Status and Roadmap of ROOT's RNTuple and DAOS

Javier López-Gómez* – EP R&D fellow, CERN Vincenzo Eduardo Padulano** – CERN

DUG'21, 2021-11-19

ROOT project, EP-SFT, CERN
http://root.cern/

* <javier.lopez.gomez@cern.ch>

** <vincenzo.eduardo.padulanocern.ch>

About me

- PhD in Computer Science and Technology
- Strong focus in low-level: electronics/embedded systems, kernel development, compilers, RE, etc.

Currently at CERN's ROOT project working in:

Improvements and bug fixes to the cling C++ interpreter

```
[cling]$ std::cout << "Hello DUG'21!" << std::endl;
Hello DUG'21!
```

- Improvements to RNTuple, the ROOT's new columnar I/O system
- Maintainer of the RNTuple DAOS backend

Contents

- 1 Introduction
- 2 RNTuple and DAOS
- 3 Evaluation
- 4 RNTuple caching & DistRDF on DAOS
- 5 Conclusion

Introduction

What we do at CERN

- High-energy physics studies laws governing our universe at the smallest scale.
- CERN experiments observe particle interactions by colliding particles.
- LHC collides protons that move in opposite directions.
- Detectors are similar to a 100 MP camera taking a picture every 25 ns.
- 10^9 collisions/sec generating ~ 10 TB/s.
- Processing:
 - Online: filtering step. Part of the detector read-out.
 - Offline: distributed; disk storage at different LHC compute centers around the globe.

ROOT's TTree and RNTuple

HEP analyses typically require access to a subset of the columns: column-wise storage¹.

- ROOT's TTree: used for 25 years (1+ EB stored in ROOT files!).
- However, not designed to fully exploit modern hardware.
- RNTuple: R&D project to evolve the TTree I/O.
- Object stores are first-class citizens.

¹See also: Apache Arrow/Parquet

RNTuple and DAOS

RNTuple: on-disk file format

 $\textbf{Pages:} \ \, \textbf{Array of fundamental types (maybe compressed);} \, \sim \textbf{tens of kB (tunable at write time)}.$

Cluster: comprises pages for a certain range of rows, e.g. 1–1000.

Page group: pages on a given cluster that contain instances of the same data member.

Alternatives for mapping clusters/pages to DAOS

- One page per OID in a single akey. Constant dkey.
- One cluster per OID and one *akey* per page in the cluster. Constant *dkey*.
- One cluster per OID (2). Same as above, but varying dkey (e.g. one dkey per page group).

RNTupleReader: file vs. DAOS

Only requires the replacement of the file path

Evaluation

Evaluation

Test environments

- **CERN openlab:** 3 servers, 2 clients. Intel Omni-Path.
- HPE Delphi: 2 servers, 9 clients. Mellanox InfiniBand.

Test cases

Steps: (a) move data into DAOS, and

(b) run analysis using imported data.

Conditions:

- 1. **Constant page size, increasing cluster size.** Observe the effect of queuing many small read operations.
- 2. Increasing page size, constant cluster size. Impact of the I/O request size on the throughput.

CERN openlab: one page per OID, constant page size, increasing cluster size

CERN openlab: one page per OID, increasing page size, constant cluster size

HPE Delphi: one page per OID, increasing page size, constant cluster size

- Preliminary tests: poor performance of ~550MB/s.
- Wrong use of event queues: EQ created (destroyed) before (after) each bulk read.

Single-process, single-thread results after patching:

Summary

- Higher read throughput with large pages (larger transfer size).
- RNTuple libdaos-based backend outperforms dfuse in our tests.
- Room for improvement, e.g.
 - combine EQ with daos_obj_fetch() for multiple akeys (implies using a "One cluster per OID" mapping)
 - multiple, maybe per-thread, event queues (?)

RNTuple caching & DistRDF on DAOS

RNTuple caching on DAOS

ROOT's RDataFrame and DistRDF

• RDataFrame provides a convenient, declarative interface for HEP analyses, e.g.

- Multi-threaded, but only works in a single node
- DistRDF extends RDataFrame to run distributed computation using Spark or Dask
- In our experiment: data was stored in DAOS

DistRDF on DAOS: evaluation

Conclusion

- RNTuple architecture decouples storage from serialization/representation.
- Object stores are first-class: we expect DAOS to have an important role in HPC centers.
- RNTuple DAOS backend already merged into ROOT's 'master' branch.

Work in progress

- 1. Ongoing efforts to improve the read throughput.
- 2. Data mover: importing large amounts of existing HEP data into DAOS.

Status and Roadmap of ROOT's RNTuple and DAOS

Javier López-Gómez* – EP R&D fellow, CERN Vincenzo Eduardo Padulano** – CERN

DUG'21, 2021-11-19

ROOT project, EP-SFT, CERN
http://root.cern/

* <javier.lopez.gomez@cern.ch>

** <vincenzo.eduardo.padulanocern.ch>

Why invest in tailor-made I/O sub system (TTree / RNTuple)

- Capable of storing the HENP event data model: nested, inter-dependent collections of data points
- Performance-tuned for HENP analysis workflow (columnar binary layout, custom compression etc.)
- Automatic schema generation and evolution for C++ (via cling) and Python (via cling + PyROOT)
- Integration with federated data management tools (XRootD etc.)
- Long-term maintenance and support

CERN openlab: one cluster per OID, increasing page size, constant cluster size

