Storing High-Energy Physics data in DAOS

Javier Lopez Gomez — CERN fellow
<javier.lopez.gomezacern.ch>

DUG 20, 19th November 2020

ROOT project,
EP-SFT (SoFTware Development for Experiments),
CERN

J ROOT @&y

http . //rOOt o Cern/ Data Analysis Framework

http://root.cern/

.

Introduction

]

RNTuple 101

]

RNTuple DAOS backend

[~

First evaluation

]

Conclusions

1/15

Introduction

High-Energy Physics (HEP)

= High-Energy Physics studies laws governing our universe at the smallest
scale: fundamental particles, forces and its carriers, mass, etc. The
“Standard model” describes these particles/interactions.

= CERN experiments observe particle interactions (typically by colliding
particles at high-energies).

= HEP data = detector observations.

2/15

e Hadron Collider (LHC)

Figure 1: Graphical representation of a CMS event.

= LHC collides protons that move in opposite directions. Detectors are
similar to a 100 MP camera taking a picture every 25ns.

= 10° collisions/sec generating ~ 10 TB/s.

= Processing:
= filtering step. Part of the detector read-out.
= distributed; disk storage at different LHC compute centers around

the globe.

'http://opendata.cern.ch/visualise/events/cms 3/15

http://opendata.cern.ch/visualise/events/cms

ROOT project

ROOT

Data Analysis Framework

= ROOT: open-source data analysis framework written in C++. Provides C++
interpretation, object serialization (I/0), statistics, graphics, and much
more.

= PyROOT provides dynamic C++ <+ Python bindings.

= ROOT I/0: row-wise/column-wise storage of C++ objects.

4/15

TTree and RNTuple

= HEP data analysis often only requires
access to a subset of the properties of

each event.
X y z mass

= Row-wise storage is inefficient. TTree
organizes the dataset in columns that

contain any type of C++ object.
0423 1123 3744 231413

= 1+ EB of HEP data stored in TTree ROOT
files.

5/15

TTree and RNTuple

= HEP data analysis often only requires
access to a subset of the properties of

each event.
X y z mass

= Row-wise storage is inefficient. TTree
organizes the dataset in columns that

contain any type of C++ object.
0423 1123 3744 231413

= 1+ EB of HEP data stored in TTree ROOT
files.

= TTree has been there for 25 years.
RNTuple is the R&D project to replace
TTree for the next 30 years.

= Object stores are first-class.

5/15

RNTuple 101

RNTuple architecture

Event iteration
Looping over events for reading/writing

Logical layer / C++ objects

Mapping of C++ types onto columns, e.g.
std::vector<float> — index column and a value column

Primitives layer / simple types
“Columns” containing elements of fundamental types (float,
int, ..) grouped into (compressed) pages and clusters

Storage layer / byte ranges
POSIX files, object stores, ...

Storage layer: access to the header (= schema), the pages, and the footer (=
location of pages).

6/15

File backend: on-disk format

L e e o Sy
[CTTTOCLITTT, [T TTTT T [T T [T

,,,,,,,,, —
Anchor Header Page Footer

Cluster

struct Event {
int fId;
vector<Particle> fPtcls;
}.

séruct Particle {
vector< ,m > fIds;
b8
To put it simple...

Anchor: specifies the offset and size of the header and footer sections.
Header: schema information.?

Footer: location of pages and clusters.?

Pages: little-endian fundamental types (possibly packed, e.g. bit-fields)
—typically in the order of tens of KiB.2

’This element may be compressed or not. 2115

RNTuple DAOS backend

libdaos C++ interface classes

To simplify resource management, we wrote C++ wrappers for part of
libdaos functionality.

auto pool = std::make_shared<RDaosPool>(
"e6f8e503-e409-4b08-8eeb-7e4d77ccebbb", "1");
RDaosContainer cont(pool, "b4f6d9fc-e081-41d4-91ae-41adf800b537");

std::string s("foo bar baz");

cont.WriteObject(daos_obj_id_t{0xcafe4alldeadbeef, 0}, s.data(), s.size()
, /*xdkey =%/ 0, /*akey =%/ 0);

8/15

DAOS backend: mapping things to objects

[TTTOCITT T [T TTTTOTTTTT
S T

[T TTTTT] [OITTTT
S—

S A — [E—
Anchor Header Page Footer
Cluster

struct Event {
int fId;
vector<Particle> fPtcls;

i

struct Particle {

H
vector<int> fIds;

i

= Each RNTuple page is stored in a separate object. The UUID is
sequential starting from ’ 00000000-0000-0000-0000-000000000000 |.

= Header, Footer, and Anchor are stored in three different objects with
reserved UUIDs.

9/15

Usage: RNTuple/file vs. RNTuple/DAOS

From the user's perspective...

auto
auto

auto
auto
auto

model = RNTupleModel::Create();

ntuple = RNTupleReader::Open(std::move(model),
"DecayTree",
"./B2HHH~zstd.ntuple");

viewH1IsMuon = ntuple->GetView<int>("H1_isMuon");

viewH2IsMuon = ntuple->GetView<int>("H2_isMuon");
viewH3IsMuon = ntuple->GetView<int>("H3_isMuon");

10/15

Usage: RNTuple/file vs. RNTuple/DAOS

From the user's perspective...

auto model = RNTupleModel::Create();

auto ntuple = RNTupleReader: :Open(std::move(model),
"b4f6d9fc-e081-41d4-91ae-41adf800b537",
"daos://e6f8e503-e409-4b08-8eeb-7e4d77ccebbb/1");

auto viewH1IsMuon = ntuple->GetView<int>("H1_isMuon");

auto viewH2IsMuon = ntuple->GetView<int>("H2_isMuon");
auto viewH3IsMuon = ntuple->GetView<int>("H3_isMuon");

10/15

First evaluation

Test environment

Our evaluation ran on CERN OpenlLab DAOS test machines:

= 3 DAOS servers, 1 DAOS head node.
= interconnected by an Omni-Path Edge Switch 100 Series | 24 ports.

System specifications
cPU Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz

System specifications
CPU per node 24 cores/socket, 2 sockets, 2 threads/core (HT enabled)

Py Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz
Core frequency Base: 1.0 GHz Range: 1.0GHz - 3.9GHz

CPU per node 24 cores/socket, 2 sockets, 2 threads/core (HT enabled)
Numa nodes node0: 0-23.48-71 node1: 24-47,72-95

Core frequency Base: 1.0 GHz Range: 1.0GHz - 3.9GHz
System Memory 12x 32GB DDR4 rank DIMMs

Numa nodes node0: 0-23.48-71 node1: 24-47,72:95
Optane DCPMM 12x 12868 DDR4 rank DIMMs

System Memory 12x16GB DDR4 rank DIMMs
Optane FW version 01.02.00.5395

BI0S version: SESC620.868.02.01.0011.032620200659 date: 03/26/2020
BIOS version: SESC620.868.02.01.0011.032620200659 date: 03/26/2020

HFI Tx Itel Corporation Omni-Path HFI Silicon 100 Series.
Storage 4x1TB NVMe INTEL SSDPE2KX010T8

HFI Firmware Termal Management Module: 16.9.9.0.268; Driver: 1.9.2.0.0
HFI 1x Intel Corporation Omni-Path HFI Silicon 100 Series.
HFI Firmware Termal Management Module: 16.9.6.0.208; Driver: 1.9.2.0.

Figure 3: Client node HW (olsky-03)

Figure 2: Server nodes HW (olcs1-x)

11/15

dfuse simple benchmark (ofi+sockets)

/\ These results are preliminary and might not be reliable.

Block size
4K 8K 16K [512K | M] 4M
Seq. Write | 7.62 | 14.42 | 27.44 | 189.21 | 205.10 | 225.62
Seq. Read | 262 | 504 | 921 | 116.86 | 147.79 | 188.90
Random Write | 7.30 | 14.67 | 27.63 | 199.68 | 20917 | 211.40
Random Read | 2.16 | 420 | 792 | 12091 | 16270 | 21112

Table 1: dfuse read/write benchmark (in MiB/s)

= Far from the 34.2 Gbits/sec (4.275 GiB/s) achieved by iperf.

= Path lookup not bad; around 700+ open()/creat() calls/s.

12/15

RNTuple (ofi+sockets)

/\ These results are preliminary and might not be reliable.

(a) gen_Tlhcb (write RNTuple)

‘ ! (b) Lhcb (read RNTuple)
1

400] _\
s 8,000 [2]
300 B 6,00
@ % 6,000 |- 4
@ =
z =
5 200 . @
= £ 4o00| _
& S
100 |- 5 o« o
- H 2,000 | ‘ H |
- \oﬂD U o I 37
esS! 79 S\0 St
wo o' o COMPTe ’
‘ Local file [l B dfuse BB libdaos ‘ ‘ Local file I B dfuse [B libdaos ‘
Figure 4: RNTuple benchmark on LHCb data (ofi+sockets).23
2Input data size: 1.5GiB (uncompressed) / 1007 MiB (zstd). B

*https://github.com/jblomer/iotools

https://github.com/jblomer/iotools

RNTuple (ofi+psm2)

/\ These results are preliminary and might not be reliable.

(a) gen_lhcb (write RNTuple)
| | (b) Lheb (read RNTuple)
|

80 |- N .
—~ 60 N - L |
@ = 4,000)
(] E 4
o E
c 40 34.28 7 =
>
o fy
& 2,000 4
201 o . o
o100 ‘ 1516‘ on H xd
e S 2
wo o™ No comp®
Local file DB dfuse D B libdaos ‘ Local file DB dfuse DB libdaos

Figure 5: RNTuple benchmark on LHCb data (ofi+PSM2).4°

“Input data size: 1.5GiB (uncompressed) / 1007 MiB (zstd).

14/15
Shttps://github.com/jblomer/iotools

https://github.com/jblomer/iotools

Conclusions

Conclusions

= 1+ EB of HEP data in ROOT files (TTree). RNTuples replaces TTree
columnar storage for the next 30 years.

= RNTuple architecture decouples storage from
serialization/representation. Object stores are first-class.

= First prototype implementation of an Intel DAOS backend. Currently
“1 Page == 1 Object” + constant dkey. Still some performance issues.
Next Questions:

1. How to maximize throughput (bulk reading/writing of pages)?

2. How to distribute pages appropriately, e.g. put together pages
corresponding to the same data member?

15/15

Storing High-Energy Physics data in DAOS

Javier Lopez Gomez — CERN fellow
<javier.lopez.gomezacern.ch>

DUG 20, 19th November 2020

ROOT project,
EP-SFT (SoFTware Development for Experiments),
CERN

J ROOT @&y

http . //rOOt o Cern/ Data Analysis Framework

http://root.cern/

	Introduction
	RNTuple 101
	RNTuple DAOS backend
	First evaluation
	Conclusions

