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Definitions 

 

The following is a list of definitions and terms that we use throughout the 

document. 

 

 Arbitrarily Connected Graph (ACG): A graph with arbitrary edge 

relationships. The graph may be a tree, bipartite, undirected, directed, or 

any number of types. In any case, it will not be complete. Many graphs that 

model natural structures and real-world phenomena are arbitrarily 
structured. Many of them are scale-free, and some exhibit small-world and 

clustering characteristics. 

 

 ACG Ingress: The process of constructing and loading an ACG into the 

exascale system. The ACG ingress process comprises the Big Data-ACG 

bridge in this research. The graph will be constructed by applying extract 

and transform rules to large unstructured and semi-structured datasets. 

 

 Computational Kernel: The application framework that supports the 

exascale structured machine learning and graph analytics. In this research, 

the computational kernel is based on GraphLab, an asynchronous distributed 

graph-parallel computational framework. GraphLab provides an in-memory 
data structure model, computational scheduling and synchronization, and a 

data consistency model. 

 

 

 Big Data Analytics (BDA): Big data analytics is the process of discovering 

latent patterns, understanding unknown correlations, or extracting 

meaningful information from data sets of which size and complexity are 

beyond the ability of traditional database management or data processing 

applications to process [1]. Some examples of big data include traffic 

sensory data (e.g., climate, traffic, etc.), stock and commercial transactions, 

social interaction data, and digitalized media (e.g., pictures and videos). 

 

 Big Data Graph: An ACG with associated “network information” derived 
from a Big Data corpus. The network information is largely comprised of 

arbitrarily-typed vertex and edge data. 

 

 Gather, Apply, Scatter (GAS) model of computation: The vertex-

programming model defined by GraphLab (see 

http://graphlab.org/home/abstraction). A large number of vertex programs 

can be decomposed into Gather, Apply, and Scatter phases. In the Gather 

phase, the vertex program collects intermediate updates from neighboring 

vertex programs. During the Apply phase, it merges them with its own and 

http://graphlab.org/home/abstraction


updates variables. Finally, updates are asynchronously sent out to 

neighboring vertices during the Scatter phase. 

 

 Giant Component: A giant component in a graph is a connected 

component that contains a constant fraction of the entire graph's vertices 

(http://en.wikipedia.org/wiki/Giant_component). Random and scale-free 

graphs tend to have giant components and their existence is important in 
proving many properties (such as stochastic convergence in percolation 

theory) about large graphs that are crucial to the success of many 

algorithms. 

 

 Large Scale Machine Learning (LSML): Machine Learning (ML), a branch 

of artificial intelligence, is about the construction and study of systems that 

can learn from data [2]. LSML refers to the scaling of machine learning 

algorithms to a compute cluster using parallel or distributed approaches. 

 

 Network Information: Arbitrarily-typed data structures associated with 

vertices and edges. 

 
 Sub-Partition: A graph-partition is typically represented as an ordered list 

(adjacency lists, edge lists etc.). A sub-partition is the further division of a 

partition into smaller portion. When a partition is too large for memory or 

thread processing, it may be divided into sub-partitions.  

 Real-World Graphs: Graphs that represent relationships that arise from 

real world datasets. 

 

 Synthetic Graphs: Graphs that are artificially generated by human or 

computer. 

 

 Vertex Program: The execution thread that performs the vertex-based 

algorithm and GAS operation. Vertex programs are executed in parallel on 

each vertex and can interact with neighboring vertices 
(http://graphlab.org/home/abstraction/). 

 

 

 

 

 

 

  

 

http://en.wikipedia.org/wiki/Giant_component
http://graphlab.org/home/abstraction/
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1 Introduction 

1.1 ACG Applications for Exascale 

The goal of this work is to investigate ACG-based Large-Scale Machine Learning 

(LSML) and graph analytics applications for exascale. In particular, we are 

interested in how such applications perform on the exascale storage and I/O 

subsystem under development and how they can best utilize the new architecture. 
ACG structures arise in many important contexts, including social network graphs 

[3, 4], topological maps of the internet [5], hyper-linked structures of the web [6], 

email networks [7], and the organization of human language [8]. These 

application contexts are assuming increasing importance in several fields, ranging 

from commercial space [9] to health and life-sciences [10] to national security 

[11].  

 

ACG-based problems generate computational and I/O workloads that differ from 

those generated by the traditional Bulk Synchronous Processing (BSP)-type 

algorithms that are commonly used in high-performance computing. Although such 

ACG applications have been widely deployed and studied on commercial off-the-

shelf systems, their deployment on supercomputers remains limited. In this 
proposal, we will investigate the suitability of the proposed storage and I/O 

subsystem for several applications involving ACG data models. Our observations 

will provide valuable feedback to the exascale storage and I/O architects, as well 

as to researchers of algorithms and computational models in both Big Data and 

HPC. 

 

1.2 Arbitrarily Connected Graph-Related Challenges in Big Data and 

Large-Scale Machine Learning  

Systems that perform well on algorithms that operate on random and complete 

graph structures often show performance degradation when applied to the ACG-

like structures that appear in many real-world problems because these graphs 

follow power-law degree distributions.  Power-law graphs do not lend themselves 

to straightforward partitioning, since there are no clean cuts [9, 10], and poor 
partitioning quality leads to increased network communications and imbalances in 

compute and memory utilization. And, even if the partitioning quality is high and 

resource utilization balanced, the rate of iteration for each vertex program varies 

significantly and suffers from significant slowdown when implemented with BSP 

since most programs spend a large amount of time waiting for stragglers at 

synchronization boundaries. We believe these challenges can be overcome by 

extending the current algorithms for power-law graph partitioning in GraphBuilder 

to the ACG ingress process and by adapting GraphLab’s asynchronous parallel 
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execution model [11, 12] to exascale and extending it to take advantage of data 

synchronization and consistency features of the storage and I/O subsystem. 

 

We also believe that current HPC graph benchmarks, such as Graph500 [13], do 
not adequately capture the challenges associated with Big Data Graph ingress 

processing and Large-Scale Machine Learning. Although these benchmarks can 

generate ACGs, they do not specify power-law graphs and ignore the challenges 

associated with attached network information.  Additionally, the benchmarks do 

not include any popular machine learning algorithms. But we believe that our 

development of a synthetic Big Data graph generator and several applications that 

incorporate the latest LSML algorithms will serve as a means to realistically 

benchmark the Big Data-HPC bridge ingress process and run-time storage and I/O 

performance. 

1.3 Interfacing to existing libraries with the exascale stack 

To maximize productivity, we plan to use the latest version of GraphLab, a 

computational kernel that provides many of the services we need 
(http://graphlab.org), such as asynchronous execution, graph data structure 

representation, data consistency, function updates, and synchronization. GraphLab 

requires its input to be in the form of a graph with associated network information. 

We will construct the graph in the ACG ingress process using GraphBuilder [14], a 

scalable graph construction library for Apache Hadoop capable of performing 

extract-transform-load-style preprocessing of semi-structured data. GraphBuilder 

will also partition the graph for exascale parallelization.  To enable GraphLab and 

GraphBuilder to run on top of the exascale storage and I/O stack, we will 

prototype a new scalable HDF5 adaptation layer (HAL). Using HDF5 for data 

representation, our computational kernel will enable the I/O dispatcher to 

efficiently distribute ACGs and their partitions across storage servers. We 

anticipate such partitioning will result in efficient I/O streaming and pre-staging 

into NVRAM on IO nodes (IONs). 

 

http://graphlab.org/
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2 Solution Requirements  

We plan to modify available open source software for the computational kernel and 

the ACG-ingress process. The software must be modified to take maximum 

advantage of the proposed exascale storage and I/O subsystem.  We must also 

develop several test applications that will exercise the Big Data-HPC bridge and 

storage and I/O subsystem. Finally, we must develop a synthetic Big Data graph 
generator that will allow us to study the capabilities of the system under a range 

of realistic loads. 

2.1 HDF5 Adaptation Layer (HAL) for Graph Representation 

2.1.1 [Mandatory] HAL must translate commonly-used graph 

representations into the HDF5 data model  

The computational framework and ingress process that we plan to use do not 

currently support HDF5. To address this, we must build an HDF5 adaptation layer 

(HAL) for translating graph structures to and from HDF5 representation into 

formats useable by the computational kernel. The HAL will use proposed 

extensions to HDF5 such as support for transactions, and will inform extensions in 

other areas so that ACGs can be represented effectively as HDF5 objects with 

usage hints that allow for high-performance storage and retrieval of the ACG 
vertex, edge, and network information.  

 

2.1.2  [Desirable] HAL must support conversion between different graph 

representations 

Depending on application needs, the HAL may provide a means of changing the 

graph’s storage representation from edge list to adjacency list and from adjacency 

list to adjacency matrix, and so on. 

2.1.3  [Mandatory] HAL must associate additional network information 

with vertices and edges 

In addition to information pertaining to topology or connectivity, our applications 

require that network information be attached to the graph. We must represent 

such data in HDF5, and maintain associations with the underlying graphs using the 

current or expanded HDF5 data types that will be provided in the HDF5 APIs. 

2.2  [Mandatory] Big Data-HPC Bridge for ACG Ingress 

There are two primary requirements for this component. First, it must have the 

ability to parse and extract graph structures and key network information from 

unstructured or semi-structured datasets. Second, it must represent, store, and 

partition these graphs into efficient HDF5 structures that can be used by LSML and 

BDA algorithms. 
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2.3 Computational Kernel for ACG Applications 

This layer must provide systems-level abstraction (i.e., application framework) for 

LSML and BDA algorithms. It must include an in-memory data schema, and 

primitives for asynchronous updates, distributed shared objects manipulation, 
computational scheduling, and data synchronization. Additionally, the kernel must 

interface with the exascale storage and I/O subsystem.  

2.3.1  [Mandatory] Computational kernel must support asynchronous 

vertex updates 

ACG-based applications need frequent updates between compute nodes; these 

must be done asynchronously, else faster vertex programs will often block on the 

slower ones (the power-law degree distribution of the ACGs can create such 

imbalance).  

2.3.2 [Desirable] Computational kernel may use the  data sharing features 

exposed through HDF5 for efficient data sharing 

Our computational kernel already provides data consistency and signaling 

primitives, but we may explore additional data-sharing features provided by the 
I/O stack. For example, a commonly encountered scenario is that a set of 

processes, not necessarily running on different nodes, are trying to access a 

shared data-object, such as a table of global variables in a somewhat restricted 

manner – the parallel updates do not overlap, i.e., done on independent variables 

(but part of a single larger object) while the processes reading data may want to 

read the entire object in a consistent manner. Typically this can happen in memory, 

but at exascale, the updates may be forced to take place out-of-core, and HAL 

should efficiently use HDF layer to support such concurrency. 

2.3.3 [Desirable] The computational kernel may support the run-time 

loading of portions of graph partitions that do not fit into compute 

node memory 

Some graph structures and network information may not fit entirely into compute 

node memory. In these cases, the graph partitions may be partially loaded as a 
sub-partition. The computational kernel would need to schedule the cascade of 

load-compute-unload operations and the resultant I/O. Whenever possible, the 

kernel would make use of efficient indexing of sub-partitions, bundle multiple 

output I/O streams, and optimize the sequence of transactions. 

2.3.4 [Desirable] The computational kernel may generate hints for data 

usages that enable efficient prefetching and caching 

Many graph-based computations will need to access graph objects randomly, while 

some will exhibit temporal and/or spatial locality. This is, in part, a function of the 

computational algorithm. These patterns will become recognizable over the course 
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of our studies, and may be used to generate appropriate prefetching and caching 

hints for the HDF5 and IOD layers, resulting in higher effective I/O throughput. 

2.3.5  [Desirable] The computational kernel may utilize the HDF5 analysis 

shipper 

Rather than bringing relatively large ACG and/or network information from storage 

to a compute node, the kernel may use the HDF5 extension APIs to ship out the 

appropriate script to be executed on I/O nodes or storage servers and wait for the 

result. 

2.3.6  [Desirable] Additional investigations 

We may pursue the following additional investigations, if time permits: 

 New algorithms for exascale power-law graph partitioning 

 New compute scheduling engines that are better able to take advantage of 

the storage and I/O subsystem 

 Use transactional I/O to prevent write-write races between adjacent update 

functions which are modifying the data within a vertex and scheduling future 

execution on other vertices. 
 Bundling multiple updates into a single transaction for performance 

improvement 

 New graph storage data representations 

 

2.4 [Mandatory] Application testing 

We must investigate the suitability of the exascale storage and I/O stack for LSML 

and BDA applications involving ACGs. To this end, we must work with real world 

problems such as cancer-related genetic biomarkers, textual topic analysis, and 

fraud detection in social networks. 

2.5 Graph Generator for Synthetic Benchmarking 

The graph generator must produce synthetic ACGs and network information from 

Big Data datasets that are suitable for benchmarking the exascale storage and I/O 

subsystem. 

2.5.1 [Mandatory] The graph generator must store synthesized graphs 

using the HDF5 data model 

The graph generator must use HAL APIs to store synthesized real world graphs 

and network information using the HDF5 data model. 
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2.5.2 [Mandatory] The graph generator must produce synthetic large-

scale ACGs that have similar statistical properties to the 

corresponding real-world seed graphs 

The graph generator must produce synthetic graphs based on the topological and 
statistical properties of real-world seed graphs. These seed graphs must be 

derived from Big Data datasets using the ACG ingress process. 

2.5.3 [Mandatory] The graph generator must construct graphs using 

Hadoop MapReduce software and commercial-off-the-shelf hardware 

The synthetic graph generator must construct graphs using a system that 

represents a conventional Big Data Analytics cluster computing system. It is a 

non-goal to research graph construction using the exascale architecture. Rather, 

graphs must be constructed on COTS systems and the output loaded into the 

exascale storage and I/O subsystem. 

2.5.4  [Mandatory] The graph generator must attach representative 

network information to the synthesized graphs 

The graph generator must be able to attach network information with 
representative real-world statistics (e.g., size distribution and type) to synthesized 

graphs using the HAL APIs. This network information may be synthesized from 

seed Big Data datasets. This requirement ensures that we will be able to 

realistically and exhaustively benchmark exascale storage and I/O load 

performance. 

2.5.5  [Desirable] Run-time synthetic benchmarking 

We may develop synthetic graphs and network information that are suitable for 

run-time benchmarking of the exascale storage and I/O subsystem. This would 

require that the synthesized information be appropriate for one or more of the 

structured machine learning or graph analytics algorithms that we develop.  We 

would evaluate: 

 Execution time for graph computation  

 Run-time use of the storage and I/O subsystem for graph scheduling 
 Memory used by a compute node during graph computation (to observe how 

the storage and I/O subsystem lowers the footprint) 
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3 Use Cases 

3.1 Choice of applications 

Our applications use algorithms that perform asynchronous local updates on ACGs 

and iterate to convergence.  Key graph-based machine learning and graph 

analytics algorithms may be broken down into the following categories: 

 Clustering and Classification   
 Collaborative Filtering 

 Graphical Models 

 Graph Analytics 

 

We have selected applications that will utilize algorithms derived from two or more 

of these categories and that rely on Big Data datasets and may benefit from 

exascale supercomputers and the storage and I/O subsystem under study. These 

applications are: 

 De novo identification of pathways in cancer progression 

 Hidden topic analysis from large unstructured data corpuses 

 Fraud and anomaly detection from text documents 

 
The nature of the Big Data and HPC processing required for the above applications 

varies substantially from one to another. For example, the de novo pathways use-

case involves making inferences based on graph-based search and optimization. 

The text mining application runs probabilistic sampling over a graphical model and 

involves key-value indexing operations. Our third application involves computing 

various neighborhood properties, and, possibly, spectral coordinates. We believe 

these applications represent potential future DOE target applications and will 

permit us to study the load and run-time performance of the exascale storage and 

I/O stack while motivating Big Data-HPC bridge usage models. 

3.2 Canon: an application for the de novo identification of biological 

pathways in cancer progression 

The process of making new discoveries in the molecular biology of cancer requires 

advanced computational modeling techniques which take into account the 
relationships between different stages in protein expression—from genome copy 

number variation, to gene expression, to its activity and final products. Despite 

advancements, the continued progression of the field is limited by two important 

factors: the quality of curated literature-bases, and limited computational 

resources. Resources made available from groups like the National Cancer 

Institute (NCI), the National Center for Biotechnology and Information (NCBI), and 

The Cancer Genome Atlas (TCGA) make it possible to use factor analytic-type 

methods to construct statistical models of changes in the information flow of 

cancer genomes, and their relationships to certain outcome variables, like cancer 
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progression, or therapeutic response to certain drug treatments. Although such 

models have been effective, they are fundamentally limited by computational 

resources and the accuracy of the literature-base upon which they are curated. 

Ideally, computational models would only require the specific entities described in 
such databases (e.g., genes, proteins, etc.), rather than the entities and the 

relationships between them. This is not, however, feasible at this time, due to the 

second factor limiting the advancement of our knowledge of cancer cell biology—

computational power. The absence of the above-described relational assumptions 

was recently proposed as desirable, yet computationally intractable in a recent 

publication [15]. 

 

Figure 1 depicts a simplified sub-pathway that results in the inhibition of 

apoptosis. At a macro level (left), MDM2 inhibits TP53, which increase apoptotic 

activity. These high-level, literature-curated relationships are a macrocosm of a 

series of known biological pathways describing the relationships between DNA, 

mRNA, Protein, and methylated (activated) protein (right). A simplifying  
assumption that has been a part of previous modeling approaches, such as 

PARADIGM [15], has been the high-level inhibitory/excitatory relationships 

depicted on the left-hand side of Figure 1. Considering that there are three 

possible relationships between two entities (inhibition, excitation, and no 

relationship), and that there are on the order of 5000 entities in the model space, 

the problem size suffers a quick combinatorial explosion; even the ideas of careful 

pruning remain beyond the computers commonly available to biologists. 

 

 

 
Figure 1. Simplified biological sub-pathway resulting in the inhibition of apoptosis (cell death), and 

depicting certain relationships assumed from the Vaske et al., 2010 approach to modeling. 

Connections between the MDM2 “Active Protein” and the TP53 mRNA translating to “Protein” are 
both relationships that have been assumed from the curated literature. Other relationships (e.g., 

DNA to mRNA) are not a part of these assumptions, but they are part of the biological canon. 
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The primary goal of the proposed application is to re-engineer the PARADIGM 

algorithm to make no assumptions about the inhibitory/excitatory relationships 

between entities in biological pathways. This is an exciting, biologically-relevant, 
exascale problem that can only be approached using the presently-described 

architecture. We will explore, with appropriate branch-and-bound guidelines, the 

vast configuration space of the combinations of relationships between entities 

(including, for modeling purposes, an “Anonymous” entity, to signify an as-yet-

unknown node in the pathway), distribute them over our exascale test bed, and 

use structured (graph-based) analogues of optimization algorithms (e.g., 

Structured Expectation Maximization, or CO-EM) to search the graph space for the 

pathway(s) that best explain(s) observed data regarding cancer outcomes, such as 

therapeutic responses, and rate of disease progression. We call the system Canon, 

because a side-effect of our approach will be the ability to statistically validate the 

curated literature, in terms of inhibitory/excitatory relationships between biological 

entities in the cancer cell. If a previously-reported relationship is also included in a 
model geared toward finding the statistically best-possible pathway in a system, 

then it is even more likely to be real, rather than an experimental anomaly; it is 

canon. 

 

As a first step, we propose to independently implement the PARADIGM algorithm 

described by Vaske and colleagues [15], and cast it into a graph representation. 

This problem on its own, while difficult, does not necessitate exascale-capable 

systems. It will, however, give us the opportunity to verify the handling of 

networked data by our system against an already-established algorithm. Once we 

are able to verify our results for this, we will remove the assumptions regarding 

the inhibitory/excitatory relationships between nodes in the macro-scale biological 

pathways, and directly engage the exascale formulation of this problem.  

 
Our approach will demonstrate significant advances to both the ML and 

bioinformatics research communities. In terms of ML, our system will show how 

graph-parallel ML algorithms can be used on real-world exascale data to solve 

problems that would not be tractable without representing the data structures 

involved as ACGs, and running the optimization algorithms over an asynchronous 

computational kernel with access to the proposed I/O subsystem. For the 

bioinformatics community, we show that extending a state-of-the-art cancer 

genomics algorithm to perform in an assumption-agnostic manner can lead to 

novel results. We are confident in this because there are two possible outcomes to 

our experiments. One possibility is that our system will be able to discover 

previously-unknown relationships between information contained in the breast 

cancer genome and therapeutic outcomes. The other possibility is that our system 
shows that the previous formulations of the probabilistic graphical model-based 

approach were sufficiently accurate, despite the simplifying assumptions they 
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needed to make. This would be a valuable, publication-worthy result for the 

bioinformatics community, as it would constitute quantitative evidence that their 

simplifying assumptions did not change the results of their experiments, the 

practical upshot of which would be that not every lab would need to invest in a 
high performance computing system. 

 

Aside from its importance to the bioinformatics and cancer biology communities, 

this problem will be able to uniquely test the scalability of the optimization 

algorithms we adapt for exascale searches over the graph-space for the path that 

maximizes the likelihood of the outcome-level observations. Expectation 

Maximization (EM), for example, is a commonly-used algorithm for finding the 

maximum likelihood estimates of the parameters in a statistical model, when that 

model involves unobserved, or latent, variables, as ours does in the above-

described use case. This is a situation that is frequently encountered in the 

machine learning community, so observing how structured variants of this 

approach (e.g., Structured EM, CO-EM) scale to our architecture will be important 
for other use cases that end users may encounter in the future. An important 

contribution of our approach will be methods for handling exascale, distributed 

data. Although any particular network will easily fit in memory, the collection of all 

possible networks will need to be distributed amongst computing nodes in such a 

way that our ML algorithms can efficiently mine their data and will rely on an 

object-based storage architecture. 

3.3 Topic modeling with Latent Dirichlet Allocation 

Enabling a computer to understand and draw inferences from textual data has a 

variety of useful applications. This was demonstrated on a small scale in 2010 

when Watson, a supercomputer from IBM based on a complex AI architecture 

known as DeepQA, defeated the then-undefeated jeopardy champions on the 

national television. Amongst the wide range of applications for an exascale 

supercomputer is the possibility of a sophisticated text mining aid for researchers 
(especially in medicine and bioinformatics) that are in constant need of searching 

through vast unstructured corpora. 

 

The complex architecture of a text mining system, such as that of DeepQA, 

typically comprises a sequence of functional modules [16]. Since its raw input is 

always unstructured or semi-structured, any such sequence begins with modules 

that can parse and extract different structures out of such a corpus. Topic 

modeling is one such application, used for discovering topics latent inside a 

document collection, which is sometimes a useful tool at the start of a multi-stage 

text-mining workflow.  

 

Topic modeling may be performed using a graph-based representation of text, and 
then running modern statistical algorithms, such as Latent Dirichlet Allocation 
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(LDA) over the corresponding graphical model. Such a graph can be prohibitively 

large (Modeling) [17] since its size is typically a low-degree polynomial of the size 

of its raw input. For example, MEDLINE, the bibliographic database maintained by 

the U.S. National Library of Medicine (NLM) for references to journal articles in the 
health sciences, contains over 19 million references at present [18]. The website 

estimates that a new reference gets added to this database every two minutes. 

Similarly, the corpora of scholarly medical texts across the world libraries is 

estimated to have trillions of pages of texts, and the researchers in medicine and 

bioinformatics are increasingly interested in text mining-based solutions for 

extracting higher-order meaningful information (e.g., relating a specific genetic 

polymorphism to a disease) from that massive corpus [19]. Over a corpus of that 

size and a realistic set of few hundred thousand possible topics, a bipartite graph 

has  (    ) edges and even a linear algorithm on that input involves many 
sextillions— (    )—of operations. Topic modeling has many other potential 

applications. For example, identifying and flagging on evolving topics could form 

the basis of an email-network monitoring system in the context of anti-terrorism.  

 

We propose to use LDA-based topic modeling as our second use case.  

For the dataset, we will use publicly-available resources (e.g., the Wikipedia 

corpus), and, if needed, scale them up to sizes suitable for the storage and I/O 

subsystem demonstration. We will pre-process the dataset using the ACG ingress 

process and extract the underlying graphical structures with associated network 
information. The generated graphs will be partitioned and loaded into the exascale 

storage and I/O subsystem from a Hadoop MapReduce cluster. We will implement 

a statistical sampling algorithm for extracting the latent topics on the system 

under test. There are multiple candidate algorithms to choose from. As a starting 

point, we will experiment with a variant of Gibbs sampling that is based on 

Markov-chain Monte Carlo principle. The sampling techniques assume that there is 

a Dirichlet prior distribution latent in how the topics are embedded in the 

documents. This is a powerful and widely-used modern approach, and we are 

interested in studying its object access patterns and storage requirements. 

3.4 Fraud and anomaly detection from text documents 

Fraud and anomaly detection is needed in a variety of contexts, including social 

networks, online business, national security, airline safety, and network security. 

Many organizations, both government and private, are interested in mining 
information about threat, anomaly, and dishonesty. For example,  

 

 Online service providers (and their consumers) are showing interest in 

isolating illegitimate users  [20] whose malicious activities include spamming, 

propagating malware, creating biased product reviews and other forms of 

social engineering-type attacks. 
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 Large organizations, and the proprietors of P2P networks want to detect and 

isolate infiltrating botnets that can launch different kinds of attacks, such as 

distributed denial of service, spamming, phishing, or other criminal attacks 

[21]. 
 NASA’s aviation safety program is interested in quickly isolating safety 

violations by analyzing anomalies and outliers from various available data 

sources, such as maintenance logs, air traffic reports, reports from airline 

personnel, and even aircraft black boxes [22]. 

 Various large organizations are interested in identifying different threats, 

such as malicious financial transactions, intellectual property-theft, and are 

turning to automated tools to help carry out these tasks [23]. Similarly, the 

Department of Homeland Security has been using data mining tools to catch 

biological threats [22]. 

 

We will run a set of anomaly detection algorithms, such as those proposed in  

[24] or [25]  that are useful for detecting biased reviews in online marketplaces 
or for detecting frauds. Today, the size of graphs that arise out of such 

networks easily scale up to quadrillions [26, 25]. For the data, we will choose 

from publicly-available datasets, such as the Common Crawl Corpus or Material 

Safety Data Sheets located at http://aws.amazon.com/datasets, and scale 

them appropriately for the prototype hardware or generate artificial datasets of 

our own using the proposed graph generator. We will investigate subsets of 

vertices in the resultant graphs that have anomalous connectivity structures. 

These anomalies may not be readily observed to the naked eye – as would in- 

or out-degree patterns – but may stand out in subtle ways, such as in spectral 

coordinates. Our studies will reveal how these types of computations exercise 

the storage and I/O stack. 

 

3.5 Synthetic Benchmarking of Load and Run-Time Performance 

The benchmarking of the exascale storage and I/O subsystem requires algorithms 

and ACGs that will utilize and stress its new object-based features. Generally 

speaking, obtaining real-world data that is sufficiently large and complex enough 

for testing an exascale supercomputer is challenging. And, it is particularly difficult 

to find datasets that are suitable for extensive performance characterization of a 

system. We aim to address this challenge by generating large-scale synthetic 

graph structures and network information that we can statistically control for 

performance sweeps and corners testing. We believe that a synthetic graph 

generator will allow us to benchmark the storage and I/O subsystem more 

completely, and detect performance bottlenecks faster, than real-world datasets 

and applications will allow. We will investigate techniques for synthesizing ACGs 

that emulate graphs arising from real-world Big Data problems. Our goal is to 
synthesize ACGs with the topological and statistical properties that reflect those of 

http://aws.amazon.com/datasets
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real world graphs (for example, power law degree distribution, preferential 

attachment, small diameter, short average path length, community structures, 

and size scalability) [27, 28]. For real world graph models, we are interested in 

power-law graphs, in which the degree distribution is characterized by a rapidly-
decaying power-law tail. Recent work has confirmed that the power-law graph 

model effectively captures the aforementioned properties of real-world networks 

[29]. 

 

We will use an extension of the Kronecker multiplication method proposed by 

Leskovec et al. to generate graphs [30]. Leskovec showed that the Kronecker 

graph generation algorithm can synthesize large graphs with similar topological 

and statistical properties to small seed graphs. The Kronecker graph generation 

algorithm has been adopted by the Graph500, the data-intensive supercomputing 

benchmark project. We will extend this work by (1) introducing the stochastic 

Kronecker graph generation algorithm and (2) investigating whether stochastic 

Kronecker graphs can scale up to exascale. These synthetic graphs will be 
partitioned into multiple graph components for efficient computation. In addition, 

we will next investigate synthesizing large quantities of network information from 

smaller Big Data sources and associating it with synthesized graphs. Finally, BDA 

or LSML applications will execute graph computations over the synthetic data 

graphs in carefully-controlled I/O benchmarking experiments. 
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4 Solution Proposal 

Our primary objective is to evaluate the load and run-time performance of the 

exascale storage and I/O stack for LSML and BDA workloads. In this section, we 

describe the solution architecture for the ACG ingress process, the computational 

kernel that will exercise the subsystem at run-time, our proposed test 

applications, and a synthetic benchmark.  We propose to use GraphBuilder open 
source software as the basis for the ACG ingress process and GraphLab as the 

basis for the computational kernel.  Both will need to be adapted to the HDF5 API. 

 

For GraphBuilder, we will need to: 

 Obtain and develop new input datasets 

 Write new parsing and extraction programs 

 Add new features and capabilities to the library 

 Explore new graph partitioning algorithms 

 Adapt its output to the HDF5 data model by using current or expanded HDF5 

data types that will be provided in the HDF5 APIs 

 

For GraphLab, we will need to: 
 Write new vertex programs 

 Add new features and capabilities to the application framework 

 Develop a run-time storage architecture that uses the current or expanded 

HDF5 data types that will be provided in the HDF5 APIs  

 Modify the computational kernel to try offloading some of the data 

consistency, synchronization, and function update mechanisms to the 

exascale storage and I/O subsystem 

4.1 Background 

4.1.1 GraphBuilder and GraphLab 

 

GraphBuilder: GraphBuilder, developed at Intel Labs [14] is an open source 

(Apache 2.0) scalable graph construction library for Hadoop MapReduce that 

provides a simple Java library with algorithms for parallel graph construction, 

transformation, and verification (Figure 2). The self-describing JSON output is 
suitable for large-scale graph mining. Today, GraphBuilder stores output graphs to 

the Hadoop Distributed File System (HDFS). GraphBuilder may also partition and 

serialize large-scale graphs for use by GraphLab (see below) and other parallel ML 

frameworks. Today, each graph partition is stored as a separate file in HDFS. We 

will use this library as the ACG ingress process for creating graph structures with 

associated network information out of large unstructured datasets. 
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Figure 2. GraphBuilder software stack 

 

GraphLab:  GraphLab is a scalable parallel ML framework, developed at Carnegie 

Melon and University of Washington [11, 12]; it has been released as an open 
source software library under Apache 2.0 licensing. GraphLab encapsulates a set 

of salient systems-level features that are repeatedly used by many parallel 

algorithms in ML and data mining. It has four major architectural ingredients:  

 Graph representation and ability to send (and receive) asynchronous 

updates 

 Shareable data-table for global objects 

 A scheduling feature that allows users to sequence graph-based operations 

 Synchronization primitives that let users specify different degrees of data 

consistency 

 

GraphLab implements a Gather-Apply-Scatter (GAS) computational model to 

distribute intermediate updates asynchronously between independent vertex 

programs.  GraphLab’s features make it a convenient high-performance 

computational kernel for LSML and BDA algorithms and applications. 

 

Figure 3 depicts GraphBuilder and GraphLab in the context of Big Data-HPC bridge. 

The software libraries will communicate with the exascale storage and I/O 

subsystem using the HAL. We will use HDF5 to access stored graphs and network 

information, for efficient data-synchronization and buffering, and for pushing more 
advanced data transformation programs to the storage and I/O subsystem.  
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Figure 3. Big Data-HPC bridge software stack. 

4.2 Develop HDF5 adaptation layer for Graph Representation 

We will use an HDF5 pointer data type (co-developed with other members of this 

project) to efficiently translate representations of the graph data to and from 

HDF5.  An HDF5 Abstraction Layer will be used to store both graphs and 

associated network information. We will also investigate non-pointer graph 

representations, such as matrices and tensors and optimal techniques for 

conversion between these different formats, and seek the best structures and 

methods for storing graphical information. In addition to representation, we will 

also experiment with data structures to best utilize the HDF5 datasets and meta-

data for to minimize communication over the I/O stack. In summary, this layer will 

satisfy the requirements outlined in Requirement 2.1. 

4.3 Adapt and extend capabilities for ACG ingress  

In order to meet Requirement 2.2, i.e., the ACG ingress process, we will modify 

the GraphBuilder library. Here, the mandatory change is replacing its output 

storage interface based on JSON/HDFS with calls to the HAL that will expose the 

exascale storage and I/O stack to these libraries.  

 

We will add an extension module to GraphBuilder that will convert the standard 

output graph format (e.g., in adjacency list format) to the HDF5-based 

representation outlined in Section 4.2. The changes will be made to incorporate 

both the underlying graph, as well as the associated network information. We will 

also consider additional improvements to this library, such as advanced 

partitioning strategies, discussed in Section 4.5. 
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4.4 Develop or extend the capabilities of the computational kernel 

4.4.1 Use or extend asynchronous I/O communication  

GraphLab’s vertex programs update each other asynchronously using compute-

compute network communications. We will use this as a baseline to satisfy 
Requirement 2.3.1. We will investigate if there is any advantage to sharing vertex 

and/or edge updates through new mechanisms provided by the exascale storage 

and I/O architecture subsystem. 

 

4.4.2  Use or extend data sharing feature 

Data sharing is an important aspect of our computational kernel (see Requirement 

2.3.2), and GraphLab already provides this feature. As baseline, we will use this 

built-in support. However, we will investigate whether there is any advantage to 

sharing data structures through new mechanisms provided by the exascale 

storage and I/O subsystem. 

4.4.3 Efficient representation of graph partitions and sub-partitions in 

HDF5 data model  

We will work with members of other subteams to develop a representation of 

graph partitions and sub-partitions for HDF5. A means of representing partitions 

so that the updates, the merging of components and meta-data modifications do 

not generate significant overhead, is an open research question. We propose to 

experiment with different graphs to examine how partitions can be best 

represented and indexed. 

4.4.4  Use of analysis shipper 

In response to Requirement 2.3.5, we will investigate the use of the analysis 

shipper to improve execution efficiency and lower I/O throughput demand by 

selectively shipping analyses closer to where data is warehoused via the analysis 

shipper. Our initial plan is to investigate using the analysis shipper for feature 

extraction, subgraph retrieval, and simple data transforms with large input to 

output information ratios. However, this investigation is conditioned upon the 
feasibility of invoking the analysis shipper on-demand from a compute-node. 

4.4.5 Indexing and prefetching of graph sub-partitions 

In response to Requirement 2.3.3 and in conjunction with the indexing feature to 

be implemented in the HDF5 adaptation layer, we will implement a sequencing 

feature to efficiently schedule and access subsets of HDF5 objects (such as graph 

sub-partitions) at run time. This will mimic the parallel sliding window style of 

processing used by other researchers [31] for handling multiple partitions on a 

single node. We expect significant performance improvement by pre-sequencing 

such fetches in conjunction with efficient indexing. 
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4.4.6 Advanced streamlining of data access through data usage hints 

For situations outlined in Section 2.3.4, we will create APIs in the HAL to call HDF5 

APIs with appropriate parameters signaling data usage hints. The HDF5 library will 

take these hints and implement appropriate mechanisms to influence the behavior 
of the lower levels in the stack. These operations, although hidden from the 

application, will improve their I/O efficiency by streamlining their data access 

during the load-compute-unload cycle. We expect to uncover data-usage patterns 

as our experiments progress. If we cannot identify such static or predictable data-

usage patterns then we will not support this feature.  

4.4.7 Use of transactional I/O 

Although the computational kernel already provides consistency mechanisms to 

prevent write-write races, we may investigate using the transactional I/O feature 

(Requirement 2.3.6) for this purpose. Race prevention may be necessary to 

ensure algorithmic correctness and rapid convergence. 

4.4.8 Bundling in burst buffers 

When a compute node generates a large number of parallel asynchronous updates 
(Requirement 2.3.6) in a relatively short period of time, we may attempt to lower 

the number of I/O operations by bundling independent transactions together and 

holding them at the burst buffer before flushing (via the HDF5 API) them to 

storage. 

 

4.5 Algorithmic questions and extension modules for GraphBuilder and 

GraphLab 

4.5.1 Graph partitioning for Big Data graph computations 

Improving the quality of vertex cuts through a graph lowers the number of data 

dependencies between partitions and minimizes network communications.  At the 

same time, the compute effort must be load balanced by place approximately the 

same number of edges on each compute node. In our solution, we will start with 

GraphBuilder’s existing partitioning heuristics, i.e., random partitioning and an 
oblivious greedy algorithm. We may investigate implementing new partitioning 

strategies in GraphBuilder, especially adaptive ones. For example, we will 

investigate how we can best leverage near linear-time crude-partitioning 

strategies for ACG applications; these techniques are otherwise known to produce 

good results [32] but to the best of our knowledge, have not been applied to ACGs. 

4.5.2 Additional techniques, such as graph-spectral methods 

Some of the application classes identified will benefit a great deal from using 

graph-spectral techniques. However, it is easier to implement these algorithms if 

the graphs are represented differently, such as with matrices or tensors [32, 26, 
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33, 24, 25]. Many algorithmic questions reduce to finding the top eigenvalues 

(say, in a web graph), or creating a tensor-factorization (in a belief network). 

 

In our work, we wish to answer the following research questions: 
 How can we best implement the data structures so that switching between 

different graph representations is efficient?  

 Can different types of data representations offer better retrieve/store 

performance? We believe that in such cases the contiguous nature of the 

data can be used to our advantage, in conjunction with direct HDF5 features 

such as hyperslab extraction. 

 

Raw Data

Graph Extractor

Application Specific
Graph Extraction Rule

Graph Representation of 
Real Data Network Information

..
.

Graph Generator

Synthetic Network Information

..
.

Synthetic Graph
 

Figure 4.  Workflow for constructing synthetic Big Data graphs. 
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4.6 Application testing 

We will investigate the suitability of the exascale storage and I/O stack for LSML 

and BDA applications involving ACGs. To this end, we will work with three 

categories of graph problems found in different real world settings: cancer-related 
genetic biomarkers, textual topic analysis, and fraud detection in social networks. 

We will test at least one, but intend to test all three. 

 

4.7 Graph Generator for Synthetic Benchmarking of Exascale Storage and 

I/O Subsystem 

The graph generator will synthesize arbitrarily-large ACG datasets to benchmark 

the performance of the exascale I/O storage subsystem for LSML and BDA 

applications. This section describes the proposed solutions to the requirements 

outlined in Section 2.5 

4.7.1 Graph representation in HDF5 data model 

The synthetic graphs will be represented in HDF5 data model using HAL APIs. 

4.7.2 Graph generation algorithm 

We will use the (stochastic) Kronecker multiplication method to generate synthetic 

real world graphs (i.e., Kronecker graphs). Although it is known that the stochastic 

Kronecker graphs can scale up to more than a million nodes without losing the 

properties of their associated seed graphs, we will further increase the size of the 

graphs to exascale to meet our needs. 

4.7.3  Exascale graph synthesis 

Our exascale graph generator will run on a conventional Hadoop MapReduce 

compute cluster.  Intermediate data will be temporarily stored in HDFS in this 

system. The final output will be converted into the HDF5 data model and stored 

into the exascale storage and I/O subsystem. 

4.7.4  Data annotation on the synthetic graphs 

To attach network information to synthesized graphs, we will implement two 

different methods: (1) reusing copies of real data as many times as needed and (2) 
using artificially generated data. 

4.7.5  Application level synthetic benchmarking 

For application-level synthetic benchmarking of the ingress and run-time 

performance of the storage and I/O subsystem, we will use the ACGs and network 

information that will be synthesized by our Kronecker graph generator and ACG 

ingress process. During computation, the synthetic ACGs will produce I/O access 

patterns and loading that will emulate those of real data. To evaluate the 
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application-level performance of ingress and run-time application I/O performance, 

we will develop quantitative and/or qualitative performance metrics. 
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5 Acceptance Criteria 

5.1 HDF5 Adaptation Layer 

 GraphLab, GraphBuilder, or any application that uses HDF5 adaptation layer 

APIs can successfully create, access, and remove HDF5 objects (graphs, 

subgraphs, and other ACG-related data-objects). 

 HDF5 efficiently represents ACGs. 

5.2 GraphBuilder Modifications 

 Successfully store graphs in HDF5 data model and create correct partitions 

of graphs on specified algorithms. 

5.3 Ingress data access to I/O subsystem 

 Successfully store graphs and network information into the storage and I/O 

subsystem. 

 Successfully store graph partitioning, sharing, and other data locality 

information. 

5.4 Runtime data access via I/O subsystem 

 Compute nodes successfully load, compute, asynchronously update, and 

unload partitioned graphs and associated data. 

5.5 Big Data graph generation 

 Successfully synthesize graphs that mimic real world graph topologies and 

statistics. 

 Demonstrate that the solution is likely to scale to exascale for real-world 

graph construction. 

 Successfully associate the synthesized graphs with network information. 
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