

LLNS Subcontract No. B599860

Subcontractor Name Intel Federal LLC

Subcontractor Address
2200 Mission College Blvd.

Santa Clara, CA 95052

NOTICE: THIS MANUSCRIPT HAS BEEN AUTHORED BY INTEL UNDER ITS SUBCONTRACT WITH LAWRENCE
LIVERMORE NATIONAL SECURITY, LLC WHO IS THE OPERATOR AND MANAGER OF LAWRENCE LIVERMORE

NATIONAL LABORATORY UNDER CONTRACT NO. DE-AC52-07NA27344 WITH THE U.S. DEPARTMENT OF

ENERGY. THE UNITED STATES GOVERNMENT RETAINS AND THE PUBLISHER, BY ACCEPTING THE ARTICLE OF
PUBLICATION, ACKNOWLEDGES THAT THE UNITED STATES GOVERNMENT RETAINS A NON-EXCLUSIVE, PAID-

UP, IRREVOCABLE, WORLD-WIDE LICENSE TO PUBLISH OR REPRODUCE THE PUBLISHED FORM OF THIS

MANUSCRIPT, OR ALLOW OTHERS TO DO SO, FOR UNITED STATES GOVERNMENT PURPOSES. THE VIEWS
AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO NOT NECESSARILY REFLECT THOSE OF THE UNITED

STATES GOVERNMENT OR LAWRENCE LIVERMORE NATIONAL SECURITY, LLC.

Date:
May 01, 2014 Reduction Network Discovery Design

Document

FOR EXTREME-SCALE COMPUTING
RESEARCH AND DEVELOPMENT (FAST
FORWARD) STORAGE AND I/O

© 2014 Intel Corporation

i

Table of Contents

Introduction ... 1

Definitions .. 1

Changes from Solution Architecture .. 1

Specification ... 1
Protocol... 1

Initialization ... 1

Local State Management ... 2

State Exchange .. 3

Determining Participant Health .. 6

Implementation .. 6
Administration Control Utility ... 6

Buffer Management .. 8

Message Passing .. 9

Debugging... 10

API and Protocol Additions and Changes ... 11

Open Issues ... 11

Risks & Unknowns.. 11

Revision History

Date Revision Author

Feb. 15, 2013 1.0 Isaac Huang

Mar 1, 2014 1.0 -Review, no changes Isaac Huang

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 1 1 May 2014

Introduction
The Server Collectives module relies on the Reduction Network Discovery module to
discover the current presence of servers or the current membership, and maintain a

consistent view of the membership across all servers, in a highly scalable way. This can

be accomplished by an implementation of the gossip protocol.

The gossip protocol has proven ideal for scalable node health monitoring in large
networks due to its propagation delay logarithmic in the size of the system and negligible

protocol overhead. Our implementation of the gossip protocol runs over the Lustre

Networking stack, a.k.a. the LNet, and benefits from its support of many different types

of networks.

Definitions
The following definitions are used throughout the rest of this document:

 Gossip: the actual protocol to implement Reduction Network Discovery.

 N: the total number of participants in the protocol, which includes those that

are currently not alive.

 LNet: the Lustre Networking stack.

 NID: address of an end-point in a Lustre network, comprised of an address

within its network and a network ID separated by a ‘@’, for example

192.168.10.124@o2ib0.

Changes from Solution Architecture
Consensus turned out not necessary for upper layer protocols, and thus removed from

this design.

Specification
The goal of this section is to clearly explain how you will implement what is described in

the Solution Architecture. Focus on Functional specifications and augment with logical

specifications where applicable; limit the amount of pseudo-code in the specification to
that which clearly explains particular points.

Protocol

Initialization

A participant is initialized with the following protocol configuration parameters:

 Gossip interval in milliseconds.

 NIDs of all participants in the protocol.

mailto:192.168.10.124@o2ib0

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 2 1 May 2014

In addition, the protocol version number for the current implementation is another

important protocol parameter, which is hard coded in the implementation. It’s a

requirement that all participants run a same version of the protocol.

All participants should agree with the values of these parameters; otherwise the protocol

will not function properly.

A participant first does sanity checks on these parameters to make sure the values are

valid:

 Gossip interval is not allowed to be less than 200 milliseconds, i.e. 1/5 of a

second. Otherwise it’d be difficult to make the protocol stable due to jitters in

message delivery delay in the network, and jitters in local scheduling delay in the

operating system.

 Gossip interval is also not allowed to be less than the half of the estimated Round

Trip Time of the network.

 All participants in the protocol must belong to a same Lustre network. It’s not

supported to run the protocol over different Lustre networks, e.g. on both the
@tcp0 network and the @o2ib0 network.

During the first N gossip cycles, these parameters are also carried in the headers of each

outgoing message in order to make sure that all participants agree on the values. Note

that:

 It’s not feasible to include an enumeration of all participant NIDs in a
message header. Instead, a SHA-1 digest of an ordered list of all NIDs is

included and compared against local digest on the recipient.

 To reduce protocol overhead, the parameters are carried in headers only

during the initial N gossip cycles. With good pseudo random number
generation, N cycles is more than sufficient to cover all participants – there’s

N outgoing messages and N incoming messages so parameters are checked

with 2N participants at random.

 Whenever parameter disagreement is detected on a participant, it stops
participating in the gossip protocol and prints an error message on the local

console. It must be solved by administrators – there’s no automatic

parameter negotiation.

Local State Management

Each participant maintains two local states: a Lamport clock of global gossip cycle
number and a vector of ages for all participants.

Lamport clock of global gossip cycle

The Lamport clock keeps record of the current global gossip cycle number. It is initialized

to zero and updated according to the following rules:

 It is incremented by one right at the beginning of each gossip cycle, i.e. before

each outgoing gossip ping message is sent.

 It could be synchronized with another participant when processing each incoming

message, either a ping or a reply: if an incoming message contains in its header a

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 3 1 May 2014

Lamport clock of value C which is no less than the local clock, then the local

Lamport clock is set to C+1.

Usually the Lamport clocks of all participants are fairly in sync with each other. When a
participant reboots itself or has just been added, it should be able to synchronize its

Lamport clock often in just one gossip cycle – most likely by a reply to the first ping

message it sends.

The Lamport clock is useful to detect obsolete message and to help debugging, both
described in details later.

Age vector

The age of a participant A as perceived by participant B is defined as the number of

gossip cycles since the last time participant B heard of A directly or indirectly. For
examples:

 Participant A pings B directly, then B updates its copy of A’s age as 1.

 Participant C pings B and tells B that its copy of participant A’s age is 3, then

B updates its copy of A’s age to 4 unless its local copy is less than 4 already.

Each participant maintains a vector of ages for every participant in the protocol including

itself, and this age vector is updated according to the following rules in the following

order:

1. On each gossip cycle, ages[i where i >= 0 && i < N] += 1 - all entries in the

age vector is incremented by one, i.e. every entry has aged by one cycle.

2. Upon receiving an incoming message, the local age vector is updated from

entries in the remote vector carried in the message: local[i] = MIN(local[i],

remote[i]+1), i.e. local age vector is updated if the incoming message carries

more recent information. Entries in the remote vector are first incremented by
one under the assumption that it took the network no more than one gossip

interval to deliver the message.

3. Ages[myself] = 0, i.e. the current participant is always alive at any moment.

Rule 2 implies that the gossip interval should be longer than half of Round Trip Time in
the network.

State Exchange

The gossip protocol works by each participant simply exchanging age vectors with one

other randomly chosen participant in each gossip cycle.

Each state exchange comprises of two messages: a ping and a reply. The following graph
illustrates the protocol:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 4 1 May 2014

There’re four participants in the gossip protocol:

1. Participant 3 has local age vector [7, 8, 0, 2] and sends a copy of this vector

in a ping message to participant 1. Note that entry 3 has value 0 because it
stands for participant 3 itself.

2. Participant 1 receives the ping message, and updates its local age vector

because age vector entries 3 and 4 in the message are more recent. Note

that age vector entries in the message are incremented by 1 before use,
under the assumption that the message left its origin no more than 1 gossip

cycle ago.

3. Participant 1 sends a reply message back to participant 3. Note that the reply

message is shorter than the ping message and contains only two entries in
the age vector, because participant 3 only needs these two entries to update

its local age vector.

4. Participant 3 receives the reply message and updates its local age vector

because the message contains two newer age entries. Note that at this point,

the local age vectors on both participants are more in sync than before the
gossip message exchange.

Gossip Ping

At each gossip cycle, each participant chooses another one to gossip with at random.

Then it sends the chosen participant a gossip ping message that contains:

 A header that includes its current Lamport clock, and for the initial messages the

protocol configuration parameters.

 A complete copy of its local age vector.

The sender does not need to keep any state information about the outgoing ping
message that hasn’t been replied yet – i.e. when the reply comes back later the sender

can process it without any information from the matching ping message. In this regard,

the protocol is stateless, which simplifies implementation.

Gossip Reply

Upon receiving an incoming ping message, a participant first updates its own Lamport
clock and age vector according to rules given previously. Then it checks protocol

configuration parameters if they’re included, and if there’s no discrepancy it prepares a

reply message that contains:

 A header that includes its current Lamport clock, and for the initial messages the
protocol configuration parameters.

[7, 8, 0, 2]

Process Reply

[1, 4, 0, 2]

Participant 3

[0, 3, 7, 6]

Process Ping

[0, 3, 1, 3]

Participant 1

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 5 1 May 2014

 A partial copy of its local age vector. Since sender’s age vector is now known from

data in the ping message, the reply doesn’t need to contain a complete copy of

the local age vector. Only those entries that are at least two cycles more recent
need to be included. A useful optimization here is lazy reply: for the purpose of

detecting participant health, the age vectors can be just loosely synchronized. For

example, if the local age for a participant is only 4 cycles newer than the sender’s

copy, it might be fine not to include the age entry in the reply message. By using
this laziness fudge factor, bandwidth overhead of the protocol can be reduced

without any impact on propagation delays. The value of the fudge factor depends

on log(N) – log(N)/4 should be fine but it should never be more than log(N)/2.

When receiving a reply message, a participant updates its local Lamport clock and age
vector from data in the reply, in exactly the same way as how local states are updated

from a ping message with the only difference that there’s going to be no further message

exchange. Protocol configuration parameters are also checked if they’re included in the

header.

Detect Obsolete Message

An important assumption of this implementation of gossip protocol is that it should take

less than a gossip interval for the network to deliver a gossip message – i.e. the age

vector included in any gossip message carries entries no more than one cycle old. If a

message arrives at a recipient many cycles after it was sent, it should be discarded
because the data in it could be way obsolete, e.g. it may contain an age entry of value 2

for a participant that is already dead. If such messages are not detected and discarded, it

may take the protocol much longer to stabilize. And if there’re too many of such

messages the protocol might not be able to stabilize at all. Furthermore, data in a single
obsolete message will be propagated by the recipient to others who will then believe that

the propagated data is recent.

Our gossip implementation employs two techniques to minimize risks of obsolete

messages:

 It’s required that the gossip interval to be longer than half of the estimated Round

Trip Time of the network. Since Round Trip Time of a network is dynamic and

gossip interval can’t change while the protocol is running, the gossip protocol

doesn’t try to measure the RTT. Instead, it’s up to the administrator to specify a

safe estimated value of RTT.

 Gossip messages are treated with higher priority through available QoS

mechanisms in the network.

While by the help of these two mechanisms the risks of much-delayed messages can be

reduced, they can’t be completely eliminated. The Lamport clock included in every
message header is designed to help detect and ignore such obsolete messages:

 When a ping message is received: if the Lamport clock in the ping header

is more than log(N) older than the current local Lamport clock, the

message is considered obsolete and is discarded, then the recipient
responds with a reply message which contains only a Lamport clock in the

header but no data in it – this empty reply message is necessary in the

case that the sender has just begun to participate and needed to have its

Lamport clock synchronized with others.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 6 1 May 2014

 When a reply message is received: if the Lamport clock in the reply

message header is more than log(N) older than the current local Lamport

clock, the message is considered obsolete and is simply discarded with no
further action.

It’s possible to discard messages more aggressively than the log(N) difference because:

 The log(N) difference is too slack and only expected in the worst possible

case of out-of-sync Lamport clocks.

 The gossip protocol itself is very robust against message loss: a small rate

of falsely ignored messages is no different from a small rate of message

loss by the network. Simulation results showed that even at 5% message

loss, there was little impact on the propagation delay. In other words, the
cost of ignoring some good messages is fairly low while the cost of

accepting a single obsolete message can be very high, so the

implementation should lean toward more aggressive dropping of

potentially obsolete messages.

Determining Participant Health

Participants whose ages is more than log(N) cycles old is considered to be dead. But

when choosing a participant to ping at each gossip cycle, dead ones should not be

excluded in case they’ve just come back to life.

Implementation

The gossip protocol is implemented as a kernel module that runs on top of the Lustre

LNet kernel module, which is administrated by a user space tool via ioctl system calls.

Administration Control Utility

The operations of the gossip protocol are controlled by a user space utility program called

gossipctl, which communicates with the kernel module by ioctl system calls. The gossip

kernel module processes one command at a time – there’s no need for concurrent

administration commands.

Note that for the purpose of the first demonstration, the administration tool might not be

implemented. Instead, parameters could be passed by kernel module options and the

protocol would be started or stopped at module loading or removal.

Initialization: gossipctl init

The gossipctl init command takes additional options to specify the gossip protocol

configuration parameters and other options to initialize the gossip module:

 Expected Round Trip Time in milliseconds of the network which the

participants belong to.

 Gossip interval in milliseconds.

 A specification of NID addresses of all participants. It could be one of the

following formats

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 7 1 May 2014

o A simple list that enumerates all participant NIDs.

o A format that specifies a range of participant NIDs, for example

192.168.[1-2].[1-128/2]@o2ib0.

o A combination of the above two forms.

o A filename that contains strings of any format mentioned above.

However, file reading and parsing should be done by gossipctl in the

user space.

Note that this is the reason why the options can’t be passed to the gossip kernel

module by using kernel module options – the Linux kernel puts a 4K limit on the

length of string options, and that could be insufficient for some large networks.

 A seed for pseudo random number generation. The gossipctl tool reads it from
the /dev/random file, which is based on hardware mechanisms when available

and system events with real entropy like arrival of network packets. The read

could block until there’re sufficient entropy events if there’s no hardware

support, but it should not be a problem as the gossipctl program only needs
to read a few bytes from it.

Upon receiving the options from user space, the gossip kernel module performs the

following initialization tasks:

 Validate all the options. For example:

o Gossip interval should be no less than half of the specified
expected Round Trip Time.

o All participants must belong to a same LNet network.

 Create and initialize the Lamport clock and the age vector.

Start protocol: gossipctl start

When receiving the start command, the gossip kernel module performs the following

actions:

1. Initialize LNet, and find out which local LNet interface is going to participate in

the gossip protocol by looking for a match in the participant list, supplied by the
gossipctl init command.

2. Create an LNet event queue for all gossip messages.

3. Set up the LNet portal for gossip messages as a lazy portal.

4. Allocate message buffers and post them to LNet to receive incoming messages.

5. Begin the gossip cycles and start running the gossip protocol, i.e. pinging others
and replying to incoming pings.

Stop protocol: gossipctl stop

The gossip kernel module performs the following actions:

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 8 1 May 2014

1. Stops sending ping messages to other participants and replying to incoming

gossip pings.

2. Revoke buffers to receive messages from the LNet and free them.

3. Destroy the gossip message LNet event queue.

4. Finalize LNet.

Note that reclaiming resources allocated during initialization in response to gossipctl init is

delayed until either the gossip kernel module is unloaded or another gossipctl init
command is received with different parameters.

Buffer Management

The maximum size of any incoming message can be now calculated as the number of

participants is known.

Ideally during each gossip cycle any participant would only receive two incoming

messages: one incoming ping message from another random participant, and one reply

to the ping message that was just sent. However, more than one participant could choose

to ping a same node during a same gossip cycle as the random choice of participants to
ping can’t be close to truly random. Moreover, messages sent from previous cycles could

be delayed by the network and end up arriving in a same cycle. To accommodate these

factors:

 Each participant posts and keeps 4 free buffers in any gossip cycle to receive

incoming messages.

 The LNet portal for incoming messages should be set as “lazy”, so that

incoming messages wouldn’t be dropped when there’s no free buffer on the

portal to receive them. Instead they are blocked until there’s more buffer

made available by the gossip module.

Matching Buffers with Incoming Messages

LNet matches incoming messages with posted buffers by using match bits. Buffers can be

posted to match only a specific match bit or any match bit, which is contained in LNet

message headers.

Buffers for both ping and reply messages are posted on a same portal as match-any

buffers. Ping messages are different in that they are unsolicited so match-any buffers

should be posted to receive them. But it is not necessary to use match-one buffers for

reply message, because it could add unnecessary complexities to the buffer management

code:

 A separate portal may be required to dedicate to reply messages, from the

limited portals space, as match-one and match-any buffers can’t co-exist on a

same LNet portal.

 Match-one buffer has to be reclaimed because the only incoming reply that it
is expecting to receive might not arrive.

Although match-any buffers are posted to receiving ping and reply messages, senders

can still use different match bits for them in order to distinguish ping messages from

reply messages at the receiver. As a consequence, there’s no need to add a type field in

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 9 1 May 2014

the gossip message headers to tell whether the message is a ping or a reply – match bits

in LNet message header, available as part of LNet events, will enable the gossip module

to distinguish them.

Buffer Size

Although the maximum size of incoming messages is known, it can be complex to post

buffers that has just enough room to receive messages of the maximum size. This is

because:

 The maximum message size depends on the number of participants, and also the

current protocol version. If some participants are added later, then all current

participants may have to repost all buffers, since their current buffers may be

insufficient to accommodate additional age vector entries for the newly added
participants.

Instead, all participants post buffers of size LNET_MTU (which is 1M bytes), the

maximum size for LNet messages, so that there’s no need to repost buffers after new

participants have been added. Also, there’s very little waste of memory since each
participant keeps only four free buffers for incoming messages.

Message Passing

All outgoing gossip messages are sent by the LNetPut API, with the src_nid parameter set

to be the active local NID in case the participant is multi-homed (in order to make sure

that the message will be sent by the correct interface). As the gossip protocol does not
require reliable message delivery, there’s no need to time out and retransmit outgoing

messages, which simplifies the implementation a lot as a proper timeout mechanism

should adjust to the current network Round Trip Time dynamically.

On-wire Message Format

One byte is sufficient for each age vector entry sent over the wire because:

 An age of 255 cycles is more than sufficient to declare a participant as

dead for cluster sizes of our concern, as the propagation delay is

logarithmic with the size of the system.

There’s room for about one million age vector entries in a single LNet message, which is

sufficient for server-side health monitoring in this project. Then one gossip message can

be sent by just one LNetPut call.

Furthermore, it cuts down bandwidth overhead of the gossip protocol by a lot, and avoids

byte-order issues - e.g. it eliminates the need to detect byte order difference and convert
between different byte orders.

High priority messaging

Currently the LNet API does not provide any Quality of Service support. However, we can

add a simple and effective priority mode for gossip messages without worrying about
penalizing other traffic, because of the low protocol overhead – in each gossip cycle any

participant usually sends only two messages, a ping and a reply in response to one

incoming ping.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 10 1 May 2014

The priority messaging mechanism works as follows:

1. A new option is added to LNet MD, i.e. the LNet memory descriptor, to tell LNet

that this is a high priority message.

2. The gossip module turns on this option for memory descriptors of all its outgoing

messages, and calls LNetPut to send them out.

3. LNetPut recognize this option and short cuts all queues in LNet and LND layers. Of

course if there’s still any pending high priority message, the new one shouldn’t
overtake any of the previous ones.

This mechanism only prioritizes gossip messages on the end points, but not on the path

between end points. The latter requires the ability to distinguish gossip messages from

other traffic without the knowledge of LNet/gossip message formats, and is an optional
requirement.

Debugging

Our implementation of the gossip protocol is fairly simple by intentional design choices,

but still debugging distributed application can be a tough task as always.

Each participant maintains O(N) state information, so there could be O(N**2) distributed

states in total to examine in order to troubleshoot any problem. Furthermore, the

O(N**2) state information changes constantly in every gossip cycle, so likely some

history of the states would be necessary to nail down bugs. Therefore debugging support

must be considered as early as in the designs to facilitate maintenance of the code in the
future.

The following mechanisms are designed to help debugging:

 Each debug message is prefixed with the current local Lamport clock value. If the

event involves an incoming message, Lamport clock included in the message
header is also added as part of the debug message. The Lamport clocks can be

helpful to infer partial order of distributed events in the whole system.

 Debug messages are divided into multiple severity levels.

 Debug messages should be used sparingly to increase signal to noise ratio. For
example, while it’d be excessive to generate a debug message each time a local

age vector entry gets updated, a debug message should not be omitted if the age

change triggers a participant health status change too.

 Local state information should be exported to the user space via files under the

/proc pseudo file system. This should include at least the protocol configuration
parameters, the Lamport clock, and the age vector. This makes it possible to use

normal utilities like cp or tar to capture and save the states easily.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this
document. Copyright 2014, Intel Corporation.

B599860-SS 11 1 May 2014

API and Protocol Additions and Changes

Open Issues

Risks & Unknowns
It’s still not clear to us how much the Lamport clocks can go out of synchronization in

clusters of different sizes. Simulations need to be done to help find out. The log(N) value

should be a very safe baseline value to use, but it limits our ability to detect obsolete
messages. TODO: run simulations to find a more aggressive value to better detect

obsolete messages yet without ringing too many false alarms.

