K-ary tree with K=4) to

use must be made by the administrator, via a kernel module option, or via a parameter to

the server collective initialization routine should the need arises for server services to use
different spanning trees.

The choice is made manually based on characteristics of the network and the

requirements of server services. Automatic tuning of the algorithm is out of scope for this

project. However, the server collective module should support benchmarking of collective
communications, e.g. measuring the latency from when the root begins sending to the

moment the last leaf node receives data.

Broadcast Message

First, the root node checks with the server discovery protocol to see whether all member
nodes are alive. If not, fail immediately; otherwise it begins to propagate the message to

its children.

All nodes enter the following broadcast procedure once they have received a copy of the

broadcast message from the parent, or on the root node from upper layer services:

1. Build group state if necessary. For example, for out-of-band groups there’s no
explicit group creation – groups are created upon receiving the first broadcast

message.

2. Perform sanity checks on the received message, e.g. it should come from my

parent node and service ID for the group must map to a registered service.

3. Call the pre_request_handler() callback for any preprocessing necessary

before the message can be forwarded down the tree. In this callback, upper

layer needs to:

a. Prepare reply buffers to receive aggregated replies from child nodes.

b. If there’s RMA descriptor of bulk data in the broadcast message,

fetches the bulk data, prepare RMA descriptor for local copy of the bulk

data, and returns a new message that contains the RMA descriptor of

local bulk data copy to be forwarded to the children.

4. Once the pre_request_handler() callback returns, server collective module
proceeds with the following two tasks in parallel:

a. For each immediate child node of rank C, ordered from the highest

rank to the lowest: send node C a copy of the broadcast message or

the message returned by upper layer callback in step 3. Note that the
message should be sent to children in the order of sub-tree depth

rooted at the children, i.e. the deeper the sub-tree the sooner the child

should be sent the message. For both k-ary trees and k-nomial trees,

our tree-building algorithm guarantees that a child of higher rank has
a deeper sub-tree than a child of lower rank. Therefore for k-ary trees

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 21 1 May 2014

and k-nomial trees the message should be sent to children in the order

of decreasing ranks.

b. For each member entity on this node, call incoming_request_handler()
of the corresponding service to execute the request on this member

entity. If the handler returns successfully, the service must call a

scoll_reply() to generate a response. The service may call scoll_reply()

before returning from this handler or later from a service thread when
the requested operation completes. Note that the handler can return

failure, e.g. when the request message is invalid, in which case

scoll_reply() will not be called from the server service. When there are

multiple members on a same node, the incoming_request_handler()
invocations may be issued in parallel so the handler must be re-

entrant.

5. Wait for all children to send replies.

6. Once all replies have been received, aggregate them together with the replies
from upper layer service on myself and forward it up to my parent P. In the

case of the root node, deliver the aggregated reply to upper layer service

which started the broadcast.

7. Broadcast procedure completes. If this is the final broadcast for the group, as

indicated by the last-broadcast flag, then destroy the group state and reclaim
all resources.

Reliable delivery

Each member node sends collective messages by directly calling the LNetPut API. LNet

point-to-point messages are reliable since routers are excluded from the path – protocols
in LNDs and layers beneath LNDs already implement time out and retry. There’s no need

to implement another layer of acknowledgements and retries in the server collective

module. In the case where the target node has died or rebooted after a message has

been delivered, the server discovery module will notify us.

However, the LNet API doesn’t notify callers on delivery:

 When LNet notifies that a message has been sent successfully, we can rely on

LNDs for reliable delivery.

 When LNet indicates a failed sent, we might still retry the message as the failure

is local.

With acknowledgements removed from server collective protocol, there’s only one pass of

upstream messages for each broadcast, i.e. the aggregation of replies from leaf nodes up

to the root. The aggregated reply tells the root node whether the broadcast message was

delivered successfully to all member nodes. With a separate pass of acknowledgement
aggregation, the root node may know a bit earlier whether the broadcast has been

delivered to all nodes, but there’s no strong need for that earlier delivery notification from

upper layer services and the overhead of a separate pass of acknowledgements up the

tree can be eliminated.

Notification of delivery failure

A point-to-point message delivery can be considered as failed when:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 22 1 May 2014

1. There’s repeated local LNet failures, i.e. LNet events indicating failures to send.

2. The server discovery module notifies that a node has died or rebooted, after LNet

successfully sends out a message.

3. If it’s a downstream broadcast message, a reply hasn’t come back after a static

timeout and the above two cases haven’t happened. This is just a safeguard

against bugs in the server discovery module, which is supposed to reliably detect

node failures. More details on reply timeout in the coming section on reply
aggregation.

Upon such failures, member nodes:

 Simply give up if it’s a reply message going upstream.

 Create an empty reply message which indicates that the sub-tree rooted at the
target node hasn’t received the broadcast message, and forward the reply

message up the spanning tree.

Reply Timeout

In the case where a broadcast message has been forwarded successfully to a child and
the server discovery module hasn’t detected any status change of the child node, the

member node still can’t wait indefinitely for the child to reply. The reply timeout, however,

must take into consideration both the network RTT and the processing time for upper

layer services to respond.

Different broadcast messages require vastly different processing time – some may
involve disk IO, e.g. commits, and some may need only manipulation of in-memory

states. When upper layer service at the root node initiates a broadcast, it must specify an

estimate of upper bound for processing time for recipients to process and respond to the

message. This estimate is carried in the header of the broadcast message, so that nodes
down the tree can calculate a proper timeout to wait for replies.

Note that upper layer services should be conservative or pessimistic about the upper

bound estimate of processing time, because the estimate is used to timeout waiting for

reply only for the unlikely case that the server discovery module has failed to detect a
status change of the node.

Cascading Network Timeout

Member nodes should use different timeout values to wait for aggregated replies from

their immediate children. This is determined by sub-tree depth rooted at the child node,

because it takes an extra Round Trip Time for messages to reach each additional level of

nodes. For example, in the binomial tree shown below, with Round Trip Time estimated to
be R and processing time estimated to be P:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 23 1 May 2014

The root node 0 should wait for aggregated reply from child node 4 with timeout 3R+P,

child node 2 with 2R+P, and child node 1 with R+P, since sub-tree depths at the child
nodes are different. In contract, with K-ary trees, the sub-tree depths are more likely the

same and hence the timeouts could be the same for all children nodes.

Note that P, the estimate of processing time, should not be cascaded like R, the network

RTT, because processing on nodes in a sub-tree overlap with each other.

Reply Aggregation

Replies can be aggregated in different ways, e.g.:

 Simple concatenation. But meta-data needs to be added to concatenated

message so as to split the concatenated reply at the root.

 Status code aggregation: e.g. only node 1 to 12 failed – root only sees NIDs

of those who failed, so aggregated reply is often small. This should work for

most cases. Also, upper layers may not be interested in error codes – it may

suffice to know who has failed to execute its command.

Aggregation should be done by upper layer services, because the server collective

module doesn’t understand upper layer protocols and thus can’t aggregate any better

than simple concatenation of reply messages. Reply aggregation happens in the following

steps:

1. Upper layer service registers callback functions with the server collective
module for reply processing, named incoming_reply_handler() and

post_reply_handler(), during initialization.

2. Server collective module calls incoming_reply_handler() for each reply

message it receives.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 24 1 May 2014

3. The first time incoming_reply_handler() is called for a broadcast, the function

could estimate size of the aggregated reply and allocate all resources for the

aggregation, based on spanning tree topology and the nature of the
broadcast.

4. Each time incoming_reply_handler() is called, it may either aggregate the

reply message incrementally, or wait for the final post_reply_handler()

invocation to aggregate them all in one go. Incremental aggregation has the
advantage that the aggregation overlaps with communication. However, it

may not be feasible for some broadcasts. It’s totally up to the upper layer

service how to best aggregate replies since upper layer has sufficient

knowledge to make the most optimal decision.

5. Once all incoming_reply_handler() invocations have returned, the service

collective module calls the post_reply_handler() which returns the aggregated

reply buffer or buffers to server collectives layer, which then sends it back to

the parent node.

Note that:

 A service may register a NULL incoming_reply_handler() if it doesn’t need any

per-reply processing.

 The incoming_reply_handler() must be re-entrant. It can also race with the

incoming_request_handler().

 The size of an aggregated reply can exceed LNET_MAX_PAYLOAD, in which

case the reply can’t be aggregated further with other replies:

o If aggregated replies can’t fit into one LNet message of

LNET_MAX_PAYLOAD bytes, they are aggregated into as few LNet
messages as possible.

o When multiple reply messages result from reply aggregation, the

messages can be sent to parent node as soon as they become ready –

there’s no need to wait for the final aggregated message and send
them all in one go.

Buffer Management

Downstream broadcast messages are unsolicited. Member nodes can’t predict when they

are coming, where they are coming from, how many are coming, or what their sizes are.

Therefore:

 Broadcast messages are sent to a lazy portal so that the messages don’t get

dropped if the target node doesn’t have sufficient buffers to receive them on their

arrival.

 LNET_NID_ANY is used to match incoming messages from any node, and all
match bits are ignored.

 Member nodes post buffers of size 4K bytes to this portal, closely monitor its

usage, and post more when it’s running low on available buffers.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 25 1 May 2014

Note that the server collective module requires that broadcast message can’t exceed 4K

bytes in size. Please see Bulk Data for reasons behind the size limit and how bulk data

are propagated.

Upstream replies can be expected in terms of time, source address, size, and quantity.

Therefore:

1. Before forwarding a broadcast message to child nodes, a member node must

calculate the sizes of the aggregated replies to be expected from each child,
and allocate and post reply buffers:

a. Calculate the sub-tree size rooted at each child node, e.g. 1 if the child

is a leaf node.

b. Call the server service pre_request_handler() callback function to
estimate the maximum sizes of the aggregated reply from the

children, based sub-tree size and information in the broadcast

message. The callback also allocates and returns reply buffers to the

server collective module.

2. Member node posts a reply buffer for each child. The buffer can only match

reply message for the current broadcast from the particular child node. Then

the broadcast message is forwarded to the child. Note that:

a. If estimated size of the aggregated reply exceeds the

LNET_MAX_PAYLOAD bytes, then multiple buffers are posted as the
aggregated reply would come in several parts.

b. As a member node can’t begin forwarding a broadcast to a child until it

has posted reply buffers to receive the aggregated reply from the

child, it’s important to minimize the time for posting reply buffers in
order to reduce the latency between successive sends. There are

several ways to minimize the latency:

i. Sub-tree sizes don’t change. Calculate once only and save

them.

ii. Pre-allocate reply buffers of several fixed sizes. Buffers don’t

have to be of exactly the same size as the replies they match.

iii. Make use of LNet SMP CPU affinity framework to make efficient

use of parallelism in host processing, e.g. by minimizing lock

contention.

3. Aggregated reply is sent to a non-lazy portal on the parent node using unique

match bits that match exactly the reply buffer posted by the parent node for

this aggregated reply.

Bulk Data

The collective broadcast message is the only unsolicited messages used in the protocol

and servers are required to buffer these eagerly and losslessly. For this reason, requests

are constrained to be small such that the maximum buffering requirements are a small

fraction of server memory.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 26 1 May 2014

When a server needs to broadcast bulk data, it should broadcast the RMA descriptor of

the bulk data instead. Child nodes will fetch the bulk data using the RMA descriptor, and

forwards the bulk data down the tree by forwarding RMA descriptor of its own copy of the
bulk data.

Note that a member node has to change the broadcast message before it’s forwarded

down the tree, because the RMA descriptor in the message must be changed to be the

descriptor of its local copy of the bulk data.

Group Lifespan

Group states can’t persist on member nodes forever. It must be explicitly destroyed by

root node or implicitly recycled, in order to reclaim the resources.

Root node can explicitly destroy a group:

1. When it is broadcasting the last message over the group, a flag is set in the

header of the broadcast message to indicate that there’d be no more messages

for this group. This is called the last-broadcast flag. Member nodes can then

destroy the group and free all resources once the broadcast completes, i.e. once
the aggregated reply has been delivered to the parent node.

2. When it decides that there’d be no more broadcasts over the group, e.g. when

server service is quitting execution, the root node sends a notification to all

group members to destroy the group. The notification is essentially a zero-sized

broadcast message over the group with the last-broadcast flag set. It’s very
similar to case 1 above, with the only difference that the last-broadcast flag is

not piggybacked on the final broadcast message.

Member nodes can also destroy a group by themselves without any explicit notification

from the root node:

 When it notices that the root node is dead. The server discovery module can

notify the collective module when a node of interest is dead. All the trees rooted

at the dead node are destroyed. Note that when a member node is dead, it’s up

to the root what to do.

 When it notices that the root node has rebooted without destroying its groups,

e.g. by power cycling the root node. All groups created by the previous

incarnation of the node must be destroyed, but not those created by the current

incarnation.

Design Notes

A couple of design choices require that the server discovery module should be able to

detect server reboots reliably. Member nodes need to be notified about server reboots in

order to:

 Stop waiting for reply from a server that has rebooted.

 Destroy all groups rooted at a node that has just rebooted. To be exact, only the

groups created by previous incarnations of a node should be destroyed.

The current server collective design and implementation can’t guarantee this if a server
node reboots itself very quickly. An amendment to the design is necessary to reliably

detect quick reboots:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 27 1 May 2014

1. Upon startup the server discovery module blocks for a few cycles, during which

it’s said to be in stealth mode. In stealth mode:

a. A node doesn’t send out any gossip messages, so that others would
believe that the node is dead.

b. A node can still process incoming gossip messages, e.g. to synchronize

global gossip cycle number and update aliveness timestamps.

2. The stealth mode only needs to last long enough so that all others would consider
the node dead. The length of the stealth mode is determined by size of the gossip

group and it grows logarithmically with group size.

3. Stealth mode can be ended earlier if an incoming gossip message contains a very

old timestamp of the node, which indicates that all others have already
considered the node to be dead, e.g. the node is not rebooting quickly at all.

4. All nodes keep an aliveness counter for everyone else, without propagating this

counter in the gossip protocol. This counter is incremented by one each time a

node goes from alive to dead.

Now the server collectives module would know that a node has rebooted if the local

aliveness counter for the node has changed.

This mechanism essentially forces a node to pretend to be dead (and make sure all else

agree on it) before it begins tell everyone else that it has just become alive. All states

created in the previous incarnation would have been cleaned up before the current
incarnation begins to create new states. For example, a node that just quickly rebooted

itself blocks in stealth mode, during which server collectives can’t do any work. By the

time the blocking ends, all other nodes must have agreed that this node is dead and have

destroyed all groups that belong to its previous incarnation. Therefore, groups created by
the new incarnation wouldn’t be destroyed by mistake.

In addition, this mechanism doesn’t add to protocol overhead of the server discovery

module, because the aliveness counter is not exchanged by the gossip protocol.

API and Protocol Additions and Changes

Open Issues
In all spanning trees except flat trees, the root node only directly communicates with its

immediate children which don’t include everyone else. This brings up a potential problem

that upper layer services don’t have a change to negotiate protocol versions or
capabilities among group members, e.g. by exchanging connection flags like what the

PTLRPC does.

Upper layer services should include a version number in their protocols, and choose one

of the following strategies to deal with multiple versions:

 Simply fail and abort the broadcast when there’s a version mismatch. It’s

mandatory that all servers run a same version of the protocol.

 When receiving a broadcast message with a higher version number, a

member node simply reply with an error code and its own version number.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 28 1 May 2014

However, the broadcast message should still be forwarded down the tree to

all children. Later when aggregated reply reaches the root node, it knows

about the versions of those nodes who has failed for version mismatch and
can try again with the lowest version of the protocol found in the aggregated

reply.

In other words, upper layer services should be able to deal with this problem on their

own.

Risks & Unknowns
Large-scale test resources seem scarce and difficult to get hold of.

