

DAOS at Exascale

Hewlett Packard

Enterpri se

DAOS Users Group 2022

intel

Kevin Harms Argonne Leadership Computing Facility

Aurora

Leadership Computing Facility Exascale Supercomputer

Peak Performance **≥ 2 Exaflops DP**

Intel GPU Intel® Data Center GPU Max

Intel Xeon Processor Xeon Intel® Xeon® CPU Max

Platform HPE Cray-Ex Compute Node 2 Xeon Intel® Xeon® CPU Max processors 6 Intel® Data Center GPU Max Node Unified Memory Architecture 8 fabric endpoints

GPU Architecture

Intel XeHPC architecture High Bandwidth Memory Stacks

Node Performance >130 TF

System Size >9,000 nodes

Aggregate System Memory

>10 PB aggregate System Memory

System Interconnect

HPE Slingshot 11 Dragonfly topology with adaptive routing

Network Switch

25.6 Tb/s per switch (64 200 Gb/s ports) Links with 25 GB/s per direction

High-Performance Storage 220 PB ≧25 TB/s DAOS bandwidth

Software Environment

- C/C++
- Fortran
- SYCL/DPC++
- OpenMP offload
- Kokkos
- RAJA
- Intel Performance Tools

ALCF and DAOS

- Argonne Leadership Computing Facility and Intel started a collaboration on DAOS in 2015
- Collaboration on design and features related to Aurora
- Part of Non-recurring Engineering (NRE) of Aurora
 - -Support for multiple simultaneous libfabric providers
 - -Application optimizations for DAOS
 - -Optimized object placement
 - -Catastrophic Recovery

Aurora Overview

DAOS Node Details

- Intel Coyote Pass System

 - —(16) 32GB DDR4 DIMMs
 - -(16) 512GB Intel Optane Persistent Memory 200

 - -(2) HPE Slingshot NIC
- 1024 Total Servers
 - -Each node will run 2 DAOS engines
 - -2048 DAOS engines

Aurora Network Architecture

- Increased DAOS inter-group bandwidth
 - Support rebuilding and inter-server communication
 - Prevent DAOS server traffic interfering with application communication
- Increased bandwidth to service group
 - Support off-cluster access and data-movement
- 6 Argonne Leadership Computing Facility

Aurora DAOS Status

- Note: All work being done by DAOS testing team
- Initial hardware validation of DAOS nodes completed
 - -Each server operating as expected
- Initial per-dragonfly group testing
 - -Run automated test system scaling DAOS servers up to full dragonfly group size
 - -Run soak testing on system
 - -Using gateway nodes or other DAOS nodes as clients
- Scale-up testing
 - -Running automated testing on multi-dragonfly group scale
 - —Working through various network and DAOS issues
 - Captured in DAOS Jira

Sunspot

- ALCF's Test and Development system
 Think of it as a baby Aurora
- Two compute racks / groups
 - -128 compute nodes
- DAOS deployment
 - -20 DAOS nodes
 - -Identical server configuration to Aurora
 - —Allows running EC16+2 18 nodes with 2 nodes for failover
- First? production environment for DAOS at ALCF
 - -Follow pool and container usage plan for Aurora
 - -1 pool per project
 - Pool allocated to ~60-80% of targets
 - ACL limits pool to project members
 - Users create containers
 - -Suggested default data protection of EC16+2 on containers
- Examine storage ratio of metadata to data

IO-500 Results

IO-500 SC22 BoF submission

-https://io500.org

• IO500: The High-Performance Storage Community

—Tuesday, 15 November 2022 - 5:15pm - 6:45pm —D174

Join the Aurora Team

- Looking for a post-doc to work on DAOS
 - ALCF's performance engineering group is looking for a Postdoctoral Appointee to perform research and development on the open source DAOS storage system, in the context of the upcoming exascale platforms, and Aurora in particular.
 - Three areas of interest for study are:
 - new opportunities for applications to optimize I/O that isn't oriented around file access. DAOS provides very low latency access and the possibility allows applications to write data in a more "read-optimized" format with minimal penalty versus write-optimized formats.
 - DAOS supports a prototype "active storage" interface, and exploration of some HPC type workloads (like pointer chasing, lookup tables, etc.)
 - With the proliferation of CPUs and accelerators with significant dedicated high performance memory, the DAOS client should provide a mechanism to utilize device memory with direct-to-NIC memory movement bypassing CPU memory.
 - <u>https://argonne.wd1.myworkdayjobs.com/Argonne_Careers/job/Lemont-IL-USA/Postdoctoral-Appointee---Exascale-Storage-using-DAOS_414419</u>

Acknowledgements

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

