
DAOS on Google Cloud

DAOS User Group

November 2021

Carlos Boneti HPC Software Engineer, Google

Johann Lombardi Lead DAOS architect, Intel AXG

Agenda

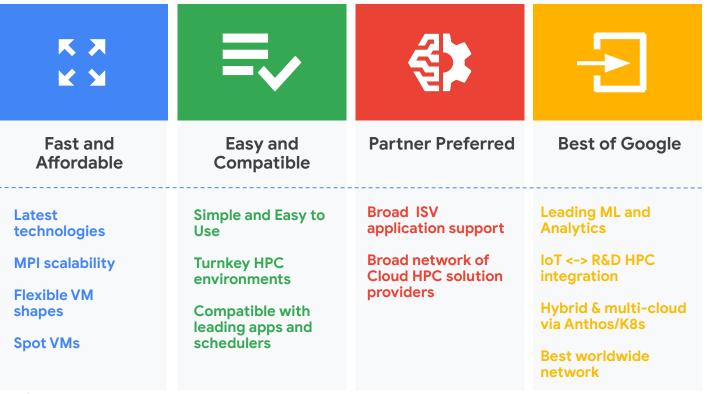
Intro to Google Cloud

5 minutes

Overview Storage Types Typical HPC Architecture Typical Data Path (On-Premises + Cloud)

2 DAOS on Google Cloud

5 minutes


8 minutes

Performance numbers

Overview User Cards and User Paths Product and Service Cards Zones and Nesting Title and Footer Bars

HPC on Google Cloud

Meeting HPC needs with fastest time to insight and simplicity

High Performance Computing on Google Cloud

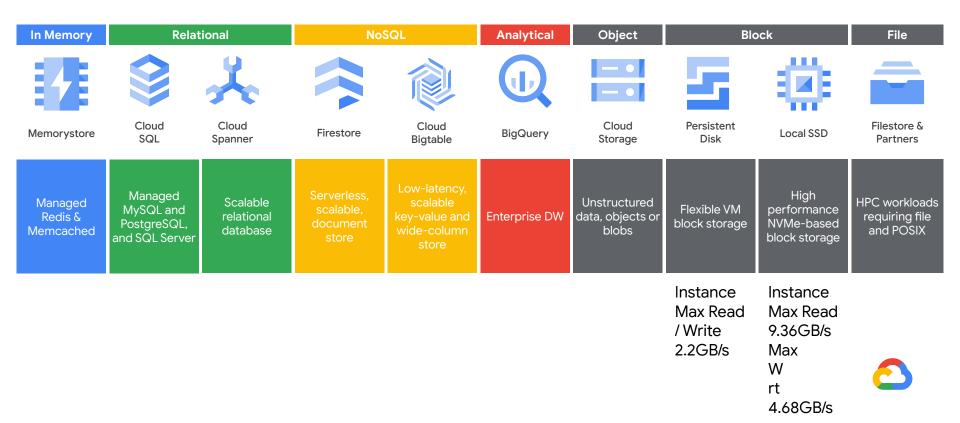
Compute

Google Compute Engine's VMs boot in seconds, are built for consistently high performance, and have security built-in.

Storage

Various storage service offerings remove much of the burden of building and managing storage and infrastructure.

Network


Google's high performance private network connects VMs with high throughput, low latency interconnects.

HPC Software

Google Cloud offers native HPC tooling, and supports a broad portfolio of HPC software from our HPC Partners and Open-Source projects.

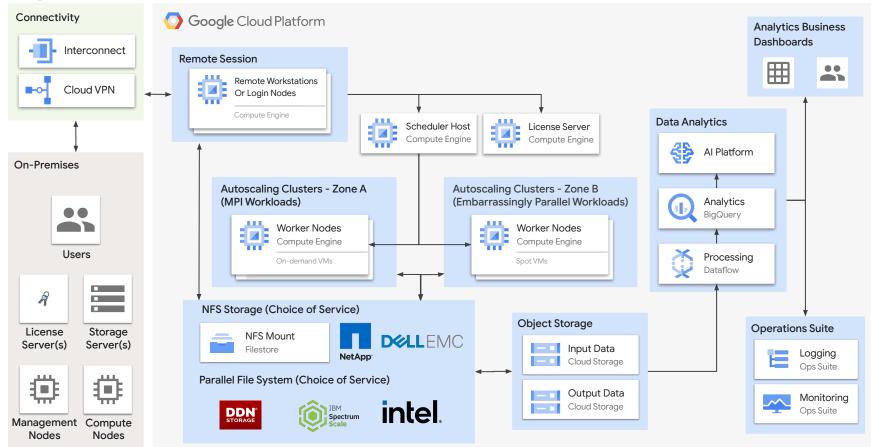
Which storage type?

Block storage performance

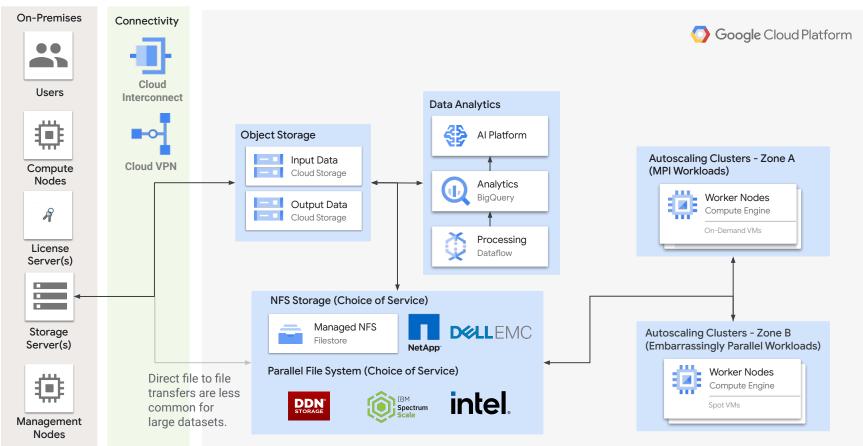
https://cloud.google.com/compute/docs/disks/performance

	Zonal	Regional	Zonal	Regional	Zonal	Regional	Zonal	Local SSD	Local SSD
Perf per instance	standard PD	standard PD	balanced PD	balanced PD	SSD PD	SSD PD	extreme PD	(SCSI)	(NVMe)
Maximum sustained IOPS									
Read IOPS	<u>7,500*</u>	<u>7,500*</u>	<u>15.000-80.000*</u>	15.000-60.000*	<u>15,000-100,000</u> *	15.000-60.000*	15.000-120.000*	900,000	2,400,000
Write IOPS	<u>15.000*</u>	<u>15.000*</u>	<u>15.000-80.000*</u>	<u>15.000-30.000*</u>	<u>15,000-100,000</u> *	<u>15.000-30.000*</u>	15.000-120.000*	800,000	1,200,000
Maximum sustained throughput (MB/s)									
Read throughput	<u>240-1.200*</u>	<u>240-1.200*</u>	<u>240-1,200*</u>	240-1.200*	<u>240-1,200*</u>	<u>240-1,200*</u>	240-2,200**	9,360	9,360
Write throughput	<u>76-400**</u>	<u>38-200**</u>	240-1,200*	<u>120-600*</u>	240-1.200*	<u>120-600*</u>	240-2.200**	4,680	4,680

* Persistent disk IOPS and throughput performance depends on disk size, instance vCPU count, and I/O block size, among other factors.


** Persistent disks can achieve greater throughput performance on instances with more vCPUs. Read Network egress caps on write throughput.

Network Bandwidth (N2 VMs)


https://cloud.google.com/compute/docs/networking/configure-vm-with-high-bandwidth-configuration

vCPUs	Default	Tier 1
2 - 4	10 Gbps	Not applicable (N/A)
8	16 Gbps	N/A
16	32 Gbps	N/A
32	32 Gbps	50 Gbps
48	32 Gbps	50 Gbps
64	32 Gbps	75 Gbps
80 - 128	32 Gbps	100 Gbps

Open, Standards-Based Architecture for Cloud HPC

Typical data paths

DAOS on Google Cloud: Deployment

https://github.com/daos-stack/google-cloud-daos

First key use case: ephemeral storage (scratch)

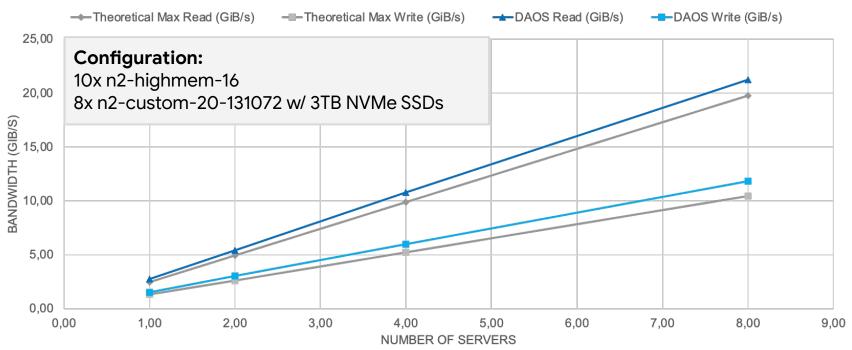
- Two terraform modules
 - daos_server
 - daos_client
- Various examples
 - **simple_daos_server_example**: managed instance group running DAOS servers
 - daos_client_mig: managed instance group with client nodes
 - full_cluster_setup: both clients and server instances
 - **io500**: automated deployment for io500 runs

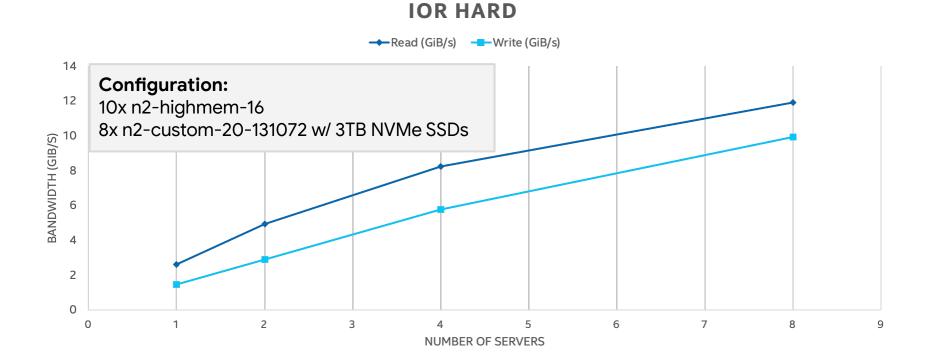
DAOS on Google Cloud: Configuration

https://github.com/daos-stack/google-cloud-daos

- Recommended configuration
 - \circ 1x target per SSD partition
 - 2x vCPU per target (hyperthread)
 - Adjust DRAM capacity based on number of SSDs
 - n2-highmem-16 with 1.5TB per server for best performance
 - n2-highmem-32 with 6TB per server for best cost per GB
- Interfaces available out of the box
 - native DAOS API (libdaos.so)
 - DAOS File System library (libdfs.so)
 - Fuse daemon (dfuse)
 - Interception library (libioil.so)
 - MPI-IO DAOS driver (Intel MPI)
 - Python module (PyDAOS)
 - To do:
 - HDFS java bindings

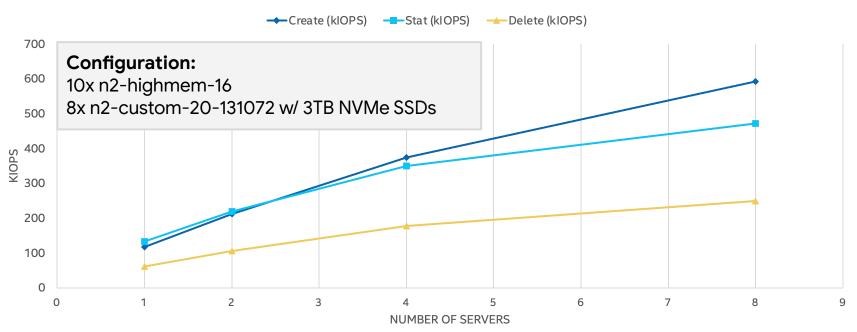
DAOS on Google Cloud: Current Limitations

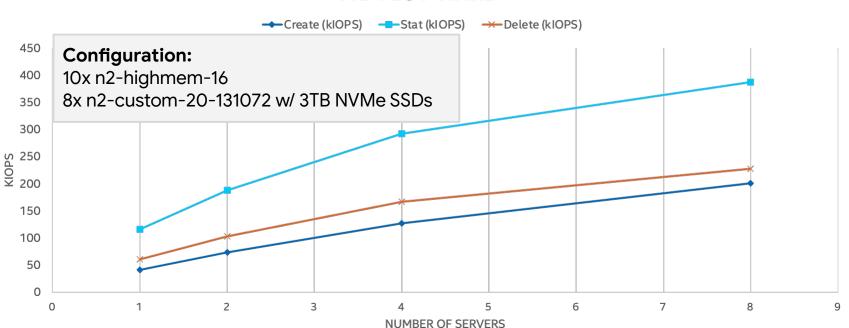



https://github.com/daos-stack/google-cloud-daos

- No persistency (no pmem)
 - RAM for metadata
 - \circ Local SSD (NVMe) for data
 - Cannot survive a full reboot of all the instances at once
 - Cannot survive failures on more server instances than the configured redundancy. However, Google Cloud provides live migration for host maintenance and certain failures <u>https://cloud.google.com/compute/docs/instances/live-migration</u>
- Currently limited to 6TB per node

IOR EASY





daos

MDTEST EASY

MDTEST HARD

DAOS on Google Cloud: Recap & Future Plans

https://github.com/daos-stack/google-cloud-daos

DAOS on Google Cloud provides a simple and fast way to deploy DAOS with very good performance.

Future plans:

- Automate data movement from GCS
- Telemetry
- Further automation: creation of partitions, mounting in clients, etc.
- Increased storage to 9TB per server node
- Guided initial configurations
 - Best for IOPS
 - Best for bandwidth
 - Lowest cost per GB

Thank you.

https://cloud.google.com/hpc

Google Cloud