
CROIT RETHINKING STORAGE

Implementing SPDK DAOS bdev
module

A journey by DenisB narrated by Denis Nuja

CROIT RETHINKING STORAGE

Why
At the moment DAOS provides just a few connectivity options:

• Direct Key/Value and Array APIs - highly app specific.

• Direct DFS API (partially POSIX complaint) - also app level.

• DFuse (mounting like a volume) - system wide, but with it’s own limitations.

What if my application works only with block devices ?

NVMeOF client is already built in into many platforms.

CROIT RETHINKING STORAGE

Why
Implementing SPDK bdev module allows to benefit from:

• NVMe-oF target

• iSCSI target

• vhost server

• NVMe-oF multipath

• BDEVs stacking (raid, lvols …)

• Dev and perf tooling

• Existing unit tests (who likes to write new ones !)

• Probably almost every upcoming features and improvements

CROIT RETHINKING STORAGE

How
SPDK has great documentation and a wide range of existing bdev
implementations.

The idea was to grab malloc or aio bdev sources and replace open/read/write
functions with DAOS API and see what’s going to happen.

CROIT RETHINKING STORAGE

How
SPDK has great documentation and a wide range of existing bdev
implementations.

The idea was to grab malloc or aio bdev sources and replace open/read/write
functions with DAOS API and see what’s going to happen.

… it’s actually worked !

CROIT RETHINKING STORAGE

switch (bdev_io->type) {

 // Block IO

case SPDK_BDEV_IO_TYPE_READ:

case SPDK_BDEV_IO_TYPE_WRITE:

 // ...

case SPDK_BDEV_IO_TYPE_RESET:

 // Wait until in-flight requests are done

case SPDK_BDEV_IO_TYPE_FLUSH:

 // NOOP (DAOS persistent on write)

case SPDK_BDEV_IO_TYPE_UNMAP:

 // DAOS supports punching holes

}

How
SPDK bdev’s bare minimum operation list:

CROIT RETHINKING STORAGE

How
SPDK_BDEV_IO_TYPE_RESET - there is no reset functionality in DAOS client
(and probably could not be).

Current implementation just waits until all in-flight IO requests are completed.

Rest of the command handlers fit naturally in SPDK bdev model.

CROIT RETHINKING STORAGE

How
DAOS Array API vs DFS API, which one to use ?:

int daos_array_open(...) vs int dfs_open(...);

int daos_array_read(...) vs int dfs_read(...);

int daos_array_write(...) vs int dfs_write(...);

int daos_array_punch(...) vs int dfs_punch(...);

CROIT RETHINKING STORAGE

How
DAOS Array API vs DFS API, which one to use ?
• The APIs are pretty similar

• Both support batch read and write

• Both provides async mode with DAOS event queue

• DFS API uses Array API underneath, should not be any performance
penalties

• DFS API has a slight operational advantage - one could mount DAOS
container with dfuse and copy the backing file to some other storage.

CROIT RETHINKING STORAGE

How
DAOS Array API vs DFS API, which one to use ?
• The APIs are pretty similar

• Both support batch read and write

• Both provides async mode with DAOS event queue

• DFS API uses Array API underneath, should not be any performance
penalties

• DFS API has a slight operational advantage - one could mount DAOS
container with dfuse and copy the backing file to some other storage.

• The winner is DFS API as it looks familiar to POSIX API.

CROIT RETHINKING STORAGE

How
Initial version event handling approach

Every device’s channel has its own poller with DAOS event queue attached.

This approach allows almost linear performance scaling (up to certain point)
with increasing number of cores allocated to the target.

CROIT RETHINKING STORAGE

How

It looks like this:

Core 0 Channel Poller #0 DAOS event queue #0

Channel Poller #1 DAOS event queue #1

Channel Poller #N DAOS event queue #N

Channel Poller #0 DAOS event queue #0

Channel Poller #1 DAOS event queue #1

Channel Poller #N DAOS event queue #N

Channel Poller #0 DAOS event queue #0

Channel Poller #1 DAOS event queue #1

Channel Poller #N DAOS event queue #N

Core 1

Core N

BDEV 0

BDEV 1

BDEV N

CROIT RETHINKING STORAGE

Latency vs IOPS graph 
4k random write 

1 client (vdbench)

nonRDMA Ethernet TCP
on DAOS cluster and client

CROIT RETHINKING STORAGE

Pitfalls along the way

Prior DAOS v2.2 there wasn’t per thread pool/cont cache which significantly
affected multithreaded performance (but not multiprocess one).

With v2.2 release cache and more granular locking were introduced resolving
the issue and increasing the multithreaded performance.

More details: https://daosio.atlassian.net/browse/DAOS-11230

https://daosio.atlassian.net/browse/DAOS-11230

CROIT RETHINKING STORAGE

Pitfalls along the way

MxN problem: M devices create N channels/event queue each. As turned out,
the number of DAOS event queue:

- fabric provider specific and limited

- does not scale after certain limit

For instance, for TCP provider the limit is 256 queues, which means 8 bdev with
32 cores enabled.

CROIT RETHINKING STORAGE

Pitfalls along the way

Over provisioning: there’s no way to reserve space inside the DAOS container.
This might create an issue when someone creates more bdevs than there are
free space and the error would happened on the writes.

CROIT RETHINKING STORAGE

Next iteration

Fixed pool of DAOS event queues and possible the fixed number of poller
across all DAOS bdevs to distribute load evenly.

Better recovery procedure on errors: in the current version the module treats
most of the errors as recoverable, which might not be always the case and
proper self shutdown is preferable.

Various QoL improvements.

CROIT RETHINKING STORAGE

Acknowledgement

SPDK community in Slack, especially James Harris for patiently answering all
silly questions, suggestion and review.

DAOS team, in particularly, Johann Lombardi and Mohamad Chaarawi for
helping with never ending stream of questions!

CROIT RETHINKING STORAGE

How are actually use it in the Croit Platform

CROIT RETHINKING STORAGE

Thank you for your
attention!

www.croit.io
contact@croit.io

