

LLNS Subcontract No. B599860

Subcontractor Name Intel Federal LLC

Subcontractor Address
2200 Mission College Blvd.

Santa Clara, CA 95052

NOTICE: THIS MANUSCRIPT HAS BEEN AUTHORED BY INTEL UNDER ITS SUBCONTRACT WITH LAWRENCE

LIVERMORE NATIONAL SECURITY, LLC WHO IS THE OPERATOR AND MANAGER OF LAWRENCE LIVERMORE
NATIONAL LABORATORY UNDER CONTRACT NO. DE-AC52-07NA27344 WITH THE U.S. DEPARTMENT OF

ENERGY. THE UNITED STATES GOVERNMENT RETAINS AND THE PUBLISHER, BY ACCEPTING THE ARTICLE

OF PUBLICATION, ACKNOWLEDGES THAT THE UNITED STATES GOVERNMENT RETAINS A NON-EXCLUSIVE,

PAID-UP, IRREVOCABLE, WORLD-WIDE LICENSE TO PUBLISH OR REPRODUCE THE PUBLISHED FORM OF
THIS MANUSCRIPT, OR ALLOW OTHERS TO DO SO, FOR UNITED STATES GOVERNMENT PURPOSES. THE

VIEWS AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO NOT NECESSARILY REFLECT THOSE OF THE

UNITED STATES GOVERNMENT OR LAWRENCE LIVERMORE NATIONAL SECURITY, LLC.

© 2014 Intel Corporation

Date:
June 30, 2014 Big Data-HPC Bridge Design Document

FOR EXTREME-SCALE COMPUTING
RESEARCH AND DEVELOPMENT (FAST
FORWARD) STORAGE AND I/O

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 1 30 June 2014

Table of Contents

1 Introduction .. 3

2 Definitions.. 3

3 Changes from Solution Architecture ... 4

4 Specification .. 4
4.1 The HDF5 Adaptation Layer (HAL) .. 4
4.2 Graph Partitioning .. 5

4.2.1 Design Objective ... 5

4.2.2 Choice of Algorithms .. 5

4.2.3 Proposed Method: Cost Function based Graph Partitioning ... 6

4.2.4 Graph Builder Built-In Algorithm: Random Edge Assignment .. 6

4.2.5 Graph Builder Built-In Algorithm: Oblivious Greedy ... 6

4.3 Graph Representation ... 8
4.4 Synthetic Datasets and Graphs .. 12

4.4.1 Synthetic Raw Dataset Generation .. 12

4.4.2 Synthetic Power-Law Graph Generation ... 13

4.5 Use Case: Topic Modeling.. 14
4.5.1 Data Set Selection & Acquisition .. 14

4.5.2 Topic Modeling Algorithm.. 15

4.5.3 Topic Modeling in the Medline Dataset .. 16

5 Open Issues ... Error! Bookmark not defined.

6 Risks & Unknowns .. Error! Bookmark not defined.

Reference .. 19

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 2 30 June 2014

Revision History

Date Revision Author

02/17/2013 1.0.0 Arnab Paul

02/20/2013 1.3 Jae, Arnab

06/30/2014 1.8 Kyle Ambert, Arnab Paul

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 3 30 June 2014

Introduction
The scope of this document is limited to the design for the first set of deliverables related to the ACG
solution architecture, i.e., generation and storage of big data graphs.

The ACG ingress pipeline starts with raw data at the ingress that must be pre-processed to extract graph

structures and associated network information. To be used in the HPC world, these structures (graph

and network information) will be represented in HDF5 format. The ingress will partition these structures
appropriately, each partition or sub-partition small enough to fit in memory, so that the partitions can be

distributed over HPC compute nodes for processing. The partitions can be split further whenever

necessary in sliding windows slices (small enough to fit in-core).

The key component in establishing the Big Data-HPC bridge is an HDF5 adaptation layer (HAL). The HAL

lays out arbitrarily connected graphs on a parallel or distributed storage system in HDF5 data-format,
and acts as the interface for the proposed ACG-ingress and graph computational kernel with the storage

system. Efficient representation of graph partitions is also a part of the HAL’s design.

In addition to graph representation and partitioning, we further describe our plans for generating high

quality synthetic data sets for comprehensive performance benchmarking.

The subsequent part of this pipeline, the actual graph analytics computation, is a subject of the next

design document and not addressed here.

Definitions
 Arbitrarily Connected Graph (ACG): A graph with arbitrary edge relationships. The graph

may be a tree, bipartite, undirected, directed, or any number of types. In any case, it will

not be complete. Many graphs that model natural structures and real-world phenomena are

arbitrarily structured. Many of them are scale-free, and some exhibit small-world and

clustering characteristics.

 ACG Ingress: The process of constructing and loading an ACG into the exascale system.

The ACG ingress process comprises the Big Data-ACG bridge in this research. The graph will

be constructed by applying extract and transform rules to large unstructured and semi-

structured datasets.

 Computational Kernel: The application framework that supports the exascale structured

machine learning and graph analytics. In this research, the computational kernel is based

on GraphLab, an asynchronous distributed graph-parallel computational framework.

GraphLab provides an in-memory data structure model, computational scheduling and

synchronization, and a data consistency model.

 Big Data Analytics (BDA): Big data analytics is the process of discovering latent patterns,

understanding unknown correlations, or extracting meaningful information from data sets of

which size and complexity are beyond the ability of traditional database management or

data processing applications to process [1]. Some examples of big data include traffic
sensory data (e.g., climate, traffic, etc.), stock and commercial transactions, social

interaction data, and digitalized media (e.g., pictures and videos).

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 4 30 June 2014

 Big Data Graph: An ACG with associated “network information” derived from a Big Data

corpus. The network information is largely comprised of arbitrarily-typed vertex and edge

data.

 Network Information: Arbitrarily-typed data structures associated with vertices and

edges.

 Sub-Partition: A graph-partition is typically represented as an ordered list (adjacency lists,

edge lists etc.). A sub-partition is the further division of a partition into smaller portion.
When a partition is too large for memory or thread processing, it may be divided into sub-

partitions.

 Synthetic Graphs: Graphs that are artificially generated by human or computer.

Changes from Solution Architecture
Currently our project is not deviating from the path laid out in the solution architecture. However, in

order to perform more comprehensive benchmarking we are proposing an additional step – generation

of synthetic raw data.

The solution architecture laid out our plans for generating synthetic graphs and attaching network
information to these synthetic graphs in order to stress test our system. However, that set-up will not be

able to test ACG-ingress and the Big-data-HPC bridge. We realized that a more comprehensive way to

test the ingress pipeline is to start with raw data sets, which is now part of our plan. Note that this

inclusion is perfectly in line with our original intent.

Specification
This section details on various elements of the ACG ingress design. Section 1.1 introduces the HDF5

adaptation layer (HAL). Section 1.2 describes our graph partitioning strategy. Section 1.3 provides

further details on the HAL and graph representation in HDF5. Section 1.4 outlines our plans on
generating synthetic datasets and graphs.

1.1 The HDF5 Adaptation Layer (HAL)

Figure 1 describes the architecture of the proposed Big data – HPC bridge, and how the HAL is situated
in the overall context. On the ingress side, the HAL transforms the output of the ACG-ingress to HDF5

data format. In the HPC world the HAL loads graph-partitions and associated network information to

efficiently feed the graph computation kernel. Graph Builder, the starting point in our ACG ingress, is

already designed to run on a Hadoop cluster, and hence we chose to follow the same set up in our
HDF5-adapted ingress as well. The actual graph analytics will run on the target exascale machine. Both

clusters will interact with the storage system as depicted in Figure 1.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 5 30 June 2014

Figure 1 HAL helps establish the Big Data – HPC bridge by laying out data in HDF5 format

1.2 Graph Partitioning

1.2.1 Design Objective

Our design objective for exascale graph partitioning algorithm is as follows. First, minimize the amount

of communication between compute nodes by minimizing the edge-cut. Second, balance the number of

edges in partitions to distribute the load across the compute nodes.

For the initial phase, we plan to use the partitioning algorithms outlined in Section 1.2.4 and Section
1.2.5. These schemes, natively available in Graph Builder, will help us bootstrap the bridge. We plan to

experiment further with more state-of-the art algorithms, as described in Section 1.2.2 and Section

1.2.3, to further optimize the partitioning performance.

1.2.2 Choice of Algorithms

In general, graph partitioning is accomplished by finding patterns such as cluster or community
structure in the graph using spectral or topological analysis. Although spectral partitioning algorithms

are known to produce very good partitions, the polynomial computational complexity (𝑂(𝑛𝜔), 2 < 𝜔 <
2.376) of eigenvalue decomposition puts a scalability limit for their use on exascale graphs [2]. To

resolve such scalability issues, a multi-level graph partitioning method has been introduced in [3].It

works in three steps: (1) transform an input graph into a smaller graph, (2) apply the partitioning
algorithm on the smaller graph, and (3) recover the original graph while maintaining the partitions.

However, such a multi-level partitioning method relies on a global view of the whole graph structure and

involves multiple steps running different algorithms. Recently, some researchers started looking into a

new approach that does not require any global view of graphs. In this approach, a graph partitioning
algorithm passes through an entire graph just once and partitions the graph on-the-fly [4, 5]. Especially,

the one pass graph partitioning algorithm described in [5] looks promising in terms of edge cut, work

load balance, and computational complexity; the authors claim that their proposed algorithm performs

better than any heuristic one pass graph partitioning algorithm and even achieves comparable
performance to METIS.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 6 30 June 2014

1.2.3 Proposed Method: Cost Function based Graph Partitioning

Figure 2 shows the block diagram for the proposed one pass graph partitioning. The proposed one pass

graph partitioning will scan the whole graph once and make online partitioning decision per edge basis.
To make such an on-the-fly decision, we will design a cost for evaluating the cost of placing an edge to a

certain partition.

Cost Function

argmin f (edge, partition, statistics, history)
 partition

Graph Feed Edges

Partition

Partition

Partition

Statistics/History
Vertex List per Partition

In/Out Edges per Partition
…

…

Partition
Statistics & History

Figure 2. Block diagram for proposed one pass graph partitioning method.

Because the proposed method has no a priori knowledge on the whole structure of an input graph, it

solely relies on statistics and history of previous partitioning decisions. For example, as it makes

partitioning decisions on the edges and vertices, the method keeps statistical information such as the
number of in-edges and out-edges per partition, the number of vertices per partition, the size of each

partition, etc.

1.2.4 Graph Builder Built-In Algorithm: Random Edge Assignment

Graph Builder’s built-in partitioning strategies are also one-pass style, except it does not associate any
cost for a sub-optimal placement. Each compute node of a Hadoop system places edges to a partition

that is selected uniformly at random. Since the algorithm is not designed to minimize the edge cut

between partitions, communication costs for graph computation may be sub-optimal.

1.2.5 Graph Builder Built-In Algorithm: Oblivious Greedy

Each compute node of a Hadoop system places edges using a greedy heuristic algorithm described in
[6]. As the algorithm scans the edge list of a graph, it decides the partition an edge will be placed. The

edge placement decision is based on the following four cases:

 Case 1: Both vertices of an edge have never been seen by the partitioning algorithm.

o Randomly assign both vertices to a partition.

 Case 2: Both vertices have been seen by the partitioning algorithm and the two vertices are

located on a single partition.

o Assign to a partition that contains both ends.

 Case 3: Both vertices have been seen before but located on different partitions.

o Assign to any partition that contains one of the two ends.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 7 30 June 2014

 Case 4: Only one vertex has been seen before.

o Assign to a partition that contains one of the two ends.

For example, assume that a compute node is running the algorithm on the shard depicted in Figure 3 to
divide the shard in two partitions. As the algorithm scans the shard of the edge list, it makes edge

placement decision as depicted in Figure 4 through Figure 8.

DD AA BB

CC EE FF

GG

A B

F E

D C

A D

E C

E D

B F

E G

 p
ro

ce
ss

in
g

o
rd

er

Figure 3. Compute node 1's shard.

A B

F E

D C

A B

D C

F E

Case 1

Figure 4. Partitioning decision: Case 1.

A B

D C

F E

A D

Case 2

Figure 5. Partitioning decision: Case 2.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 8 30 June 2014

A B

D C

F E

E C

C

Case 3

Figure 6. Partitioning decision: Case 3.

B F

E D

A B

D C

F

F E

CD

Case 3

Figure 7. Partitioning decision: Case 3.

E G

A B

D C

F

F E

CD

Case 4

G

Figure 8. Partitioning decision: Case 4.

1.3 Graph Representation

In this document we only describe how the HAL lays out an ingress output graph in the HDF5 format.

The consumption of this HDF5 object by the computational kernel will be described in the next design

document to be delivered at a more advanced stage of the project.

To lay out the graph generated by the ACG-ingress, the HAL creates an HDF5 container. On a POSIX
system the container maps to a file, while on the proposed exascale storage stack it will map to an IOD

container. In addition to capturing the graph topology information, the HAL will also store partition

information, so that a compute node can load the appropriate partition including its vertex and edge

related data in memory.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 9 30 June 2014

Figure 9 Proposed representation of a graph and its associated network information in a HDF5

container.

Figure 9 describes the initial design of an HDF5 container to represent a graph and its partitions. The

whole graph will be represented in a single container (or file) so that information related to vertices,

edges, and partitions can be accessed seamlessly from any compute node. Within the HDF5 container,

the HAL creates the following types of representational units.

 Immutable data objects: These objects constitute the part of the network information

that never changes during a graph-computation. However, in general they evolve over time.

The immutable data objects can be associated with both vertices and edges. Examples of

this type include name and gender attributes of individual profiles in a social network, the

images and video files associated with them, and so on. This type of information can be
small or substantially large. However, typically these are not heavily accessed during a

graph computation. Inside an HDF5 container, these objects will be represented as HDF5

datasets.

 Mutable data objects: These are variables associated with vertices and edges that are
actually part of a graph computation’s update cycle. Inside an HDF5 container the mutable

objects will be represented as attributes which are to be mapped to IOD KV objects

underneath for efficient updates and retrieval.

 Topology representation: Topology is captured in separate structures inside the HDF5
container. The reason for this twofold. First, this lets the vertex programs inside the

computational kernel access the graph topology without moving large network information.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 10 30 June 2014

Second, it lets applications switch between different graph representations, again, without

moving large amounts of data.

Based on the algorithms, the HDF5 container will have different (possibly concurrent)
representations of the topology. Figure 9 illustrates the interchangeable representations

inside the container – both adjacency-list and edge-list representations are captured.

Note that these two representations are fairly versatile and address the general needs of

most of the algorithms in big data and HPC domains. They can directly represent both
undirected and directed graphs. In the case of a directed graph, the in-edges and out-edges

can be optionally kept in separate lists of identical structures.

 Partitions and sub-partitions: Partitions will be represented as either datasets or KV

objects, or supported with both representations, subject to experimental findings.

Once the partitions are created by the ingress, the vertices will be relabeled so that the

ones belonging to a partition get a contiguous set of labels (See Figure 10). The partition-

friendly labels will ensure that the partition-id for any vertex can be derived completely in-

memory (hence locally) without having to reach the storage or any other master node. The
cost of re-labeling the vertex is incurred once, during the ingress. Translating the vertex

labels back and forth, on the other hand, is an extremely quick in-memory operation.

With the help of contiguously labeled vertices, HDF will lay out these partition structures as

contiguously as possible on the underlying storage (POSIX File or IOD container), and

therefore, retrieval will be faster compared to scrambling together pieces from different
parts of the storage.

Sub-partitions are created on the fly based on partition sizes with respect to a compute

node’s memory. Their representation is similar to partitions. They get sequentially loaded

and unloaded(see Figure 11). As the lower levels of the I/O stack mature further, we plan
on addressing efficient pre-staging of sub-partitions into the burst buffers on the IONs to

boost the load-compute-unload cycle.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 11 30 June 2014

V1

V2

V3

V4

V5

V7

V8

V9

V10

P1

P2

P3

V6

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

P1 P2 P3

Re-labeling of
vertices to quickly

infer partition-indices

Figure 10. The vertices will be re-labeled such that vertices within each partition are labeled

contiguously. The relabeling step will speed up distributed updates in the computational kernel as well
as loading of partitions and sub-partitions.

Figure 11 A partition 𝐏𝐱which is too big to fit in memory, is further sliced into sub-partitions
(𝐏𝐱,𝟎, 𝐏𝐱,𝟏, 𝐏𝐱,𝟐, 𝐏𝐱,𝟑) and loaded and processed in sliding-window style on a compute node.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 12 30 June 2014

1.4 Synthetic Datasets and Graphs

In order to corner-test our pipeline we need a very large collection of benchmarking data sets. However,

it is not easy to obtain quality data sets of very large sizes. Hence we will synthesize our data sets in two

different ways.

 Synthetic Raw data set: By generating synthetic raw data sets, we will be able to explicitly

test the performance of the ACG-ingress. Generating raw data is comprehensive, but quite
time consuming as it requires the ingress to execute every time before running graph

computation.

 Synthetic Graphs: In order to directly execute the computational kernel (i.e., bypass the

ingress) we will generate synthetic graphs that mimic real-life characteristics.

1.4.1 Synthetic Raw Dataset Generation

Figure 12 describes our methodology for generating synthetic raw data sets. For a large class of graph

analytics computation, the analysis algorithm assumes a probabilistic generative model (𝑀𝜃), where 𝜃

refers to a set of parameters that determines the model numerically. The algorithm eventually estimates

𝜃 by maximizing a likelihood function that best fits the problem. In Figure 12, this function is captured
in the conditional probability distribution (𝑃𝑟𝑜𝑏 (𝑋, 𝜃 | 𝑋)) subject to maximization over the parameter

space.

Once we run the graph analytics algorithms on a graph generated from real life data set and in the
process recover the hidden parameter set (𝜽𝒎), we will run the generative model backward to generate

synthetic data points that follow the distributions dictated by the parameter set 𝜃𝑚. This allows us to

generate arbitrarily large data sets. We can slightly modify 𝜃𝑚 to generate variations of the original

distributions in order to create benchmarks for corner-testing.

Figure 12 Creation of a synthetic data set that mimics a real-life data set sample, but is much larger

than the sample itself. A typical ACG computation in BDA setting often assumes a probabilistic

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 13 30 June 2014

generative model and estimates the underlying parameters. To stress-test the ingress performance, we

will run the generative model backward using the parameters extracted from the real-life sample, and
synthesize much larger data-sets.

1.4.2 Synthetic Power-Law Graph Generation

We use the stochastic Kronecker graph generation method in [7] to synthesize large-scale power-law
graphs. Figure 13 shows the building blocks for generating synthetic large-scale graphs. The power-law

graph model will generate a seed power-law graph based on user inputs including alpha value and the

size of the seed graph. Then, the stochastic Kronecker graph generator produces a large scale synthetic

graph with graph properties close to those of the seed graph.

Power-Law Graph
Modelα

Stochastic Kronecker
Graph Generator

seed graph size

Seed
Power-Law Graph

Large-Scale
Power-Law Graph synthetic

graph size

Figure 13. Building blocks for synthetic graph generation.

1.4.2.1 Power-Law Graph Model

Power-law degree distribution can be found in many natural graphs. For example, Figure 14 shows the

degree distribution of the bipartite graph for Wikipedia Topic Modeling with the power-law degree
distribution parameter α = 2.23.

Figure 14. Power-law degree distribution of bipartite graph for Wikipedia topic modeling (α=2.23) [8].

To produce small power law seed graphs with tunable alpha, we use the mathematical model to produce

power-law degree distribution. In the model, the probability of a vertex to have degree 𝑘 is defined as

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 14 30 June 2014

𝑃(𝑘)~𝑘−𝛼. From the degree distribution, we will generate a random power-law graph which will be used

as a seed graph for the Stochastic Kronecker graph generator.

1.4.2.2 Stochastic Kronecker Graph Generator on Hadoop

The Stochastic Kronecker graph generator is known to produce good power-law graphs and adopted by

Graph500 benchmark to produce large-scale synthetic graph. The stochastic Kronecker graph generator
uses a likelihood optimization method described in [7] to produce the following a 2-by-2 initiator matrix

from the seed graph as follows:

𝐊𝟏 = [𝑎 𝑏
𝑐 𝑑

] , 0 ≤ 𝑎, 𝑏, 𝑐, 𝑑 ≤ 1

Next, the stochastic Kronecker graph generator performs Kronecker multiplication on the initiator matrix

until it reaches the desired size. Thus the n-th Kronecker product of initiator matrix forms the recursive

multiplication,

𝐊𝟐 = 𝐊𝟏 ⊗ 𝐊𝟏 = [
𝑎 𝐊𝟏 𝑏 𝐊𝟏

𝑐 𝐊𝟏 𝑑 𝐊𝟏
],

𝐊𝟑 = 𝐊𝟏 ⊗ 𝐊𝟐 = [
𝑎 𝐊𝟐 𝑏 𝐊𝟐

𝑐 𝐊𝟐 𝑑 𝐊𝟐
],

…

𝐊𝒏 = 𝐊𝟏 ⊗ 𝐊𝒏−𝟏 = [
𝑎 𝐊𝒏−𝟏 𝑏 𝐊𝒏−𝟏

𝑐 𝐊𝒏−𝟏 𝑑 𝐊𝒏−𝟏
].

The n-th Kronecker product is the probability matrix where each matrix element is the edge probability

between a pair of vertices signified by row and column indices. We will use the Hadoop cluster to

parallelize stochastic Kronecker graph generation process. Since obtaining the n-th Kronecker product is

embarrassingly parallel [9], parallelized graph generation using the Kronecker product is easily
parallelized as well.

1.5 Use Case: Topic Modeling

This section may be moved to the next design documentation milestone.

To test every step in our computational pipeline, we will run a large-scale probabilistic graphical
modeling experiment, in which we conduct topic modeling on a large corpus of textual data. This

experiment will provide three primary benefits. First, it will demonstrate that our system is able to carry

out a real-world computation over a large-scale ACG. Second, it will provide us with initial benchmarks

for the performance of our system on this particular problem, allowing us to further improve our topic
modeling algorithms for scaling up to exascale computations. Finally, it will be a proof-of-concept to the

high performance computing community that topic modeling can be conducted in an efficient way over

an exascale data set.

1.5.1 Data Set Selection & Acquisition

We had several considerations in selecting our real-world data set. Of primary importance to us is size:

the data set we use here must be big enough to test our graph partitioning algorithms and storage

architecture—if we selected a corpus of a size that could fit in memory, it would hardly be a realistic test

of our infrastructure. For the present experiment, we were only interested in using a document corpus

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 15 30 June 2014

that exceeds 100 GB in size. A second consideration was accessibility: the data must be freely-available

to the public, either under an open source licensure (e.g., Creative Commons). Finally, since we are

pushing the boundaries of what has been done with topic modeling algorithms, it would be desirable if
our data set had some inherent topic-like structure to it, which we could use to evaluate the accuracy of

our algorithm. Along these lines, we wanted to avoid using a synthetic data set, as it would be easier to

get an intuitive sense of the accuracy of our topic modeling algorithm if the data were not created via

some statistical generative system. Taking all this into account, we narrowed the data sets we
considered down to three: ClueWeb09-English, Google tri-grams, and MEDLINE (Table 1).

Table 1. Descriptive statistics for the document corpora considered for use in the exascale topic

modeling experiment.

Data Set Open Source
Uncompressed

Size
Number of
Documents

ClueWeb09-

English
Yes 13.4 TB 5.03 𝑥 108

Google tri-

gram
Yes 218.1 GB 2.45 𝑥 1010

MEDLINE Partially
90 GB

(estimated)
2.25 𝑥 107

Although it is sufficiently large, the content of the Google tri-gram data set is such that the results of

any topic modeling studies are likely to be meaningless. The MEDLINE data set, which consists of every

MEDLINE record on the National Library of Medicine’s PubMed search engine
(http://www.ncbi.nlm.nih.gov/pubmed) is near the desired size, and contains documents that have been

manually labeled with MeSH terms (Medical Subject Heading terms), which would allow us to easily

assess the validity of our topic modeling results. However, the data set, though freely-available through

the NLM’s search engine, is not available for single batch downloading. To obtain the MEDLINE corpus,
we would have to access their search api through a custom Python script for downloading the data in

chunks. Although such scripts have already been used in some of our previous research, the time it

would take to download 22.5 million articles without violating the NLM’s access guidelines may be

prohibitive. Thus, we selected the ClueWeb09-English data set for the present experiment. This corpus

consists of the English language subset of ClueWeb09, a data collection consisting of the html of
websites obtained from one year of web crawling by a group at Carnegie Mellon University. 13.4 TB of

textual data will be an ambitious amount of data, but it will allow us to get a sense of the efficiency of

our pipeline. One downside of the ClueWeb09-English is that there are no pre-existing topic labels

associated with the documents it contains. To address this, we will use other methods of evaluating topic
modeling algorithms, such as perplexity, and manual examination of the most-common words used in

documents contained in the various topics identified by our approach. In addition, other researchers

have already analyzed subsets of the ClueWeb09-English corpus, which we may be able to use to

compare with our results.

1.5.2 Topic Modeling Algorithm

There are several approaches to topic modeling that are available to us, including k-means clustering,

Latent Semantic Indexing (LSI), and Latent Dirichlet Allocation (LDA). For testing our pipeline, we opted

http://www.ncbi.nlm.nih.gov/pubmed

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 16 30 June 2014

to use LDA. There were several reasons for this, the most prevalent of which was that LDA has already

been implemented for graph data in the open source GraphLab software.

1.5.3 Topic Modeling in the Medline Dataset

Since the MeSH vocabulary has a natural hierarchical layout, organizing the documents in the Medline

dataset according to the tags assigned to each was the obvious approach for organizing our data in the

EFF stack. This also provided an intuitive data model for conducting topic-modeling experiments that

would be of interest to biomedical informaticians. Take, for example, our version of the entire Medline
data set. This collection of 25 million documents contains a mixture of publications on a variety of

medically-relevant topics. While one certainly could run a topic-modeling algorithm over these data, the

output wouldn’t be especially informative, as, one would expect, the output would be the broad topics

comprising the biomedical literaturebase. More interesting is running topic modeling experiments on
well-defined subsets of data already having a coherent topic. In Figure 15, for example, running a topic

modeling experiment on the lower-level MeSH tags, like Arousal or Attention could reveal interesting

findings about the literature comprising attention- or arousal-related research. Thus, we organized or

hdf5 hierarchy to mirror this structure. Queries for a specific vertex returned both the document id/word
id edge list for that point, as well as a subset of the global word dictionary for the entire dataset

corresponding to the relevant documents.

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 17 30 June 2014

Figure 15: Example path in the Medical Subject Heading (MeSH) hierarchy. Titles in the boxes are the

human-readable names for the vertices depicted, while those colored blue denote the chosen path
down the hierarchy. The top grey bar indicates increasing depth down the hierarchy, spanning from the

root vertex to five levels down, while the corresponding numbers on the lower maroon bar indicate the

number of unique documents contained in all possible vertices that are children of the level above. At
the lowest level, the number in the red cloud indicates the number of documents having the Attention

MeSH term alone.

Final comments
 In course of the project, we realized that we had real-life datasets to test the EFF stack to

the extent that we wanted and address the design questions. It was also realized that

testing the analytics applications are more important than the graph-ingests. As a result, we

did not pursue the generation of synthetic-datasets, and limited our synthesis process to

graph synthesis only.

 We also chose to divide graphs in partitions. We did not have time to implement out-of-core

graph computing (which was not mandatory, but only a desirable requirement); as a result

we have not tested graph computations with sub-partitions as out-lined above. However,

our APIs in the HDF5-adaptation layer would support dividing graphs into sub-partitions.

MeSH

Anatomy

Diseases

...
Psychology

Behavior
Mechanisms

Mental
Disorders

Disciplines &
Activitis

Psychological
Processes

Psycholinguistics

Psychophysiology

... Appetite

Arousal

...
Stress

Attention

Wakefulness

L3 L4L2L1 L5

1.2M 500K3M25M 85K

52K

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 18 30 June 2014

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright
2014, Intel Corporation.

B599860-SS 19 30 June 2014

Reference

[1] "Big Data," 11 1 2013. [Online]. Available: http://en.wikipedia.org/wiki/Big_data.

[2] J. Demmel, I. Dumitriu and O. Holtz, "Fast linear algebra is stable," Numerische Mathematik, pp.

55-91, 2007.

[3] G. Karypis and V. Kumar, "Metis-unstructured graph partitioning and sparse matrix ordering
system, version 2.0," 1995.

[4] I. Stanton and G. Kliot, "Streaming graph partitioning for large distributed graphs," in Proceedings

of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 2012.

[5] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic and M. Vojnovic, "FENNEL: Streaming Graph
Partitioning for Massive Scale Graphs," Microsoft Research, 2012.

[6] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson and C. Guestrin, "PowerGraph: Distributed graph-parallel

computation on natural graphs," in Proc. of the 10th USENIX conference on Operating systems

design and implementation, OSDI, 2012.

[7] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos and Z. Ghahramani, "Kronecker graphs: An

approach to modeling networks," The Journal of Machine Learning Research, vol. 11, pp. 985-1042,

2010.

[8] T. L. Willke, "Large-Scale Machine Learning Challenges," Intel, 2012. [Online]. Available:

https://01.org/graphbuilder/documentation/large-scale-ml-challenges. [Accessed 25 2 2013].

[9] "The Graph 500," [Online]. Available: www.graph500.org. [Accessed 25 2 2013].

[10] "Machine Learning," Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/Machine_learning.

[Accessed 10th January 2013].

