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Introduction 
While standard Lustre recovery aims at dealing with transient failures of Lustre servers 
(e.g. target failover or just server restart), applications still regularly have to dump their 

own in-core states on disk to be able to restart from a consistent and meaningful (from 

the application perspective) dataset after a non-transparent failure (e.g. client crash, 

Lustre recovery failed to restore the latest state of the filesystem). Such 
checkpoint/restart mechanisms often involve copying unmodified data and creating a 

significant number of files for each checkpoint. This could then result in expensive data 

movement across storage targets as well as a namespace pollution causing the metadata 

server to become a bottleneck. 

Through the concept of epoch, the DAOS API allows applications to define atomic sets of 
changes and to specify the order in which those change sets should be applied. Persistent 

distributed states are then generated automatically by the backend filesystem which 

guarantees to the application that a consistent version of the container is always readable 

and that, in the worst case, only changes for uncommitted epochs have to be replayed. 

The purpose of this document is to describe in details the various epoch recovery 

scenarios. 

Definitions 
 OST: Object Storage Target, traditionally used by Lustre to store file data. 

 MDT: MetaData Target where Lustre stores filesystem metadata (i.e. 

namespace, file layout, …) 

 disk commit: local transaction commit on the backend filesystem. Should not 

be confused with epoch commit. 

 epoch commit: distributed commit at the DAOS level which results in a 

consistent state change on all the shards 

 HCE: Highest Committed Epoch, which is the last successfully committed 

epoch. The HCE is the highest epoch accessible to readers.  

 HSE: Highest Shard Epoch, which the highest epoch number committed on at 

least one shard. The HSE is readable if it is equal to the HCE, otherwise the 

HSE corresponds to a partially committed epoch which is then stuck on 

commit and is not published to readers. 
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Specification 
i. Transient Server & Network Failure 

1. Network Failure & DAOS Request Resend 

Lustre deals with network failures by resending RPCs multiple times. Each request is 
assigned a timeout and is resent if the client did not get a reply when the timeout 

expires. Timeouts are adaptive and can be extended by the server by issuing an early 

reply to the client. If the reply turns out to be lost, then the Lustre server might receive 

the same request twice. In Lustre current implementation, all OST requests can be safely 
re-executed (i.e. all OST requests are idempotent) multiple times whereas most MDT 

requests have to be processed only once (aka “execute once” semantic). To address this, 

the MDT records in the last_rcvd file the processing result of the last request sent by each 

client and reconstructs the reply instead of re-executing the request if this latter is 
received a second time. The drawback is that each Lustre client is limited to one RPC in 

flight to the MDT since there is only one slot per client in the last_rcvd file to store 

request information. There is no such limitation on OSTs thanks to idempotent request 

processing. 

As far as DAOS is concerned, all container operations (except container query/getattr) 

processed by the MDS are not idempotent and will thus have to deal with the last_rcvd 

file limitation. This means that, like regular Lustre metadata requests, there can be only 

one DAOS container creation or unlink in flight. There is a plan to address this limitation 

in the Lustre mainline by adding support for multiple slots for each client in the last_rcvd 
file. 

That said, all shard, object and epoch operations are idempotent and can then be safely 

re-executed multiple times. 

For operations involving server collectives, DAOS clients will retry for a certain amount of 
time if corresponding server collectives fail because of network issues before reporting 

errors back to applications. 

2. Transient MDT Failure 

The MDT maintains in-core states composed of the following elements: 

 Container open handles (including unique cookie, read/write, referenced 

epoch) and capabilities 

 Epoch state: current HCE & HSE, epoch to commit and lowest referenced 

epoch (can be calculated from the container open handles). 

 Layout which stores the whole history (based on epoch numbers) of layout 
modifications 

Standard Lustre replay mechanisms are used to reconstruct the above states in case of 

MDT failure. The purpose of this section is to describe how the MDT uses client replay 

data to rebuild those states after a restart or failover. The MDT-shard recovery (aka 
container recovery) on the first open is detailed in chapter iii of this document. 
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Container Handle Replay 

On MDT restart, clients have to replay container handle as done today with open file 

handles. MDT can thus rebuild the list of open container handles out of client information. 
MDS uses RPC XID and local in-memory structures to recognize the case of resent and 

reconstruct the reply. Capabilities are recovered upon open replay with client’s copies. 

Epoch State Recovery 

Upon restart, the MDT also has to reconstruct the epoch tracking list (what is the lowest 
version currently read by clients). During recovery and upon recovery completion, the 

MDT does not remove unreferenced epochs from the shards, instead it’s done in lazy 

manner when the client moves the cursor ahead with slip/close request – then MDT will 

find the lowest epoch referenced by the file handles and will command OSTs to remove 
epochs (snapshots) up to that one. 

As for commit request, clients are not supposed to receive an acknowledgement of 

commit until all the shards report their commit back. Thus, upon MDS reboot, the client 

will be resending commit request to recover “epoch to commit” state and restart commit 
process. 

Container Layout Reconstruction 

Every new shard added to the layout is tagged with the epoch it was added in. Given this, 

to commit the epoch, MDT should regenerate a list of active shards for the epoch. The 

client’s responsibility is to replay changes to the layout using regular Lustre recovery. To 
do so, all RPCs altering layouts are assigned a transno associated with the on-disk update 

of the layout on the MDT. If the MDT crashes, then clients will replay layout modifications 

and allow the MDT to rebuild the layout as it was before the crash. 

VBR (Version Based Recovery) should be used to improve recoverability in the light of 
possible missing clients. 

Container create/unlink 

Resend and replay for container unlink is done by regular Lustre means. Shards are 

destroyed via LOD/OSP which issued SHARD_DESTROY RPCs to OST once the container 
has been unlinked from the namespace on the MDT. 

The figure below schematizes how MDT recovery was demonstrated in milestone 7 of the 

project. 
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In this example, the MDT has been restarted while IOD was trying to commit a new 

epoch. Upon restart, the MDT enters in recovery and asks previously connected client to 

replay container open handle(s) as well as uncommitted metadata operations. Once 
recovery is finished, IOD can re-execute the commit request and complete the persist 

operation. 

Note on Eviction & Capability Revocation 

In general, a container handle is closed by the application that opened it. If the 
application quits unexpectedly, then it is the responsibility of the DAOS client to close the 

container on behalf of the application. Similarly, if the client node is evicted, then it is up 

to the MDT to clean up the export associated with the client and to revoke the container 

handle. 

Closing a container handle results in the revocation of the capabilities associated with this 

handle on the shards though a server collective initiated by the MDT. This capability 

revocation is vital to protect the storage from any in-flight I/Os that might still be 

submitted with a container handle that has been closed already, e.g.:  

 in-flight I/Os that might still be on its way or delayed indefinitely in a router for 

example.  

MDT IONs Shards 

Shard 1 Shard 2 Shard 3 Shard 4 
I/Os(e+n

) 

 
Failure 

Replay 

OPEN(e) 
HCE = e 

COMMIT(e+n) 

propagate capability + fetch local 

HCE 

MDS back online 

MDT is remounted 

MDT is in recovery 

commit(e+n) 
COMMIT(e+n) 

Persist(e+n) 

Commit timeout 

CONNECT 

Connect timeout 

CONNECT 

 

 

Replay  

Uncommitted MD Op 

(shard add, snapshot, …) 

Recovery finished 

Persist(e+n) 

completed 
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 a slave process which is part of a collective open and is not aware yet that the 

master process has closed the container and might continue sending I/O 

operations to shards. 

Lustre servers will fail the capability check for such requests and return EACCES to the 

client.  

3. Transient OST Failure 

The shard in-core state consists of the handle and capability list. On restart, OSTs have to 
fetch the capability list from the MDT.  This happens after regular Lustre OST recovery is 

completed, so that it is not racing with any shard creation replays.  Non-recovery 

requests are accepted and processed in parallel, unless capability checking is necessary, 

in which case the request in question get EINPROGRESS and will be retried by the client 
until the capability list fetching has completed. 

As for the shard persistent state, it is represented by: 

 default dataset with intent logs 

 snapshots (should be listed in an index in the default dataset) 

 highest locally committed epoch 

 shard “object” in root dataset, including an “filter_fid” EA storing its container FID 

The persistent state is supposed to be idempotent so that any request can be executed 

arbitrary times. As a result, all DAOS object and shard operations are replayed using 

Lustre standard mechanism, except for object write and punch. 

Unlike regular Lustre object write and truncate, no on-disk transno is assigned for replay 

to DAOS object write and punch which are thus not automatically replayed during Lustre 

recovery. When DAOS object I/O requests are lost after an OST request, it is indeed up to 

the application (IOD in this case) to resubmit all missing I/O operations. The application 
is notified of failure when calling flush: any error during flush means that all operations  

since the last successful flush have to be resubmitted. In the prototype, any error during 

persist() is returned by IOD to the upper layer (i.e. HDF) which retries the whole persist 

operation. 

The following mechanism is used by client to find out whether any I/O requests got lost 

which should cause flush to fail: 

 Each time a client gets a RPC reply for a DAOS write/punch operation, it records 

the highest transno packed in the reply for each shard 

 Upon restart, OSTs report back to clients the last on-disk transno 

 Clients then scan the per-OSC shard list and mark any shard with a 

submitted_transno higher than the OST on-disk transno as failed 

 Next time an I/O operation (write, punch or flush) is submitted for a shard 

marked as failed, EIO is returned 

 A flush call clears the failed state of a shard on the client. 

The figure below summarizes how transient OST failure has been demonstrated in 

milestone 7 of the project. 
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ii. Commit and Failure Handling 

1. Commit Framework 

To commit an epoch e, the application has to submit and flush all the I/O operations for 

all epochs smaller or equal to e. The commit request is processed by the MDT which acts 

as a proxy to the container shards and uses server collectives to trigger a local epoch 

commit on all the shards. This step involves flattening the intent logs into the staging 
dataset, deleting the intent logs and taking a snapshot. Once completed, the staging 

dataset can be promoted to the next epoch (i.e. e + 1) and flattening for this epoch can 

even eagerly start (as detailed in the next chapter, rollback of the staging dataset will still 

be possible if the application closes and reopen the container without committing e + 1). 

The diagram below represents how a MDT handles a commit request.  

MDT IONs Shards 

Shard 1 Shard 2 Shard 3 Shard 4 
I/Os(e

) 

 
Failure 

OSS back online 

OSTs remounted 

commit(e) 
COMMIT(e) 

Persist(e) 

I/O 

timeout CONNECT 

Connect  

timeout 

 

 

Persist(e) 

completed 

CONNECT 

last_on_disk_request 

I/Os got lost 

Persist(e) fails 

with EIO 

I/Os(e

) 
   Retry 

Persist(e) 
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If all local commits are successful on all the shards, the epoch is considered as globally 

committed and becomes the new HCE. 

2. Failure and Partial Commit 

There are several types of problems that can prevent a shard from successfully 

completing a local commit: 

 The OST hosting the shard is unresponsive. The failure might be temporary (e.g. 

OST failover/restart, network issue, …) or persistent (e.g. the OST is dead and 
can’t be recovered). In this case, the commit request does not reach the shard 

and fails via gossip (or after a timeout if gossip isn’t used). 

 The shard received the commit order, but failed to complete the procedure due to 

errors (e.g. EIO, ENOMEM) on the backend storage. In this case, the shard 
returns an error to the MDS and leaves the backend storage in a partially 

committed state: 

o If the error happened during flattening, then the intent logs won’t be 

deleted and re-committing would re-execute the flattening operation from 
the beginning (which is safe since all object operations are idempotent). 

o If the error happened while taking the snapshot, then flattening was 

successful and the intent logs were deleted, a re-commit would just try 

taking the snapshot again. 

o In both cases, the staging dataset is not promoted to the next epoch, so 
that a re-commit attempt on the failed shard is possible. 

When some of the active shards failed (because of a timeout or any other errors) to 

commit an epoch, the epoch is considered as partially committed. In this case, the epoch 

is stuck on commit and an error with the list of shards that failed to commit is returned to 
the client. This latter can then decide to either: 

Point to point communication Collective communication 

Epoch Commit 

MDT Shards Client 

daos_epoch_commit(e) 

commit(e) 
commit(e) 

staging dataset 

promoted to e+1 

flush(e) 
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 retry to commit. This will result in the client asking the MDS to do a recommit 

through a server collective on all the active shards. Shards that have already 

successfully committed this epoch locally will just return success, whereas the 
others one will attempt to commit. Recommitting might be successful if the 

problem was just transient. 

 Or the client can decide to disable the shards that failed using an epoch number 

higher than the one partially committed and then try to commit this epoch. This 
way, epoch numbers always roll forward and there is no need to rollback a locally 

committed epoch on a shard and to handle failure of the rollback process. 

Those two options are schematized in the figures below: 

 

Point to point communication Collective communication 

Successful Re-Commit of a Partial Commit 

MDT Shards Client 

epoch_commit(epoch) commit(epoch) 

timeout  EIO during 
flattening 

success 

committed with errors 

epoch_commit(epoch) commit(epoch) 

commit success 

success success success 
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If the partial commit is not resolved by the application which closes the container 
intentionally or not (e.g. the application terminates unexpectedly or the client gets 

evicted), then the container is left in this state and it will be up to the next opener to 

recover the container by either attempting to recommit or by disabling the failing 

shard(s). One caveat though is that, on a new container open, data in intent logs for 
epochs that have been neither committed nor partially committed are discarded. 

Container query has been modified to report not only the HCE, but also the highest shard 

epoch, namely HSE. The next chapter provides more details on container recovery on 

open. 

Readers can only access globally committed epochs and are thus not notified when an 

epoch is partially committed. A successful recommit will of course bump the HCE and 

notify readers that a new globally committed epoch is available. 

3. Flush & Epoch Recovery 

On successful flush, the application is guaranteed that all I/O operations previously 

executed from this client for all epochs lower or equal to the flushed epoch have been 

successfully written into the intent logs and will not have to be replayed from the burst 

Point to point communication Collective communication 

Disabling Shard after a Re-Commit Attempt 

MDT Shards Client 

disable(shard3, e+1) 
shard_disable(3,e+1) 

epoch_commit(e) commit(e) 

committed with errors 

timeout  EIO during 
flattening 

success 

commit(e) 

epoch_commit(e) commit(e) 

committed with errors 

success success 
EIO during 

flattening 

commit(e) 

epoch_commit(e+1) commit(e+1) 

commit success 

success success 

commit(e+1) 

flush(e+1) container_flush(e+1) 
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buffer. This requirement is vital to make sure that the MDT does not commit an 

incomplete epoch like in the scenario described by the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the diagram above, if the flush operation does not guarantee that all I/O operations 

have safely been written to disk (in the intent log or directly in the staging dataset), 

missing I/O operations won’t be re-executed from the burst buffer due to the missing 

IONs. As a consequence, the MDT might proceed with a commit on a shard which is 
missing data, breaking the DAOS transactional semantic. 

Therefore a flush operation not only triggers writeback on the Lustre client, but also 

results in a flush RPC sent to the shard(s). The client could pack in the flush request the 

highest transno assigned to its RPCs which can be used by the server to determine 
whether a sync is really required. The server can indeed compare the transno provided 

by the client in the flush request with the last committed transno and just report success 

if all updates have already reached the backend storage. 

iii. Container Open & Recovery 

A container is considered “clean” when: 

 no I/O operations have been submitted for uncommitted epochs 

 the last epoch commit was successful on all the shards active in the layout. In 

other words, the HCE is equal to the HSE. 

An application might leave the container in an unclean state at close time in several 

cases: 

Point to point communication Collective communication 

Shard Restart during Commit 

MDT Shard Client 

container_flush(e) flush(e) 

epoch_commit(e) commit(e) 

commit(e) 

success 

OST restart 

client crash 
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 the application decides of its own to call daos_container_close() on an unclean 

container after encountering an internal error and wants to abort processing. 

 the application might terminate unexpectedly after a fault or just be killed by the 
job scheduler 

 the client node where the master process of a collective open got evicted (e.g. 

after a reboot or a crash). In this case, the MDT cleans up the export associated 

with the client and closes the container on its behalf. 

In all those cases, the container is left in bad shape and needs to be recovered. 

The first opportunity to recover a container with partially committed states is on the next 

open. The opener sends the request to the MDT, which, as a proxy to the shards, is 

responsible for rebuilding the state of the container based on the shard information. 

Once successfully opened, it is then up to the application to recover the container. This 

final step is addressed in the last section entitled “Application Recovery”. 

1. Epoch Status Detection 

The MDT proceeds as follows to learn about the state of affairs. The MDT reads the layout 
from disk and sets up a server collective over all the shards that are still marked as active 

in the current layout. The purpose of this collective is to find out how many different 

committed epoch numbers are present across all the shards. Reply aggregation is used to 

return the following information: 

a. The lowest committed epoch 

b. The highest committed epoch 

c. An intermediate committed epoch between the lowest and highest ones, if 

any. 

d. The number of shards with no valid HCE snapshot (i.e. epoch is still 0) 

The MDT then processes each case as follows: 

 If the collective failed to reach some of the shards, the container status is set to 

“incomplete” and returned to the application. 

 If all shards are reachable, but some returned an error (e.g. cannot open shard 
because of I/O error), then the “faulty” status is reported to the application. 

 If all shards returned the same epoch (lowest = highest = intermediate = HCE), 

the container status is set to “OK” and the MDT initiates another server collective 

across all the shards to abort I/O operations logged for epochs >= HCE. 

 If there are exactly two different epochs (the lowest epoch is different form 
highest and intermediate equals either highest or lowest), the container is 

considered as “stuck”. The MDT attempts to recommit the highest epoch number. 

Upon success, the HCE is set to the highest committed epoch number, the 

container status is “OK” and another collective is executed to abort epochs 
>=HCE. If recommit failed, the “stuck” status is returned to the application. 

 If there are more than two different epochs returned from the collective (i.e 

lowest, intermediate and highest epochs are all different numbers), the container 

is considered as corrupted and the “corrupted” state is directly returned to the 
application. 
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2. Application Recovery 

As detailed in the previous section, container open will be successful in most of the cases 

and the application has to interpret the container status flag returned by the MDT: 

1. When the “stuck” status is returned on open, the application has to decide 

whether to try to recommit (although the MDT has retried already) the same 

epoch or to disable failed shards (the list of shards that failed the last commit is 

now accessible through the DAOS API) in order to restore the container in a clean 
state. 

 

Attempting a recommit at this point is safe given that at least one shard had 

successfully committed, so this means that the MDT asked at some point for this 
epoch to be committed and this can only happen once all I/O operations 

(including layout update from the MDT) have been flushed. 

 

If the recommit still fails, then the only option is to disable the failing shards. To 
do so, the DAOS API was extended (see daos_container_query_shard() ) to allow 

applications to access the list of shards that failed to produce a snapshot during 

the last commit. 

2. If the container status is reported as “incomplete”, some shards were not 

reachable and the application can either disable the inaccessible shards or close 
& reopen the container, hoping for the missing shards to be back. 

3. If the container status is “faulty”, the application will have to either disable the 

failed shards or repair them. 

4. If the container is “corrupted”, then a careful study of the per-shard HCE is 
required to fix the container (see next chapter for more information). 

When DAOS-HA is eventually supported, disable shards and adding new ones to rebuild 

redundancy will be very common. 

The diagram below schematises how epoch recovery (i.e. ION restart in this case) was 
demonstrated in quarter 7 of the project. 
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iv. Orphaned Shard and Broken Container Cleanup 

1. Shard Scrubbing (optional) 

An orphaned shard could be detected by checking the actual container layout, which 

should have no reference to this shard. As a result, a scrubbing process could parse the 

shards hosted by a given OST, do reverse lookups to the MDT (similar to online lfsck) and 

destroy orphaned shards, if any. 

2. Idle Container Cleanup (optional) 

In addition to recovering the container on open, it might be desirable to pro-actively 

repair unclean containers instead of waiting for the next job to resolve the problem. Such 

a feature would be a requirement for a DAOS-HA library implementation which might 
definitely want to restore the redundancy sooner rather than later. That said, fixing 

unclean containers involves some basic understanding of the data and metadata 

distribution and replication scheme used by the application (e.g. what DAOS-HA would 

typically handle internally). It is therefore almost impossible to come up with a generic 
repair tool that could handle the application recovery. As a result, application-specific 

plugins would have to be integrated into the scrubbing engine in order to pro-actively fix 

partially committed container. 

MDT IONs Shards 

Shard 

1 

Shard 2 Shard 3 Shard 4 
I/Os(e

) 

 
Failure 

OPEN 

HCE = e 

 

Evict failed ION(s) 

Close container 

revoke capability + slip(e) 

COMMIT(e) 
commit(e) 

propagate new capability + fetch local HCE 

abort epochs > e 

IONs back online 

App is restarted 

I/Os(e+n

) 

I/Os(e+n

) 

commit(e+n) 
COMMIT(e+n) 

Persist(e) 

Persist(e+n) 

Persist(e+n) 

 

Persist(e+n) 

completed 



The information on this page is subject to the use and disclosure restrictions provided on the cover page to this 
document. Copyright 2014, Intel Corporation.     

B599860-SS 14    4 June 2014 

3. Container Repair Tool (optional) 

Corrupted Container Recovery 

A container might be corrupted if, for instance, the flush-before-commit rule was not 
honoured for whatever reasons. Although there is no plan currently to enforce this rule at 

the DAOS level, one could consider recording on the OST for each epoch the latest 

transno where something was modified in this epoch. Then at commit time, one could 

check that this transno is smaller than the last committed transno. If not, it means that a 
client is trying to commit while some I/O operations using this epoch did not hit the disk 

yet. Such a protection won't work if the OST restarts and fails Lustre recovery. Another 

option could be to add in the intent log a "flush" record. Shards could then check that the 

IL has a final "flush" record before committing.  

A repair tool could perform a careful study of the available snapshots on all the shards 

and rollback the container to the last consistent state. This process might involve 

destroying snapshots associated with broken epochs. 

Besides, there is also a “legitimate” case where a container could end up with two disjoint 
layouts: 

 A container has 4 shards, namely A, B, C and D 

 Some OSTs are down causing shards C & D to be unavailable 

 An application opens the container, disables shard C & D, commits and closes the 

containers. 

 Shard C & D are back to life and now shards A & B become unavailable. 

 An application opens the container, finds C & D as active, disables A & B and 

commits. 

In the scenario above, it is assumed that the MDT was not able to update the layout on 
disk. 

A solution could be to rely on the layout generation to define which set of shards should 

be kept and which one should be destroyed. To do so, the MDT would have to bump the 

layout generation number to an always-increasing value (e.g. based on wall clock time) 
and choose the shards having a layout with the highest generation. The MDT could 

actually handle this by itself in the step 4 of the open procedure (see chapter ii, section 

1) without requiring an external tool to repair the container. 

Another approach to address the problem above is to require a quorum of shards to allow 

the container to be opened. 

MDT Rebuild 

Given that the actual state of a container is distributed across all its shards, it might be 

possible to rebuild the MDT namespace by scanning shards on all the OSTs. This would 

require propagating some container attributes which are only stored on the MDT for now 
to the shards, that’s to say: 

 the container UID/GID (needed anyway on shards for quota accounting) 

 the name(s) associated with the container in the namespace 
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The former can easily be done on shard addition since we anyway have to propagate the 

layout along with the container FID to the newly added shard. The latter would require 

updating the shards on rename and hard link creation. 

Risks & Unknowns 
 Too many sync operations (clients’ flushes, layout update through MDT and 

snapshot creation) might be required to commit an epoch, which could impact 
performance. We are considering some optimizations to the model to reduce 

the number of syncs. 


