
DAOS Quality of Service

Distributed Asynchronous Object Storage (DAOS)

Liang Zhen et al.

DUG’23; Monday 13-Nov-2023; 9:00am – 12:30pm MST

2

Background
▪ Today, DAOS has no QoS framework and simply uses FIFO as I/O requests queue

• Cannot guarantee fairness or request priority

▪ DAOS client has no mechanism to throttle RPC sending

• Clients nodes can run O(100) MPI processes, each sending huge # of RPCs

▪ DAOS engine has no throttling on RPC receiving

• Engine can underperform or be killed by OOM killer when not keeping up processing RPCs

High-level design of DAOS QoS includes three areas:

• QoS framework to guarantee fairness between different users and to support RPC priority.

• Server-side throttling, which should prevent a server from indefinitely receiving incoming requests and
eventually losing the capability of processing requests.

• Client-side throttling, which should prevent a client from sending out an unlimited number of RPCs.

3

New Concept: DAOS QoS Session

▪ A session includes either sub-sessions or tasks

• Task is the execution unit

▪ A session describes server resources allocated for the associated dataset(s)

• Server resource is quantified as “credits”.

• Tasks under a session (direct and indirect) cannot consume more “credits” than the assigned
quantity

▪ Sub-session scheduling schema

• Example: a sub-session (scrubber) is low priority, its parent will not poll task from it unless it is
idle

▪ Task scheduling policy

• Default policy of a session is FIFO

• More policy can be defined, e.g., client-based round-robin

4

QoS Task

▪ Task is execution unit

• Attached to a session

• Callback function, e.g., RPC handler

▪ Credits

• Operation credit: an I/O request consumes one operation credit

• Payload credit: an I/O request consumes (size/1024) payload credits

▪ Task types

• User task: regular I/O request

• System task: aggregation, checksum scrubber, rebuild, space GC…

5

DAOS storage model and session/task

▪ Session per pool

• Optional: sub-session per pool connection

▪ Sub-session per container

• Optional: sub-session per container handle

▪ Default schema of pool session

• System sub-sessions

• aggregation, rebuild, scrubber, GC…

• User sub-session

• client requests

• Scheduling schema

• For example: for an append-only pool, “aggregation=low, scrubber=low, rebuild<=30%”

6

Default schema/policy

▪ Session per pool

• Credits are evenly distributed to active pools

• Poll tasks from each pool session in round-robin manner

▪ Pool session has one sub-session per-container

• System sub-session (rebuild, aggregation, scrubber…) is shared

• Poll tasks from each container in round-robin manner

▪ Container sub-session has a task queue

• FIFO (advanced task selection policy in the future)

7

Administrator Interface

▪ Admin can change the overall resources assigned to a pool session

• Assign 50% of operation & bandwidth credits to an important pool

• Other pools share the other 50%

▪ Admin can change schema/policy of a pool session

• Prioritize/deprioritize system sub-session

• Activate/deactivate system sub-session

• Change credits for each sub-session

• Only allow system services to occupy 10% of the bandwidth credits

• Only allow a low-priority container to consume 5% of the bandwidth

8

Administrator Interface – Custom Session

▪ Create a custom session

▪ Add pool or container to a custom session

• Each pool or container is a sub-session

▪ Create a system sub-session

• Assign dedicated rebuild, aggregation, …

• Example: no rebuild and scrubber for scratch data

▪ A pool or container can only belong to one session

9

Server RPC throttling

▪ Today, server indefinitely creates tasks for incoming requests

• Pin all the resources

▪ Server cannot process queued requests/tasks at full speed

• Spend CPU cycles to select request from millions of them

• High memory footprints

• Not enough memory, eventually killed by OOM killer

▪ Solution: Reject incoming requests based on # queued requests

• Returns a hint for retry based on historical statistics within the session

10

Client RPC throttling

▪ DAOS client is a userspace library

• It can limit number of RPC sending by a single client process … but:

• A node can create hundreds of processes, submit tens of thousands of RPCs

▪ Solution: DAOS agent creates a shared memory
for node-wide coordination

• Session ID is maintained in shared memory

• Assign RPC credits to each session ID

• A process should take a credit before sending RPC

• No credit: queue the RPC locally, poll the shared memory for credit

11

	Slide 1: DAOS Quality of Service
	Slide 2: Background
	Slide 3: New Concept: DAOS QoS Session
	Slide 4: QoS Task
	Slide 5: DAOS storage model and session/task
	Slide 6: Default schema/policy
	Slide 7: Administrator Interface
	Slide 8: Administrator Interface – Custom Session
	Slide 9: Server RPC throttling
	Slide 10: Client RPC throttling
	Slide 11

