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Introduction 
The scope of this document is limited to the design for the first set of deliverables related to the ACG 
solution architecture, i.e., generation and storage of big data graphs. 

The ACG ingress pipeline starts with raw data at the ingress that must be pre-processed to extract graph 

structures and associated network information. To be used in the HPC world, these structures (graph 

and network information) will be represented in HDF5 format. The ingress will partition these structures 
appropriately, each partition or sub-partition small enough to fit in memory, so that the partitions can be 

distributed over HPC compute nodes for processing. The partitions can be split further whenever 

necessary in sliding windows slices (small enough to fit in-core). 

The key component in establishing the Big Data-HPC bridge is an HDF5 adaptation layer (HAL). The HAL 

lays out arbitrarily connected graphs on a parallel or distributed storage system in HDF5 data-format, 
and acts as the interface for the proposed ACG-ingress and graph computational kernel with the storage 

system. Efficient representation of graph partitions is also a part of the HAL’s design. 

In addition to graph representation and partitioning, we further describe our plans for generating high 

quality synthetic data sets for comprehensive performance benchmarking.  

The subsequent part of this pipeline, the actual graph analytics computation, is a subject of the next 

design document and not addressed here. 

Definitions 
 Arbitrarily Connected Graph (ACG): A graph with arbitrary edge relationships. The graph 

may be a tree, bipartite, undirected, directed, or any number of types. In any case, it will 

not be complete. Many graphs that model natural structures and real-world phenomena are 

arbitrarily structured. Many of them are scale-free, and some exhibit small-world and 

clustering characteristics. 

 ACG Ingress: The process of constructing and loading an ACG into the exascale system. 

The ACG ingress process comprises the Big Data-ACG bridge in this research. The graph will 

be constructed by applying extract and transform rules to large unstructured and semi-

structured datasets. 

 Computational Kernel: The application framework that supports the exascale structured 

machine learning and graph analytics. In this research, the computational kernel is based 

on GraphLab, an asynchronous distributed graph-parallel computational framework. 

GraphLab provides an in-memory data structure model, computational scheduling and 

synchronization, and a data consistency model. 

 Big Data Analytics (BDA): Big data analytics is the process of discovering latent patterns, 

understanding unknown correlations, or extracting meaningful information from data sets of 

which size and complexity are beyond the ability of traditional database management or 

data processing applications to process [1]. Some examples of big data include traffic 
sensory data (e.g., climate, traffic, etc.), stock and commercial transactions, social 

interaction data, and digitalized media (e.g., pictures and videos). 
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 Big Data Graph: An ACG with associated “network information” derived from a Big Data 

corpus. The network information is largely comprised of arbitrarily-typed vertex and edge 

data. 

 Network Information: Arbitrarily-typed data structures associated with vertices and 

edges. 

 Sub-Partition: A graph-partition is typically represented as an ordered list (adjacency lists, 

edge lists etc.). A sub-partition is the further division of a partition into smaller portion. 
When a partition is too large for memory or thread processing, it may be divided into sub-

partitions.  

 Synthetic Graphs: Graphs that are artificially generated by human or computer. 

Changes from Solution Architecture 
Currently our project is not deviating from the path laid out in the solution architecture. However, in 

order to perform more comprehensive benchmarking we are proposing an additional step – generation 

of synthetic raw data. 

The solution architecture laid out our plans for generating synthetic graphs and attaching network 
information to these synthetic graphs in order to stress test our system. However, that set-up will not be 

able to test ACG-ingress and the Big-data-HPC bridge.  We realized that a more comprehensive way to 

test the ingress pipeline is to start with raw data sets, which is now part of our plan. Note that this 

inclusion is perfectly in line with our original intent. 

Specification 
This section details on various elements of the ACG ingress design. Section 1.1 introduces the HDF5 

adaptation layer (HAL). Section 1.2 describes our graph partitioning strategy. Section 1.3 provides 

further details on the HAL and graph representation in HDF5. Section 1.4 outlines our plans on 
generating synthetic datasets and graphs. 

1.1 The HDF5 Adaptation Layer (HAL) 

Figure 1 describes the architecture of the proposed Big data – HPC bridge, and how the HAL is situated 
in the overall context. On the ingress side, the HAL transforms the output of the ACG-ingress to HDF5 

data format. In the HPC world the HAL loads graph-partitions and associated network information to 

efficiently feed the graph computation kernel. Graph Builder, the starting point in our ACG ingress, is 

already designed to run on a Hadoop cluster, and hence we chose to follow the same set up in our 
HDF5-adapted ingress as well. The actual graph analytics will run on the target exascale machine. Both 

clusters will interact with the storage system as depicted in Figure 1. 
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Figure 1   HAL helps establish the Big Data – HPC bridge by laying out data in HDF5 format 

1.2 Graph Partitioning  

1.2.1 Design Objective 

Our design objective for exascale graph partitioning algorithm is as follows. First, minimize the amount 

of communication between compute nodes by minimizing the edge-cut. Second, balance the number of 

edges in partitions to distribute the load across the compute nodes. 

For the initial phase, we plan to use the partitioning algorithms outlined in Section 1.2.4 and Section 
1.2.5. These schemes, natively available in Graph Builder, will help us bootstrap the bridge. We plan to 

experiment further with more state-of-the art algorithms, as described in Section 1.2.2 and Section 

1.2.3, to further optimize the partitioning performance. 

1.2.2 Choice of Algorithms 

In general, graph partitioning is accomplished by finding patterns such as cluster or community 
structure in the graph using spectral or topological analysis. Although spectral partitioning algorithms 

are known to produce very good partitions, the polynomial computational complexity (𝑂(𝑛𝜔), 2 <  𝜔 <
2.376) of eigenvalue decomposition puts a scalability limit for their use on exascale graphs [2]. To 

resolve such scalability issues, a multi-level graph partitioning method has been introduced in [3].It 

works in three steps: (1) transform an input graph into a smaller graph, (2) apply the partitioning 
algorithm on the smaller graph, and (3) recover the original graph while maintaining the partitions. 

However, such a multi-level partitioning method relies on a global view of the whole graph structure and 

involves multiple steps running different algorithms. Recently, some researchers started looking into a 

new approach that does not require any global view of graphs. In this approach, a graph partitioning 
algorithm passes through an entire graph just once and partitions the graph on-the-fly [4, 5]. Especially, 

the one pass graph partitioning algorithm described in [5] looks promising in terms of edge cut, work 

load balance, and computational complexity; the authors claim that their proposed algorithm performs 

better than any heuristic one pass graph partitioning algorithm and even achieves comparable 
performance to METIS. 
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1.2.3 Proposed Method: Cost Function based Graph Partitioning 

Figure 2 shows the block diagram for the proposed one pass graph partitioning. The proposed one pass 

graph partitioning will scan the whole graph once and make online partitioning decision per edge basis. 
To make such an on-the-fly decision, we will design a cost for evaluating the cost of placing an edge to a 

certain partition. 

Cost Function 

argmin f (edge, partition, statistics, history)
     partition

Graph Feed Edges

Partition

Partition

Partition

Statistics/History
Vertex List per Partition

In/Out Edges per Partition
…

…

Partition
Statistics & History

 

Figure 2. Block diagram for proposed one pass graph partitioning method. 

Because the proposed method has no a priori knowledge on the whole structure of an input graph, it 

solely relies on statistics and history of previous partitioning decisions. For example, as it makes 

partitioning decisions on the edges and vertices, the method keeps statistical information such as the 
number of in-edges and out-edges per partition, the number of vertices per partition, the size of each 

partition, etc. 

1.2.4 Graph Builder Built-In Algorithm: Random Edge Assignment 

Graph Builder’s built-in partitioning strategies are also one-pass style, except it does not associate any 
cost for a sub-optimal placement. Each compute node of a Hadoop system places edges to a partition 

that is selected uniformly at random. Since the algorithm is not designed to minimize the edge cut 

between partitions, communication costs for graph computation may be sub-optimal. 

1.2.5 Graph Builder Built-In Algorithm: Oblivious Greedy 

Each compute node of a Hadoop system places edges using a greedy heuristic algorithm described in 
[6]. As the algorithm scans the edge list of a graph, it decides the partition an edge will be placed. The 

edge placement decision is based on the following four cases: 

 Case 1: Both vertices of an edge have never been seen by the partitioning algorithm. 

o Randomly assign both vertices to a partition. 

 Case 2: Both vertices have been seen by the partitioning algorithm and the two vertices are 

located on a single partition. 

o Assign to a partition that contains both ends. 

 Case 3: Both vertices have been seen before but located on different partitions. 

o Assign to any partition that contains one of the two ends. 
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 Case 4: Only one vertex has been seen before. 

o Assign to a partition that contains one of the two ends. 

For example, assume that a compute node is running the algorithm on the shard depicted in Figure 3 to 
divide the shard in two partitions. As the algorithm scans the shard of the edge list, it makes edge 

placement decision as depicted in Figure 4 through Figure 8. 
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Figure 3. Compute node 1's shard. 
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Figure 4. Partitioning decision: Case 1. 
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Figure 5. Partitioning decision: Case 2. 
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Figure 6. Partitioning decision: Case 3. 
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Figure 7. Partitioning decision: Case 3. 
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Figure 8. Partitioning decision: Case 4. 

 

1.3 Graph Representation  

In this document we only describe how the HAL lays out an ingress output graph in the HDF5 format. 

The consumption of this HDF5 object by the computational kernel will be described in the next design 

document to be delivered at a more advanced stage of the project.  

To lay out the graph generated by the ACG-ingress, the HAL creates an HDF5 container. On a POSIX 
system the container maps to a file, while on the proposed exascale storage stack it will map to an IOD 

container. In addition to capturing the graph topology information, the HAL will also store partition 

information, so that a compute node can load the appropriate partition including its vertex and edge 

related data in memory.  
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Figure 9    Proposed representation of a graph and its associated network information in a HDF5 

container.  

Figure 9 describes the initial design of an HDF5 container to represent a graph and its partitions. The 

whole graph will be represented in a single container (or file) so that information related to vertices, 

edges, and partitions can be accessed seamlessly from any compute node. Within the HDF5 container, 

the HAL creates the following types of representational units. 

 Immutable data objects: These objects constitute the part of the network information 

that never changes during a graph-computation. However, in general they evolve over time. 

The immutable data objects can be associated with both vertices and edges. Examples of 

this type include name and gender attributes of individual profiles in a social network, the 

images and video files associated with them, and so on. This type of information can be 
small or substantially large. However, typically these are not heavily accessed during a 

graph computation. Inside an HDF5 container, these objects will be represented as HDF5 

datasets.  

 Mutable data objects: These are variables associated with vertices and edges that are 
actually part of a graph computation’s update cycle. Inside an HDF5 container the mutable 

objects will be represented as attributes which are to be mapped to IOD KV objects 

underneath for efficient updates and retrieval.  

 Topology representation: Topology is captured in separate structures inside the HDF5 
container. The reason for this twofold. First, this lets the vertex programs inside the 

computational kernel access the graph topology without moving large network information. 
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Second, it lets applications switch between different graph representations, again, without 

moving large amounts of data.  

Based on the algorithms, the HDF5 container will have different (possibly concurrent) 
representations of the topology. Figure 9 illustrates the interchangeable representations 

inside the container – both adjacency-list and edge-list representations are captured. 

Note that these two representations are fairly versatile and address the general needs of 

most of the algorithms in big data and HPC domains. They can directly represent both 
undirected and directed graphs. In the case of a directed graph, the in-edges and out-edges 

can be optionally kept in separate lists of identical structures.  

 Partitions and sub-partitions: Partitions will be represented as either datasets or KV 

objects, or supported with both representations, subject to experimental findings. 

Once the partitions are created by the ingress, the vertices will be relabeled so that the 

ones belonging to a partition get a contiguous set of labels (See Figure 10). The partition-

friendly labels will ensure that the partition-id for any vertex can be derived completely in-

memory (hence locally) without having to reach the storage or any other master node. The 
cost of re-labeling the vertex is incurred once, during the ingress. Translating the vertex 

labels back and forth, on the other hand, is an extremely quick in-memory operation.  

With the help of contiguously labeled vertices, HDF will lay out these partition structures as 

contiguously as possible on the underlying storage (POSIX File or IOD container), and 

therefore, retrieval will be faster compared to scrambling together pieces from different 
parts of the storage. 

Sub-partitions are created on the fly based on partition sizes with respect to a compute 

node’s memory. Their representation is similar to partitions. They get sequentially loaded 

and unloaded(see Figure 11). As the lower levels of the I/O stack mature further, we plan 
on addressing efficient pre-staging of sub-partitions into the burst buffers on the IONs to 

boost the load-compute-unload cycle. 
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Figure 10.  The vertices will be re-labeled such that vertices within each partition are labeled 

contiguously. The relabeling step will speed up distributed updates in the computational kernel as well 
as loading of partitions and sub-partitions. 

 

 

Figure 11  A partition 𝐏𝐱which is too big to fit in memory, is further sliced into sub-partitions 
(𝐏𝐱,𝟎, 𝐏𝐱,𝟏, 𝐏𝐱,𝟐, 𝐏𝐱,𝟑) and loaded and processed in sliding-window style on a compute node.  



 

The information on this page is subject to the use and disclosure restrictions provided on the cover page to this document. Copyright 
2014, Intel Corporation.     

B599860-SS 12    30 June 2014 

1.4 Synthetic Datasets and Graphs 

In order to corner-test our pipeline we need a very large collection of benchmarking data sets. However, 

it is not easy to obtain quality data sets of very large sizes. Hence we will synthesize our data sets in two 

different ways. 

 Synthetic Raw data set:  By generating synthetic raw data sets, we will be able to explicitly 

test the performance of the ACG-ingress. Generating raw data is comprehensive, but quite 
time consuming as it requires the ingress to execute every time before running graph 

computation. 

 Synthetic Graphs: In order to directly execute the computational kernel (i.e., bypass the 

ingress) we will generate synthetic graphs that mimic real-life characteristics. 

1.4.1 Synthetic Raw Dataset Generation 

Figure 12 describes our methodology for generating synthetic raw data sets.  For a large class of graph 

analytics computation, the analysis algorithm assumes a probabilistic generative model (𝑀𝜃), where 𝜃  

refers to a set of parameters that determines the model numerically. The algorithm eventually estimates 

𝜃 by maximizing a likelihood function that best fits the problem.  In Figure 12, this function is captured 
in the conditional probability distribution ( 𝑃𝑟𝑜𝑏 (𝑋, 𝜃 | 𝑋)) subject to maximization over the parameter 

space. 

Once we run the graph analytics algorithms on a graph generated from real life data set and in the 
process recover the hidden parameter set (𝜽𝒎), we will run the generative model backward to generate 

synthetic data points that follow the distributions dictated by the parameter set 𝜃𝑚. This allows us to 

generate arbitrarily large data sets. We can slightly modify 𝜃𝑚 to generate variations of the original 

distributions in order to create benchmarks for corner-testing. 

 

 

Figure 12  Creation of a synthetic data set that mimics a real-life data set sample, but is much larger 

than the sample itself. A typical ACG computation in BDA setting often assumes a probabilistic 
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generative model and estimates the underlying parameters. To stress-test the ingress performance, we 

will run the generative model backward using the parameters extracted from the real-life sample, and 
synthesize much larger data-sets.  

 

1.4.2 Synthetic Power-Law Graph Generation 

We use the stochastic Kronecker graph generation method in [7] to synthesize large-scale power-law 
graphs. Figure 13 shows the building blocks for generating synthetic large-scale graphs. The power-law 

graph model will generate a seed power-law graph based on user inputs including alpha value and the 

size of the seed graph. Then, the stochastic Kronecker graph generator produces a large scale synthetic 

graph with graph properties close to those of the seed graph. 

Power-Law Graph
Modelα 

Stochastic Kronecker 
Graph Generator

seed graph size

Seed
Power-Law Graph

Large-Scale
Power-Law Graph synthetic 

graph size

 

Figure 13. Building blocks for synthetic graph generation. 

1.4.2.1 Power-Law Graph Model 

Power-law degree distribution can be found in many natural graphs. For example, Figure 14 shows the 

degree distribution of the bipartite graph for Wikipedia Topic Modeling  with the power-law degree 
distribution parameter α = 2.23. 

 

 

Figure 14. Power-law degree distribution of bipartite graph for Wikipedia topic modeling (α=2.23) [8]. 

To produce small power law seed graphs with tunable alpha, we use the mathematical model to produce 

power-law degree distribution. In the model, the probability of a vertex to have degree 𝑘 is defined as 
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𝑃(𝑘)~𝑘−𝛼. From the degree distribution, we will generate a random power-law graph which will be used 

as a seed graph for the Stochastic Kronecker graph generator. 

1.4.2.2 Stochastic Kronecker Graph Generator on Hadoop 

The Stochastic Kronecker graph generator is known to produce good power-law graphs and adopted by 

Graph500 benchmark to produce large-scale synthetic graph. The stochastic Kronecker graph generator 
uses a likelihood optimization method described in [7] to produce the following a 2-by-2 initiator matrix 

from the seed graph as follows: 

𝐊𝟏 = [𝑎 𝑏
𝑐 𝑑

] ,   0 ≤ 𝑎, 𝑏, 𝑐, 𝑑 ≤ 1 

Next, the stochastic Kronecker graph generator performs Kronecker multiplication on the initiator matrix 

until it reaches the desired size. Thus the n-th Kronecker product of initiator matrix forms the recursive 

multiplication, 

𝐊𝟐 = 𝐊𝟏  ⊗ 𝐊𝟏 =  [
𝑎 𝐊𝟏 𝑏 𝐊𝟏

𝑐 𝐊𝟏 𝑑 𝐊𝟏
], 

𝐊𝟑 = 𝐊𝟏  ⊗ 𝐊𝟐 =  [
𝑎 𝐊𝟐 𝑏 𝐊𝟐

𝑐 𝐊𝟐 𝑑 𝐊𝟐
], 

… 

𝐊𝒏 = 𝐊𝟏  ⊗ 𝐊𝒏−𝟏 =  [
𝑎 𝐊𝒏−𝟏 𝑏 𝐊𝒏−𝟏

𝑐 𝐊𝒏−𝟏 𝑑 𝐊𝒏−𝟏
]. 

The n-th Kronecker product is the probability matrix where each matrix element is the edge probability 

between a pair of vertices signified by row and column indices. We will use the Hadoop cluster  to 

parallelize stochastic Kronecker graph generation process. Since obtaining the n-th Kronecker product is 

embarrassingly parallel [9], parallelized graph generation using the Kronecker product is easily 
parallelized as well. 

1.5 Use Case: Topic Modeling 

This section may be moved to the next design documentation milestone. 

To test every step in our computational pipeline, we will run a large-scale probabilistic graphical 
modeling experiment, in which we conduct topic modeling on a large corpus of textual data. This 

experiment will provide three primary benefits. First, it will demonstrate that our system is able to carry 

out a real-world computation over a large-scale ACG. Second, it will provide us with initial benchmarks 

for the performance of our system on this particular problem, allowing us to further improve our topic 
modeling algorithms for scaling up to exascale computations. Finally, it will be a proof-of-concept to the 

high performance computing community that topic modeling can be conducted in an efficient way over 

an exascale data set. 

1.5.1 Data Set Selection & Acquisition 

We had several considerations in selecting our real-world data set. Of primary importance to us is size: 

the data set we use here must be big enough to test our graph partitioning algorithms and storage 

architecture—if we selected a corpus of a size that could fit in memory, it would hardly be a realistic test 

of our infrastructure. For the present experiment, we were only interested in using a document corpus 
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that exceeds 100 GB in size. A second consideration was accessibility: the data must be freely-available 

to the public, either under an open source licensure (e.g., Creative Commons). Finally, since we are 

pushing the boundaries of what has been done with topic modeling algorithms, it would be desirable if 
our data set had some inherent topic-like structure to it, which we could use to evaluate the accuracy of 

our algorithm. Along these lines, we wanted to avoid using a synthetic data set, as it would be easier to 

get an intuitive sense of the accuracy of our topic modeling algorithm if the data were not created via 

some statistical generative system. Taking all this into account, we narrowed the data sets we 
considered down to three: ClueWeb09-English, Google tri-grams, and MEDLINE (Table 1). 

Table 1. Descriptive statistics for the document corpora considered for use in the exascale topic 

modeling experiment. 

Data Set Open Source 
Uncompressed 

Size 
Number of 
Documents 

ClueWeb09-

English 
Yes 13.4 TB 5.03 𝑥 108 

Google tri-

gram 
Yes 218.1 GB 2.45 𝑥 1010 

MEDLINE Partially 
90 GB 

(estimated) 
2.25 𝑥 107 

 

Although it is sufficiently large, the content of the Google tri-gram data set is such that the results of 

any topic modeling studies are likely to be meaningless. The MEDLINE data set, which consists of every 

MEDLINE record on the National Library of Medicine’s PubMed search engine 
(http://www.ncbi.nlm.nih.gov/pubmed) is near the desired size, and contains documents that have been 

manually labeled with MeSH terms (Medical Subject Heading terms), which would allow us to easily 

assess the validity of our topic modeling results. However, the data set, though freely-available through 

the NLM’s search engine, is not available for single batch downloading. To obtain the MEDLINE corpus, 
we would have to access their search api through a custom Python script for downloading the data in 

chunks. Although such scripts have already been used in some of our previous research, the time it 

would take to download 22.5 million articles without violating the NLM’s access guidelines may be 

prohibitive. Thus, we selected the ClueWeb09-English data set for the present experiment. This corpus 

consists of the English language subset of ClueWeb09, a data collection consisting of the html of 
websites obtained from one year of web crawling by a group at Carnegie Mellon University. 13.4 TB of 

textual data will be an ambitious amount of data, but it will allow us to get a sense of the efficiency of 

our pipeline. One downside of the ClueWeb09-English is that there are no pre-existing topic labels 

associated with the documents it contains. To address this, we will use other methods of evaluating topic 
modeling algorithms, such as perplexity, and manual examination of the most-common words used in 

documents contained in the various topics identified by our approach. In addition, other researchers 

have already analyzed subsets of the ClueWeb09-English corpus, which we may be able to use to 

compare with our results. 

1.5.2 Topic Modeling Algorithm 

There are several approaches to topic modeling that are available to us, including k-means clustering, 

Latent Semantic Indexing (LSI), and Latent Dirichlet Allocation (LDA). For testing our pipeline, we opted 

http://www.ncbi.nlm.nih.gov/pubmed
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to use LDA. There were several reasons for this, the most prevalent of which was that LDA has already 

been implemented for graph data in the open source GraphLab software. 

1.5.3 Topic Modeling in the Medline Dataset 

Since the MeSH vocabulary has a natural hierarchical layout, organizing the documents in the Medline 

dataset according to the tags assigned to each was the obvious approach for organizing our data in the 

EFF stack. This also provided an intuitive data model for conducting topic-modeling experiments that 

would be of interest to biomedical informaticians. Take, for example, our version of the entire Medline 
data set. This collection of 25 million documents contains a mixture of publications on a variety of 

medically-relevant topics. While one certainly could run a topic-modeling algorithm over these data, the 

output wouldn’t be especially informative, as, one would expect, the output would be the broad topics 

comprising the biomedical literaturebase. More interesting is running topic modeling experiments on 
well-defined subsets of data already having a coherent topic. In Figure 15, for example, running a topic 

modeling experiment on the lower-level MeSH tags, like Arousal or Attention could reveal interesting 

findings about the literature comprising attention- or arousal-related research. Thus, we organized or 

hdf5 hierarchy to mirror this structure. Queries for a specific vertex returned both the document id/word 
id edge list for that point, as well as a subset of the global word dictionary for the entire dataset 

corresponding to the relevant documents. 
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Figure 15: Example path in the Medical Subject Heading (MeSH) hierarchy. Titles in the boxes are the 

human-readable names for the vertices depicted, while those colored blue denote the chosen path 
down the hierarchy. The top grey bar indicates increasing depth down the hierarchy, spanning from the 

root vertex to five levels down, while the corresponding numbers on the lower maroon bar indicate the 

number of unique documents contained in all possible vertices that are children of the level above. At 
the lowest level, the number in the red cloud indicates the number of documents having the Attention 

MeSH term alone. 

Final comments  
 In course of the project, we realized that we had real-life datasets to test the EFF stack to 

the extent that we wanted and address the design questions.  It was also realized that 

testing the analytics applications are more important than the graph-ingests. As a result, we 

did not pursue the generation of synthetic-datasets, and limited our synthesis process to 

graph synthesis only. 

 We also chose to divide graphs in partitions. We did not have time to implement out-of-core 

graph computing (which was not mandatory, but only a desirable requirement); as a result 

we have not tested graph computations with sub-partitions as out-lined above. However, 

our APIs in the HDF5-adaptation layer would support dividing graphs into sub-partitions. 
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