Profiling and identifying bottlenecks in DAOS

DUG’23, 2023-11-13

Adrian Jackson, Nicolau Manubens

a.jackson@epcc.ed.ac.uk
nicolau.manubens@ecmwf.int

»>

d @ o s

SCECMWF epcc N

Use case

« ECMWF's FDB

e library for weather field storage and indexing 'elass=od,
. .] date=20201224,
e domain-specific object store stream=oper,
levtype=sfc,
® C++ param=10u,

' .
.

GRIB binary data

* Currently runs on Lustre operationally

* clever use of files and directories to minimise |10 'class=od,
. . . d =20201224,
ops, maximise bandwidth and throughput e remmones

levtype=sfc,

 all transparent to the user. A simple, domain- baram=10u,
specific APl is exposed to the user 5

GRIB binary data

< ECMWF

fdb-write

L—————f

—

fdb-read

epcc

Use case

* Now expanded to operate on DAOS

* native use of DAOS via C APl Key-Values and Arrays

DAOS pool (e.g. "default")

Root container (e.g. "root_cont")

Main Key-Value (OID 0.0)
{"0d:0001:0per:20230317:...":
"daos://default/od:0001:0per:20230317:.. .f0.0"}

< ECMWF

<keyB>: "daos://default/od:0001 oper.../f(<keyB>)"} 1=

"daos://default/od:0001:0per..._ef:sfc/
<i>?0off=0&len=<x>|timestamp"}

Axis Key-Value Axis Key-Value
(OID f("ef:sfc.slep™) (OID f("ef:sfc.numr™))
{"1"1} {""1}

GRIB message s1,n1.!1,v1

epcc

o f{db5:Store,
Database container (e.g. "0d:0001:0per:...")
' “r» DB/Forecast Key-Value (OID 0.0) P Index Key-Value (OID f("ef:sfc"))
{"key": <serialised db key>, {"key": <serialised index key>,
"schema". "<schema data>", "axes": "step,numr,levels,param",
"ef:sfc"; "daos://default/od:0001:oper.../f('ef:sfc')", 1= "™ > Field Array (OID <i>)

3

Benchmark

* Employed the fdb-hammer benchmark
* <C>client nodes run <N> processes in parallel which write a sequence of <F> fields of 1 MiB
* then parallel read
* No synchronisation
* to better mimic real operational I/0
°* no MPI
* no sharing of pool and container handles across processes
e per-process static pool and container cache to avoid reopening

* Benchmark runs on a system with Optane DCPMM, without NVMe
Bandwidth measurements for each run

* measured wall-clock time from start of first parallel 10 to end of last parallel 10 and divided total
transferred data by that time

£ ECMWF epcc

Profiling

 |nstrumented all DAOS
API calls in FDB to

identify bottlenecks

< ECMWF

void DaosArray::create() {

const daos_handle_t& coh = cont_.getOpenHandlel();

fdb5::StatsTimer st{'"daos_array_create", timer, ...};
DAOS_CALL
daos_array_create(
coh, oid_.asDaosObjIdT(), DAOS_TX_NONE,
fdb5::DaosSession().objectCreateCellSizel(),
fdb5::DaosSession().objectCreateChunkSizel(),
&oh_, NULL

epcc| -

Initial performance

Access pattern A, writers,

50
45 |
40 |
35 -
= 301
D 25 1
20 -
15 -
10 -

. (GiB/s)

b

global timi

Benchmark
—8— fdb-hammer/DAOS

T T T T T T T T

2 4 6 8 10 12 14 16

server nodes

< ECMWF

Access pattern A, readers,

50
45 A
40 1
35 -
= 301
D 25 1
201
15 -
10 -

. (GiB/s)

b

global timi

Benchmark
—8— fdb-hammer/DAQOS

T T T T T T

2 4 6 8 10 12 14 16

server nodes

epcc| .

Avoid Key-Value contention

* For a specific benchmark run configured with contention across processes on
indexing Key-Values:

e 20 GiB/s write
13 GiB/s read
* Tweaking the benchmark configuration to have all processes operate on a
separate Key-Values:
e 35 GiB/s write
68 GiB/s read

* This may not be trivial or possible for all applications. FDB allows some
adjustment, which made this easy

CSECMWF epcc| -

Avoid RPCs where possible

* |If non-critical objects are checked frequently, you may be able to cache some
of them in DRAM

* Usedaos array open with attr toavoid daos array create
calls
* Only supported for DAOS OT ARRAY BYTE, not for DAOS OT ARRAY

Warning: the cell size and chunk size attributes need to be provided consistently on
any future daos array open with attr toavoid data corruption

* daos array get size callscan consume alot of time

* we avoided it by storing array size in our indexing Key-Values

* alternative: use DAOS OT ARRAY BYTE, over-allocate the read buffer, and read
without querying the size. The actual read size (short read) will be returned

* daos cont alloc oids isexpensive, call it just once per writer process

£ ECMWF epcc

Avoid using too many containers

* Creating several containers (starting at ~300) in a DAOS pool makes it
slow

* If not sharing handles, opening a same container from all processes is
expensive

* this happens even if only a few containers exist in the DAOS pool

* e.g. out of 20 seconds taken by a process to write 2000 fields, 1.5 seconds
were spent just to open one container

* we observed this starting at ~200 parallel processes
* Opening more than one container per process is very expensive

* e.g. out of 30 seconds taken by a process to read 2000 fields, 6 seconds
were spent just to open two containers

CSECMWF epcc -

Avoid using too many containers (2)

* We minimised use of containers as much as posible

* With longer benchmark runs the container opening
overheads become negligible

* Container performance can vary depending on the DAOS
version

e container opening became slower in v2.4 compared to v.2.2.0

£ ECMWF epcc

Final performance

Access pattern A, writers,

80
72 -
64 -
56 -
48 -
@ 40
32-
241
16

iB/s)

bw. (G

global timi

—&— before
—0— after

T T T T T

2 4 6 8 10 12 14 16

server nodes

< ECMWF

GiB/s)

bw. (

(@)}
-

global timi

Access pattern A, readers,

80
72 -
64 -
56 -
48 -
40 A
32 -
24 1
16 -

—&— before
—0— after

T T T T T T T T

2 4 6 8 10 12 14 16
server nodes

epcc| -

Profiling after all optimizations

* Most of time is spent in array write and read, which is a good sign. Connection
overheads can be ignored

fdb-hammer/DAQOS write bottlenecks
12 server nodes, 20 client nodes, 32 processes per client node
average per-process fdb-hammer wall-clock time: 27.5 seconds

—
N

-
N

-
o

fdb-hammer/DAOS read bottlenecks
12 server nodes, 20 client nodes, 32 processes per client node
average per-process fdb-hammer wall-clock time: 21.8 seconds

seconds per 10 type (avg. across processes)
N B » (o]

o

& N ™ o
& & N Y R
s X 5\ & 9%
S Q / \rz?\ a°
&7 & &
d &/
< &
T 2
5]
(&)
@
(20

< ECMWF

Other observations

daos key value list isexpensive

daos array open with attrs, daos kv openanddaos array generate oid areverycheap (no RPC)
normal daos array open isexpensive

daos cont alloc oids isexpensive

daos kv put and get are generally cheap. The shorter the strings stored as values the better
daos obj close,daos cont close anddaos pool disconnect are cheap

daos array read behaves strangely
* when performed aftera daos _array get size,itisfasterthanacorresponding daos array write (asitshould be)

* when performed without a prior dacs array get size, it performs worse than the write. It looks asifa get size were
being performed internally if not performed manually beforehand.

* this makes the read calls slower than write calls

* to beinvestigated

CCECMWF epcc| =

Other observations

* Single engine (and rail) can result in worse write
performance and better read performance

* On a dual network system

* Pinning is important in dual-rail configurations

£ ECMWF epcc

	Slide 1
	Slide 2: Use case
	Slide 3: Use case
	Slide 4: Benchmark
	Slide 5: Profiling
	Slide 6: Initial performance
	Slide 7: Avoid Key-Value contention
	Slide 8: Avoid RPCs where possible
	Slide 9: Avoid using too many containers
	Slide 10: Avoid using too many containers (2)
	Slide 11: Final performance
	Slide 12: Profiling after all optimizations
	Slide 13: Other observations
	Slide 14: Other observations

