

LLNS Subcontract No. B599860

Subcontractor Name Intel Federal LLC

Subcontractor Address
2200 Mission College Blvd.

Santa Clara, CA 95052

NOTICE: THIS MANUSCRIPT HAS BEEN AUTHORED BY INTEL UNDER ITS SUBCONTRACT WITH LAWRENCE

LIVERMORE NATIONAL SECURITY, LLC WHO IS THE OPERATOR AND MANAGER OF LAWRENCE LIVERMORE
NATIONAL LABORATORY UNDER CONTRACT NO. DE-AC52-07NA27344 WITH THE U.S. DEPARTMENT OF

ENERGY. THE UNITED STATES GOVERNMENT RETAINS AND THE PUBLISHER, BY ACCEPTING THE ARTICLE OF

PUBLICATION, ACKNOWLEDGES THAT THE UNITED STATES GOVERNMENT RETAINS A NON-EXCLUSIVE, PAID-
UP, IRREVOCABLE, WORLD-WIDE LICENSE TO PUBLISH OR REPRODUCE THE PUBLISHED FORM OF THIS

MANUSCRIPT, OR ALLOW OTHERS TO DO SO, FOR UNITED STATES GOVERNMENT PURPOSES. THE VIEWS

AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO NOT NECESSARILY REFLECT THOSE OF THE UNITED

STATES GOVERNMENT OR LAWRENCE LIVERMORE NATIONAL SECURITY, LLC.

Date:
June 4, 2014 DAOS Epoch Recovery Design

FOR EXTREME-SCALE COMPUTING
RESEARCH AND DEVELOPMENT (FAST
FORWARD) STORAGE AND I/O

© 2014 Intel Corporation

i

Table of Contents

Introduction ... 1

Definitions .. 1

Specification ... 2
i. Transient Server & Network Failure ... 2

1. Network Failure & DAOS Request Resend .. 2

2. Transient MDT Failure ... 2

3. Transient OST Failure ... 5

ii. Commit and Failure Handling .. 6
1. Commit Framework .. 6

2. Failure and Partial Commit .. 7

3. Shard Addition and Commit ... Error! Bookmark not defined.

4. Flush & Epoch Recovery .. 9

iii. Container Open & Recovery .. 10
1. HSE Detection ... 11

2. Uncommitted Epoch Abortion ... Error! Bookmark not defined.

3. HCE Resolution ... Error! Bookmark not defined.

4. Application Recovery .. 12

iv. Orphaned Shard and Broken Container Cleanup ... 13
1. Shard Scrubbing (optional) ... 13

2. Idle Container Cleanup (optional) .. 13

3. Container Repair Tool (optional) ... 14

Risks & Unknowns.. 15

Revision History

Date Revision Author

03/26/2013 v0.1: outline & first draft Johann Lombardi

05/01/2013 v0.2: document capability revocation Johann Lombardi

05/23/2013 v0.3: document new commit framework Johann Lombardi

05/25/2013 v0.4: several clean-ups including split of the

“container cleanup” section into sub-sections

Johann Lombardi

05/27/2013 v0.5: integrate feedback from Alex & Liang Johann Lombardi

05/28/2013 v0.6: add flush section Johann Lombardi

05/29/2013 v0.7: introduce HSE Johann Lombardi

05/29/2013 v0.8: add “Changes from Solution Architecture”

section

Liang Zhen

05/29/2013 v0.9: merge contribution from Alex on the first

chapter

Alexey Zhuravlev

05/29/2013 v1.0: several cleanups Johann Lombardi

05/31/2013 v2.0: add layout flush notion Johann Lombardi

06/03/2013 v3.0: cleanups Johann Lombardi

06/05/2013 v4.0: more minor cleanups Johann Lombardi

06/25/2013 v4.1: integrate feedback from Ned Bass Johann Lombardi

06/4/2014 v4.2: update after prototype implementation Johann Lombardi

Li Wei

Liang Zhen

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 1 4 June 2014

Introduction
While standard Lustre recovery aims at dealing with transient failures of Lustre servers
(e.g. target failover or just server restart), applications still regularly have to dump their

own in-core states on disk to be able to restart from a consistent and meaningful (from

the application perspective) dataset after a non-transparent failure (e.g. client crash,

Lustre recovery failed to restore the latest state of the filesystem). Such
checkpoint/restart mechanisms often involve copying unmodified data and creating a

significant number of files for each checkpoint. This could then result in expensive data

movement across storage targets as well as a namespace pollution causing the metadata

server to become a bottleneck.

Through the concept of epoch, the DAOS API allows applications to define atomic sets of
changes and to specify the order in which those change sets should be applied. Persistent

distributed states are then generated automatically by the backend filesystem which

guarantees to the application that a consistent version of the container is always readable

and that, in the worst case, only changes for uncommitted epochs have to be replayed.

The purpose of this document is to describe in details the various epoch recovery

scenarios.

Definitions
 OST: Object Storage Target, traditionally used by Lustre to store file data.

 MDT: MetaData Target where Lustre stores filesystem metadata (i.e.

namespace, file layout, …)

 disk commit: local transaction commit on the backend filesystem. Should not

be confused with epoch commit.

 epoch commit: distributed commit at the DAOS level which results in a

consistent state change on all the shards

 HCE: Highest Committed Epoch, which is the last successfully committed

epoch. The HCE is the highest epoch accessible to readers.

 HSE: Highest Shard Epoch, which the highest epoch number committed on at

least one shard. The HSE is readable if it is equal to the HCE, otherwise the

HSE corresponds to a partially committed epoch which is then stuck on

commit and is not published to readers.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 2 4 June 2014

Specification
i. Transient Server & Network Failure

1. Network Failure & DAOS Request Resend

Lustre deals with network failures by resending RPCs multiple times. Each request is
assigned a timeout and is resent if the client did not get a reply when the timeout

expires. Timeouts are adaptive and can be extended by the server by issuing an early

reply to the client. If the reply turns out to be lost, then the Lustre server might receive

the same request twice. In Lustre current implementation, all OST requests can be safely
re-executed (i.e. all OST requests are idempotent) multiple times whereas most MDT

requests have to be processed only once (aka “execute once” semantic). To address this,

the MDT records in the last_rcvd file the processing result of the last request sent by each

client and reconstructs the reply instead of re-executing the request if this latter is
received a second time. The drawback is that each Lustre client is limited to one RPC in

flight to the MDT since there is only one slot per client in the last_rcvd file to store

request information. There is no such limitation on OSTs thanks to idempotent request

processing.

As far as DAOS is concerned, all container operations (except container query/getattr)

processed by the MDS are not idempotent and will thus have to deal with the last_rcvd

file limitation. This means that, like regular Lustre metadata requests, there can be only

one DAOS container creation or unlink in flight. There is a plan to address this limitation

in the Lustre mainline by adding support for multiple slots for each client in the last_rcvd
file.

That said, all shard, object and epoch operations are idempotent and can then be safely

re-executed multiple times.

For operations involving server collectives, DAOS clients will retry for a certain amount of
time if corresponding server collectives fail because of network issues before reporting

errors back to applications.

2. Transient MDT Failure

The MDT maintains in-core states composed of the following elements:

 Container open handles (including unique cookie, read/write, referenced

epoch) and capabilities

 Epoch state: current HCE & HSE, epoch to commit and lowest referenced

epoch (can be calculated from the container open handles).

 Layout which stores the whole history (based on epoch numbers) of layout
modifications

Standard Lustre replay mechanisms are used to reconstruct the above states in case of

MDT failure. The purpose of this section is to describe how the MDT uses client replay

data to rebuild those states after a restart or failover. The MDT-shard recovery (aka
container recovery) on the first open is detailed in chapter iii of this document.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 3 4 June 2014

Container Handle Replay

On MDT restart, clients have to replay container handle as done today with open file

handles. MDT can thus rebuild the list of open container handles out of client information.
MDS uses RPC XID and local in-memory structures to recognize the case of resent and

reconstruct the reply. Capabilities are recovered upon open replay with client’s copies.

Epoch State Recovery

Upon restart, the MDT also has to reconstruct the epoch tracking list (what is the lowest
version currently read by clients). During recovery and upon recovery completion, the

MDT does not remove unreferenced epochs from the shards, instead it’s done in lazy

manner when the client moves the cursor ahead with slip/close request – then MDT will

find the lowest epoch referenced by the file handles and will command OSTs to remove
epochs (snapshots) up to that one.

As for commit request, clients are not supposed to receive an acknowledgement of

commit until all the shards report their commit back. Thus, upon MDS reboot, the client

will be resending commit request to recover “epoch to commit” state and restart commit
process.

Container Layout Reconstruction

Every new shard added to the layout is tagged with the epoch it was added in. Given this,

to commit the epoch, MDT should regenerate a list of active shards for the epoch. The

client’s responsibility is to replay changes to the layout using regular Lustre recovery. To
do so, all RPCs altering layouts are assigned a transno associated with the on-disk update

of the layout on the MDT. If the MDT crashes, then clients will replay layout modifications

and allow the MDT to rebuild the layout as it was before the crash.

VBR (Version Based Recovery) should be used to improve recoverability in the light of
possible missing clients.

Container create/unlink

Resend and replay for container unlink is done by regular Lustre means. Shards are

destroyed via LOD/OSP which issued SHARD_DESTROY RPCs to OST once the container
has been unlinked from the namespace on the MDT.

The figure below schematizes how MDT recovery was demonstrated in milestone 7 of the

project.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 4 4 June 2014

In this example, the MDT has been restarted while IOD was trying to commit a new

epoch. Upon restart, the MDT enters in recovery and asks previously connected client to

replay container open handle(s) as well as uncommitted metadata operations. Once
recovery is finished, IOD can re-execute the commit request and complete the persist

operation.

Note on Eviction & Capability Revocation

In general, a container handle is closed by the application that opened it. If the
application quits unexpectedly, then it is the responsibility of the DAOS client to close the

container on behalf of the application. Similarly, if the client node is evicted, then it is up

to the MDT to clean up the export associated with the client and to revoke the container

handle.

Closing a container handle results in the revocation of the capabilities associated with this

handle on the shards though a server collective initiated by the MDT. This capability

revocation is vital to protect the storage from any in-flight I/Os that might still be

submitted with a container handle that has been closed already, e.g.:

 in-flight I/Os that might still be on its way or delayed indefinitely in a router for

example.

MDT IONs Shards

Shard 1 Shard 2 Shard 3 Shard 4
I/Os(e+n

)

Failure

Replay

OPEN(e)
HCE = e

COMMIT(e+n)

propagate capability + fetch local

HCE

MDS back online

MDT is remounted

MDT is in recovery

commit(e+n)
COMMIT(e+n)

Persist(e+n)

Commit timeout

CONNECT

Connect timeout

CONNECT

Replay

Uncommitted MD Op

(shard add, snapshot, …)

Recovery finished

Persist(e+n)

completed

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 5 4 June 2014

 a slave process which is part of a collective open and is not aware yet that the

master process has closed the container and might continue sending I/O

operations to shards.

Lustre servers will fail the capability check for such requests and return EACCES to the

client.

3. Transient OST Failure

The shard in-core state consists of the handle and capability list. On restart, OSTs have to
fetch the capability list from the MDT. This happens after regular Lustre OST recovery is

completed, so that it is not racing with any shard creation replays. Non-recovery

requests are accepted and processed in parallel, unless capability checking is necessary,

in which case the request in question get EINPROGRESS and will be retried by the client
until the capability list fetching has completed.

As for the shard persistent state, it is represented by:

 default dataset with intent logs

 snapshots (should be listed in an index in the default dataset)

 highest locally committed epoch

 shard “object” in root dataset, including an “filter_fid” EA storing its container FID

The persistent state is supposed to be idempotent so that any request can be executed

arbitrary times. As a result, all DAOS object and shard operations are replayed using

Lustre standard mechanism, except for object write and punch.

Unlike regular Lustre object write and truncate, no on-disk transno is assigned for replay

to DAOS object write and punch which are thus not automatically replayed during Lustre

recovery. When DAOS object I/O requests are lost after an OST request, it is indeed up to

the application (IOD in this case) to resubmit all missing I/O operations. The application
is notified of failure when calling flush: any error during flush means that all operations

since the last successful flush have to be resubmitted. In the prototype, any error during

persist() is returned by IOD to the upper layer (i.e. HDF) which retries the whole persist

operation.

The following mechanism is used by client to find out whether any I/O requests got lost

which should cause flush to fail:

 Each time a client gets a RPC reply for a DAOS write/punch operation, it records

the highest transno packed in the reply for each shard

 Upon restart, OSTs report back to clients the last on-disk transno

 Clients then scan the per-OSC shard list and mark any shard with a

submitted_transno higher than the OST on-disk transno as failed

 Next time an I/O operation (write, punch or flush) is submitted for a shard

marked as failed, EIO is returned

 A flush call clears the failed state of a shard on the client.

The figure below summarizes how transient OST failure has been demonstrated in

milestone 7 of the project.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 6 4 June 2014

ii. Commit and Failure Handling

1. Commit Framework

To commit an epoch e, the application has to submit and flush all the I/O operations for

all epochs smaller or equal to e. The commit request is processed by the MDT which acts

as a proxy to the container shards and uses server collectives to trigger a local epoch

commit on all the shards. This step involves flattening the intent logs into the staging
dataset, deleting the intent logs and taking a snapshot. Once completed, the staging

dataset can be promoted to the next epoch (i.e. e + 1) and flattening for this epoch can

even eagerly start (as detailed in the next chapter, rollback of the staging dataset will still

be possible if the application closes and reopen the container without committing e + 1).

The diagram below represents how a MDT handles a commit request.

MDT IONs Shards

Shard 1 Shard 2 Shard 3 Shard 4
I/Os(e

)

Failure

OSS back online

OSTs remounted

commit(e)
COMMIT(e)

Persist(e)

I/O

timeout CONNECT

Connect

timeout

Persist(e)

completed

CONNECT

last_on_disk_request

I/Os got lost

Persist(e) fails

with EIO

I/Os(e

)
 Retry

Persist(e)

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 7 4 June 2014

If all local commits are successful on all the shards, the epoch is considered as globally

committed and becomes the new HCE.

2. Failure and Partial Commit

There are several types of problems that can prevent a shard from successfully

completing a local commit:

 The OST hosting the shard is unresponsive. The failure might be temporary (e.g.

OST failover/restart, network issue, …) or persistent (e.g. the OST is dead and
can’t be recovered). In this case, the commit request does not reach the shard

and fails via gossip (or after a timeout if gossip isn’t used).

 The shard received the commit order, but failed to complete the procedure due to

errors (e.g. EIO, ENOMEM) on the backend storage. In this case, the shard
returns an error to the MDS and leaves the backend storage in a partially

committed state:

o If the error happened during flattening, then the intent logs won’t be

deleted and re-committing would re-execute the flattening operation from
the beginning (which is safe since all object operations are idempotent).

o If the error happened while taking the snapshot, then flattening was

successful and the intent logs were deleted, a re-commit would just try

taking the snapshot again.

o In both cases, the staging dataset is not promoted to the next epoch, so
that a re-commit attempt on the failed shard is possible.

When some of the active shards failed (because of a timeout or any other errors) to

commit an epoch, the epoch is considered as partially committed. In this case, the epoch

is stuck on commit and an error with the list of shards that failed to commit is returned to
the client. This latter can then decide to either:

Point to point communication Collective communication

Epoch Commit

MDT Shards Client

daos_epoch_commit(e)

commit(e)
commit(e)

staging dataset

promoted to e+1

flush(e)

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 8 4 June 2014

 retry to commit. This will result in the client asking the MDS to do a recommit

through a server collective on all the active shards. Shards that have already

successfully committed this epoch locally will just return success, whereas the
others one will attempt to commit. Recommitting might be successful if the

problem was just transient.

 Or the client can decide to disable the shards that failed using an epoch number

higher than the one partially committed and then try to commit this epoch. This
way, epoch numbers always roll forward and there is no need to rollback a locally

committed epoch on a shard and to handle failure of the rollback process.

Those two options are schematized in the figures below:

Point to point communication Collective communication

Successful Re-Commit of a Partial Commit

MDT Shards Client

epoch_commit(epoch) commit(epoch)

timeout EIO during
flattening

success

committed with errors

epoch_commit(epoch) commit(epoch)

commit success

success success success

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 9 4 June 2014

If the partial commit is not resolved by the application which closes the container
intentionally or not (e.g. the application terminates unexpectedly or the client gets

evicted), then the container is left in this state and it will be up to the next opener to

recover the container by either attempting to recommit or by disabling the failing

shard(s). One caveat though is that, on a new container open, data in intent logs for
epochs that have been neither committed nor partially committed are discarded.

Container query has been modified to report not only the HCE, but also the highest shard

epoch, namely HSE. The next chapter provides more details on container recovery on

open.

Readers can only access globally committed epochs and are thus not notified when an

epoch is partially committed. A successful recommit will of course bump the HCE and

notify readers that a new globally committed epoch is available.

3. Flush & Epoch Recovery

On successful flush, the application is guaranteed that all I/O operations previously

executed from this client for all epochs lower or equal to the flushed epoch have been

successfully written into the intent logs and will not have to be replayed from the burst

Point to point communication Collective communication

Disabling Shard after a Re-Commit Attempt

MDT Shards Client

disable(shard3, e+1)
shard_disable(3,e+1)

epoch_commit(e) commit(e)

committed with errors

timeout EIO during
flattening

success

commit(e)

epoch_commit(e) commit(e)

committed with errors

success success
EIO during

flattening

commit(e)

epoch_commit(e+1) commit(e+1)

commit success

success success

commit(e+1)

flush(e+1) container_flush(e+1)

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 10 4 June 2014

buffer. This requirement is vital to make sure that the MDT does not commit an

incomplete epoch like in the scenario described by the figure below.

In the diagram above, if the flush operation does not guarantee that all I/O operations

have safely been written to disk (in the intent log or directly in the staging dataset),

missing I/O operations won’t be re-executed from the burst buffer due to the missing

IONs. As a consequence, the MDT might proceed with a commit on a shard which is
missing data, breaking the DAOS transactional semantic.

Therefore a flush operation not only triggers writeback on the Lustre client, but also

results in a flush RPC sent to the shard(s). The client could pack in the flush request the

highest transno assigned to its RPCs which can be used by the server to determine
whether a sync is really required. The server can indeed compare the transno provided

by the client in the flush request with the last committed transno and just report success

if all updates have already reached the backend storage.

iii. Container Open & Recovery

A container is considered “clean” when:

 no I/O operations have been submitted for uncommitted epochs

 the last epoch commit was successful on all the shards active in the layout. In

other words, the HCE is equal to the HSE.

An application might leave the container in an unclean state at close time in several

cases:

Point to point communication Collective communication

Shard Restart during Commit

MDT Shard Client

container_flush(e) flush(e)

epoch_commit(e) commit(e)

commit(e)

success

OST restart

client crash

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 11 4 June 2014

 the application decides of its own to call daos_container_close() on an unclean

container after encountering an internal error and wants to abort processing.

 the application might terminate unexpectedly after a fault or just be killed by the
job scheduler

 the client node where the master process of a collective open got evicted (e.g.

after a reboot or a crash). In this case, the MDT cleans up the export associated

with the client and closes the container on its behalf.

In all those cases, the container is left in bad shape and needs to be recovered.

The first opportunity to recover a container with partially committed states is on the next

open. The opener sends the request to the MDT, which, as a proxy to the shards, is

responsible for rebuilding the state of the container based on the shard information.

Once successfully opened, it is then up to the application to recover the container. This

final step is addressed in the last section entitled “Application Recovery”.

1. Epoch Status Detection

The MDT proceeds as follows to learn about the state of affairs. The MDT reads the layout
from disk and sets up a server collective over all the shards that are still marked as active

in the current layout. The purpose of this collective is to find out how many different

committed epoch numbers are present across all the shards. Reply aggregation is used to

return the following information:

a. The lowest committed epoch

b. The highest committed epoch

c. An intermediate committed epoch between the lowest and highest ones, if

any.

d. The number of shards with no valid HCE snapshot (i.e. epoch is still 0)

The MDT then processes each case as follows:

 If the collective failed to reach some of the shards, the container status is set to

“incomplete” and returned to the application.

 If all shards are reachable, but some returned an error (e.g. cannot open shard
because of I/O error), then the “faulty” status is reported to the application.

 If all shards returned the same epoch (lowest = highest = intermediate = HCE),

the container status is set to “OK” and the MDT initiates another server collective

across all the shards to abort I/O operations logged for epochs >= HCE.

 If there are exactly two different epochs (the lowest epoch is different form
highest and intermediate equals either highest or lowest), the container is

considered as “stuck”. The MDT attempts to recommit the highest epoch number.

Upon success, the HCE is set to the highest committed epoch number, the

container status is “OK” and another collective is executed to abort epochs
>=HCE. If recommit failed, the “stuck” status is returned to the application.

 If there are more than two different epochs returned from the collective (i.e

lowest, intermediate and highest epochs are all different numbers), the container

is considered as corrupted and the “corrupted” state is directly returned to the
application.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 12 4 June 2014

2. Application Recovery

As detailed in the previous section, container open will be successful in most of the cases

and the application has to interpret the container status flag returned by the MDT:

1. When the “stuck” status is returned on open, the application has to decide

whether to try to recommit (although the MDT has retried already) the same

epoch or to disable failed shards (the list of shards that failed the last commit is

now accessible through the DAOS API) in order to restore the container in a clean
state.

Attempting a recommit at this point is safe given that at least one shard had

successfully committed, so this means that the MDT asked at some point for this
epoch to be committed and this can only happen once all I/O operations

(including layout update from the MDT) have been flushed.

If the recommit still fails, then the only option is to disable the failing shards. To
do so, the DAOS API was extended (see daos_container_query_shard()) to allow

applications to access the list of shards that failed to produce a snapshot during

the last commit.

2. If the container status is reported as “incomplete”, some shards were not

reachable and the application can either disable the inaccessible shards or close
& reopen the container, hoping for the missing shards to be back.

3. If the container status is “faulty”, the application will have to either disable the

failed shards or repair them.

4. If the container is “corrupted”, then a careful study of the per-shard HCE is
required to fix the container (see next chapter for more information).

When DAOS-HA is eventually supported, disable shards and adding new ones to rebuild

redundancy will be very common.

The diagram below schematises how epoch recovery (i.e. ION restart in this case) was
demonstrated in quarter 7 of the project.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 13 4 June 2014

iv. Orphaned Shard and Broken Container Cleanup

1. Shard Scrubbing (optional)

An orphaned shard could be detected by checking the actual container layout, which

should have no reference to this shard. As a result, a scrubbing process could parse the

shards hosted by a given OST, do reverse lookups to the MDT (similar to online lfsck) and

destroy orphaned shards, if any.

2. Idle Container Cleanup (optional)

In addition to recovering the container on open, it might be desirable to pro-actively

repair unclean containers instead of waiting for the next job to resolve the problem. Such

a feature would be a requirement for a DAOS-HA library implementation which might
definitely want to restore the redundancy sooner rather than later. That said, fixing

unclean containers involves some basic understanding of the data and metadata

distribution and replication scheme used by the application (e.g. what DAOS-HA would

typically handle internally). It is therefore almost impossible to come up with a generic
repair tool that could handle the application recovery. As a result, application-specific

plugins would have to be integrated into the scrubbing engine in order to pro-actively fix

partially committed container.

MDT IONs Shards

Shard

1

Shard 2 Shard 3 Shard 4
I/Os(e

)

Failure

OPEN

HCE = e

Evict failed ION(s)

Close container

revoke capability + slip(e)

COMMIT(e)
commit(e)

propagate new capability + fetch local HCE

abort epochs > e

IONs back online

App is restarted

I/Os(e+n

)

I/Os(e+n

)

commit(e+n)
COMMIT(e+n)

Persist(e)

Persist(e+n)

Persist(e+n)

Persist(e+n)

completed

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 14 4 June 2014

3. Container Repair Tool (optional)

Corrupted Container Recovery

A container might be corrupted if, for instance, the flush-before-commit rule was not
honoured for whatever reasons. Although there is no plan currently to enforce this rule at

the DAOS level, one could consider recording on the OST for each epoch the latest

transno where something was modified in this epoch. Then at commit time, one could

check that this transno is smaller than the last committed transno. If not, it means that a
client is trying to commit while some I/O operations using this epoch did not hit the disk

yet. Such a protection won't work if the OST restarts and fails Lustre recovery. Another

option could be to add in the intent log a "flush" record. Shards could then check that the

IL has a final "flush" record before committing.

A repair tool could perform a careful study of the available snapshots on all the shards

and rollback the container to the last consistent state. This process might involve

destroying snapshots associated with broken epochs.

Besides, there is also a “legitimate” case where a container could end up with two disjoint
layouts:

 A container has 4 shards, namely A, B, C and D

 Some OSTs are down causing shards C & D to be unavailable

 An application opens the container, disables shard C & D, commits and closes the

containers.

 Shard C & D are back to life and now shards A & B become unavailable.

 An application opens the container, finds C & D as active, disables A & B and

commits.

In the scenario above, it is assumed that the MDT was not able to update the layout on
disk.

A solution could be to rely on the layout generation to define which set of shards should

be kept and which one should be destroyed. To do so, the MDT would have to bump the

layout generation number to an always-increasing value (e.g. based on wall clock time)
and choose the shards having a layout with the highest generation. The MDT could

actually handle this by itself in the step 4 of the open procedure (see chapter ii, section

1) without requiring an external tool to repair the container.

Another approach to address the problem above is to require a quorum of shards to allow

the container to be opened.

MDT Rebuild

Given that the actual state of a container is distributed across all its shards, it might be

possible to rebuild the MDT namespace by scanning shards on all the OSTs. This would

require propagating some container attributes which are only stored on the MDT for now
to the shards, that’s to say:

 the container UID/GID (needed anyway on shards for quota accounting)

 the name(s) associated with the container in the namespace

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 15 4 June 2014

The former can easily be done on shard addition since we anyway have to propagate the

layout along with the container FID to the newly added shard. The latter would require

updating the shards on rename and hard link creation.

Risks & Unknowns
 Too many sync operations (clients’ flushes, layout update through MDT and

snapshot creation) might be required to commit an epoch, which could impact
performance. We are considering some optimizations to the model to reduce

the number of syncs.

