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= PhD in Computer Science and Technology

= Strong focus in low-level: electronics/embedded systems, kernel development, compilers, RE,
etc.

Currently at CERN’s ROQT project working in:

= Improvements and bug fixes to the cling C++ interpreter

[clingl$ std::cout << "Hello DUG'21!" << std::endl

Hello DUG'21!

* Improvements to RNTuple, the ROOT's new columnar I/0 system
= Maintainer of the RNTuple DAQOS backend

116



Introduction

RNTuple and DAOS

Evaluation

RNTuple caching & DistRDF on DAOS

Conclusion

2/16



Introduction




What we do at CERN

High-energy physics studies laws governing our
universe at the smallest scale.

= CERN experiments observe particle interactions by
colliding particles.

LHC collides protons that move in opposite directions.

Detectors are similar to a 100 MP camera taking a
picture every 25ns.

10° collisions/sec generating ~ 10 TB/s.
Processing:

- Online: filtering step. Part of the detector read-out.
- Offline: distributed; disk storage at different LHC
compute centers around the globe.
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ROOT's TTree and RNTuple

HEP analyses typically require access to a subset of the columns: column-wise storage’.

ROOT's TTree: used for 25 years (1+ EB stored in ROOT files!). X y z mass

= However, not designed to fully exploit modern hardware.

0423 1123 3744 231413

= RNTuple: R&D project to evolve the TTree I/0.

= Object stores are first-class citizens.

'See also: Apache Arrow/Parquet
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RNTuple and DAOS



RNTuple: on-disk file format

fid L T ey R
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Anchor Header Page Footer

Cluster

struct Event {
int fId;
vector<Particle> fPtcls;
’

struct Particle {

’
vector<int> fIds;

B
Pages: Array of fundamental types (maybe compressed); ~tens of kB (tunable at write time).

Cluster: comprises pages for a certain range of rows, e.g. 1-1000.
Page group: pages on a given cluster that contain instances of the same data member.
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Alternatives for mapping clusters/pages to DAOS

= One page per OID in a single akey. Constant dkey.

= One cluster per OID and one akey per page in the cluster. Constant dkey.

= One cluster per OID (2). Same as above, but varying dkey (e.g. one dkey per page group).
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RNTupleReader: file vs. DAOS

Only requires the replacement of the file path

auto ntuple = RNTupleReader::Open("DecayTree",
"./B2HHH~zstd.ntuple");

to a daos:// URI

auto ntuple = RNTupleReader::Open("DecayTree",
"daos://e6f8e503-e409-4b08-8eeb-7e4d77ccebbb/b4f6d9fc-e081-41d4-91ae-
41adf800b537");
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Evaluation




Test environments

= CERN openlab: 3 servers, 2 clients. Intel Omni-Path.

= HPE Delphi: 2 servers, 9 clients. Mellanox InfiniBand.

Test cases

Steps: (a) move data into DAQS, and
(b) run analysis using imported data.

Conditions:

1. Constant page size, increasing cluster size. Observe the effect of queuing many small read
operations.

2. Increasing page size, constant cluster size. Impact of the I/0 request size on the throughput.
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CERN openlab: one page per OID, constant page size, increasing cluster size

Throughput (GB/s)
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CERN openlab: one page per OID, increasing page size, constant cluster size

(a) gen_lhcb, no compression.
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HPE Delphi: one page per OID, increasing page size, constant cluster size

= Preliminary tests: poor performance of ~550MB/s.

= Wrong use of event queues: EQ created (destroyed) before (after) each bulk read.

Single-process, single-thread results after patching:
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= Higher read throughput with large pages (larger transfer size).

= RNTuple libdaos-based backend outperforms dfuse in our tests.

= Room for improvement, e.g.
= combine EQ with daos_obj_fetch() for multiple akeys (implies using a “One cluster per OID”
mapping)
= multiple, maybe per-thread, event queues (?)
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RNTuple caching & DistRDF on DAOS




RNTuple caching on DAOS
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ROOT’s RDataFrame and DistRDF

= RDataFrame provides a convenient, declarative interface for HEP analyses, e.g.

from ROOT import RDataFrame

df = RDataFrame(dataset)

df2 = df.Filter("x > 0")
.Define("r2", "xxx + yxy");

rHist = df2.HistolD("r2");

= Multi-threaded, but only works in a single node

= DistRDF extends RDataFrame to run distributed computation using Spark or Dask

= In our experiment: data was stored in DAOS
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DistRDF on DAOS: evaluation
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Conclusion




Conclusion

= RNTuple architecture decouples storage from serialization/representation.
= Object stores are first-class: we expect DAOS to have an important role in HPC centers.

= RNTuple DAOS backend already merged into ROOT's ‘master’ branch.

Work in progress

1. Ongoing efforts to improve the read throughput.

2. Data mover: importing large amounts of existing HEP data into DAOS.
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Why invest in tailor-made /0 sub system (TTree / RNTuple)

= Capable of storing the HENP event data model: nested, inter-dependent collections of data
points

= performance-tuned for HENP analysis workflow (columnar binary layout, custom compression
etc.)

= Automatic schema generation and evolution for C++ (via cling) and Python (via cling + PyROOT)
= Integration with federated data management tools (XRootD etc.)

= Long-term maintenance and support



CERN openlab: one cluster per OID, increasing page size, constant cluster size

(a) gen_1lhcb, no compression. (b) 1heb, no compression.
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