
© ECMWF November 13, 2023

Profiling and identifying bottlenecks in DAOS
DUG’23, 2023-11-13

Adrian Jackson, Nicolau Manubens

a.jackson@epcc.ed.ac.uk

nicolau.manubens@ecmwf.int

October 29, 2014

Use case

• ECMWF’s FDB

• library for weather field storage and indexing

• domain-specific object store

• C++

• Currently runs on Lustre operationally

• clever use of files and directories to minimise IO
ops, maximise bandwidth and throughput

• all transparent to the user. A simple, domain-
specific API is exposed to the user

2

October 29, 2014

Use case

• Now expanded to operate on DAOS

• native use of DAOS via C API Key-Values and Arrays

3

October 29, 2014

Benchmark
• Employed the fdb-hammer benchmark

• <C> client nodes run <N> processes in parallel which write a sequence of <F> fields of 1 MiB

• then parallel read

• No synchronisation

• to better mimic real operational I/O

• no MPI

• no sharing of pool and container handles across processes

• per-process static pool and container cache to avoid reopening

• Benchmark runs on a system with Optane DCPMM, without NVMe

• Bandwidth measurements for each run

• measured wall-clock time from start of first parallel IO to end of last parallel IO and divided total
transferred data by that time

4

October 29, 2014

Profiling

• Instrumented all DAOS
API calls in FDB to
identify bottlenecks

5

October 29, 2014

Initial performance

6

October 29, 2014

Avoid Key-Value contention

• For a specific benchmark run configured with contention across processes on
indexing Key-Values:

• 20 GiB/s write

• 13 GiB/s read

• Tweaking the benchmark configuration to have all processes operate on a
separate Key-Values:

• 35 GiB/s write

• 68 GiB/s read

• This may not be trivial or possible for all applications. FDB allows some
adjustment, which made this easy

7

October 29, 2014

Avoid RPCs where possible

• If non-critical objects are checked frequently, you may be able to cache some
of them in DRAM

• Use daos_array_open_with_attr to avoid daos_array_create
calls

• Only supported for DAOS_OT_ARRAY_BYTE, not for DAOS_OT_ARRAY

• Warning: the cell size and chunk size attributes need to be provided consistently on
any future daos_array_open_with_attr to avoid data corruption

• daos_array_get_size calls can consume a lot of time

• we avoided it by storing array size in our indexing Key-Values

• alternative: use DAOS_OT_ARRAY_BYTE, over-allocate the read buffer, and read
without querying the size. The actual read size (short_read) will be returned

• daos_cont_alloc_oids is expensive, call it just once per writer process

8

October 29, 2014

Avoid using too many containers

• Creating several containers (starting at ~300) in a DAOS pool makes it
slow

• If not sharing handles, opening a same container from all processes is
expensive

• this happens even if only a few containers exist in the DAOS pool

• e.g. out of 20 seconds taken by a process to write 2000 fields, 1.5 seconds
were spent just to open one container

• we observed this starting at ~200 parallel processes

• Opening more than one container per process is very expensive

• e.g. out of 30 seconds taken by a process to read 2000 fields, 6 seconds
were spent just to open two containers

9

October 29, 2014

Avoid using too many containers (2)

• We minimised use of containers as much as posible

• With longer benchmark runs the container opening
overheads become negligible

• Container performance can vary depending on the DAOS
version

• container opening became slower in v2.4 compared to v.2.2.0

10

October 29, 2014

Final performance

11

October 29, 2014

Profiling after all optimizations
• Most of time is spent in array write and read, which is a good sign. Connection

overheads can be ignored

12

October 29, 2014

Other observations
• daos_key_value_list is expensive

• daos_array_open_with_attrs, daos_kv_open and daos_array_generate_oid are very cheap (no RPC)

• normal daos_array_open is expensive

• daos_cont_alloc_oids is expensive

• daos_kv_put and get are generally cheap. The shorter the strings stored as values the better

• daos_obj_close, daos_cont_close and daos_pool_disconnect are cheap

• daos_array_read behaves strangely

• when performed after a daos_array_get_size, it is faster than a corresponding daos_array_write (as it should be)

• when performed without a prior daos_array_get_size, it performs worse than the write. It looks as if a get_size were

being performed internally if not performed manually beforehand.

• this makes the read calls slower than write calls

• to be investigated

13

October 29, 2014

Other observations

• Single engine (and rail) can result in worse write
performance and better read performance

• On a dual network system

• Pinning is important in dual-rail configurations

14

	Slide 1
	Slide 2: Use case
	Slide 3: Use case
	Slide 4: Benchmark
	Slide 5: Profiling
	Slide 6: Initial performance
	Slide 7: Avoid Key-Value contention
	Slide 8: Avoid RPCs where possible
	Slide 9: Avoid using too many containers
	Slide 10: Avoid using too many containers (2)
	Slide 11: Final performance
	Slide 12: Profiling after all optimizations
	Slide 13: Other observations
	Slide 14: Other observations

